SrTiO$_3$ thin film capacitors on silicon substrates with insignificant interfacial passive layers

Citation: Appl. Phys. Lett. 97, 132907 (2010); doi: 10.1063/1.3495990
View online: https://doi.org/10.1063/1.3495990
View Table of Contents: http://aip.scitation.org/toc/apl/97/13
Published by the American Institute of Physics

Articles you may be interested in

Low leakage ZrO$_2$ based capacitors for sub 20 nm dynamic random access memory technology nodes

Ultra-thin ZrO$_2$/SrO/ZrO$_2$ insulating stacks for future dynamic random access memory capacitor applications

Some unusual behavior of dielectric properties of SrTiO$_3$ metal organic chemical vapor deposition grown thin films

Depth resolved band alignments of ultrathin TiN/ZrO$_2$ and TiN/ZrO$_2$-$\mathrm{Al}_2\mathrm{O}_3$-$\mathrm{ZrO}_2$ dynamic random access memory capacitors

Detailed leakage current analysis of metal–insulator–metal capacitors with ZrO$_2$, ZrO$_2$/SiO$_2$/ZrO$_2$, and ZrO$_2$/Al$_2$O$_3$/ZrO$_2$ as dielectric and TiN electrodes

Atomic layer deposition of ZrO$_3$ on W for metal–insulator–metal capacitor application
Applied Physics Letters 82, 2874 (2003); 10.1063/1.1569985
SrTiO$_3$ thin film capacitors on silicon substrates with insignificant interfacial passive layers

1Institut für Werkstoffe der Elektrotechnik 2, RWTH Aachen University, Sommerfeldstraße 24, D-52074 Aachen, Germany
2JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
3Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
4SolarWorld Innovations GmbH, Bertholdsstraße 111 A, D-09599 Freiberg, Germany
5SGS Germany GmbH, Zeissigweg 13, D-01737 Kurort Hartha, Germany
6NaMLab gGmbH, Nöthnitzer Straße 64, D-01187 Dresden, Germany

(Received 13 August 2010; accepted 11 September 2010; published online 30 September 2010)

Using sputter deposition, nonepitaxial ultrathin film capacitors consisting of SrRuO$_3$ electrodes and dielectric SrTiO$_3$ (STO) were grown directly on oxidized silicon substrates. The surface roughness of the layers was found to be very low (\leq0.2 nm). Dielectric measurements as a function of temperature were performed on samples with different STO thickness down to 7 nm, showing temperature dependence of the interfacial passive layers. The dielectric constant of the STO films was found to be in the range of 200 at room temperature for all samples, which leads to a minimum capacitance equivalent thickness below 0.2 nm. © 2010 American Institute of Physics.

[doi:10.1063/1.3495990]

SrTiO$_3$ (STO) belongs to the most promising candidates of high permittivity materials in capacitors for future dynamic random access memory (DRAM) applications. There is wide experience in the growth of metal-insulator-metal (MIM) structures containing electrode materials like Pt, Au, Ru, RuO$_2$, or Ti. The low lattice mismatch with SrRuO$_3$ (SRO) allows for the heteroepitaxial growth of MIM structures. In spite of these numerous results, a typically observed decline of the dielectric constant with decreasing STO film thickness due to the formation of interfacial passive layers seems to be inevitable. These passive layers are believed to have permittivity significantly below the value of the dielectric independent of the film thickness. The possible explanations of this effect are various and range from a finite electrostatic screening length in the electrode over growth-induced defects and strain effects to effects of the electrode material.

In this paper, we report on the fabrication of SRO/STO/SRO ultrathin film capacitors on oxidized silicon substrates showing an effective permittivity value of 200 at a physical STO thickness of 10 nm and below. The capacitors were analyzed with respect to interfacial passive layers and their temperature dependence.

The MIM structures were deposited in situ on oxidized silicon substrates by low-rate rf sputtering from pressed powder SRO and sintered STO targets with 1 in. diameter. Growth conditions were a substrate temperature of 550 °C and a chamber pressure of 8×10^{-3} mbar Ar for both the SRO and STO deposition. The initial partial pressure of other gases, for instance oxygen, is several orders of magnitude lower and settles in the range of 10^{-7} mbar. The deposition of SRO on SiO$_2$ did not require adhesion layers. Prehandling procedures include wafer rinsing in acetone, isopropanol, and deionized water. The top SRO layers were patterned by depositing a Pt hard mask via photolithography, lift-off, and dry etching by Ar-ion beam. Atomic force microscopy (AFM) was performed using a Veeco CP-2 in noncontact mode. The particular thickness and the surface roughness of each film of the trilayer structure was determined by x-ray reflectometry (XRR) using a Cu k$_\alpha$ x-ray source and was partially confirmed by FIB-cut SEM cross sections. Grazing incident x-ray diffraction (GI-XRD) measurements were performed at a constant incident angle of 0.5°. The capacitance of the MIM structures was measured using a HP 4284 A LCR-meter. The measurements were performed with various top electrode areas, for which the displayed curves are representative. This is intended to mostly eliminate the inaccuracy of the top electrode area due to lithography or the patterning process.

The room temperature resistivity of the SRO films was determined by the van der Pauw method and found to be about 500 $\mu\Omega$ cm, which is near to that of epitaxial SRO thin films and SRO single crystals. The morphology of the films’ surfaces is shown in Fig. 1. The root-mean-square roughness values were 0.14 ± 0.1 nm for the SRO surface and 0.2 ± 0.1 nm for the STO surface, respectively. These values corresponded to the values obtained by XRR. Representative results of the films’ structure are illustrated in Fig. 2. For comparison, the GI-XRD pattern of a 100 nm SRO bottom layer is shown in addition to the XRD spectrum of a complete SRO/STO/SRO stack. The pure SRO layer showed several peaks which can be assigned to polycrystalline SRO pseudocubically indexed. The broad shape of the peaks is due to the small grain size, following the Scherrer equation. From the pattern of the SRO/STO/SRO stack an additional peak at about 40° appeared which was identified...
as the polycrystalline (111) reflex of STO. Other STO peaks were hidden by the SRO reflexes.

The room temperature capacitance equivalent thickness (CET) of the polycrystalline STO thin films as a function of the applied electric field defined as \(E = V/t \) is shown in Fig. 3. The CET was calculated using the equation

\[
\text{CET} = \frac{\varepsilon_0 \varepsilon_{\text{STO}} A}{C_{\text{meas}}},
\]

where \(A \) is the capacitor area, \(C_{\text{meas}} \) is the measured capacitance, and \(\varepsilon_{\text{SiO}_2} = 3.9 \) is the permittivity of silicon dioxide. The field-dependence is characteristic for perovskite titanates. The thinnest STO layer showed a CET below 0.3 nm with leakage current density. The 10 nm STO layer shows a reciprocal capacitance density of about 0.027 m\(^2\)/F, increasing temperature. The intercept at room temperature have a CET as function of electric dc bias field. No field offset correction has been performed. CET is calculated from 1 kHz C-V measurements with 50 mV small signal assuming a parallel plate capacitor structure. Neither variation of small signal frequency to 10 kHz nor reduction of the small signal bias down to 10 mV showed significant differences, which is very small compared to values from literature.

Applying the common series capacitor model for passive layers, the reciprocal capacitance can be expressed by the equation

\[
\frac{A}{C_{\text{meas}}} = \frac{t}{\varepsilon_0 \varepsilon_{\text{eff}}} = \frac{t}{\varepsilon_0 \varepsilon_i} + \frac{t - t_i}{\varepsilon_0 \varepsilon_b},
\]

where \(t_i \) and \(\varepsilon_i \) are the thickness and permittivity of the interfacial passive layers, respectively, \(t \) is the total thickness, and \(\varepsilon_b \) is the bulk permittivity.

We are aware of the fact that from this analysis it is only possible to obtain the relation \(t_i/\varepsilon_i \) of which the maximum, i.e., at the lowest temperature, was determined to be 4.25 pm. However, further analysis of this relation, as Takahashi et al. had proposed, did not help in clearly determining the interface thickness \(t_i \) or its permittivity \(\varepsilon_i \). This is due to the fact that the linear fitting of the equation

\[
\frac{1}{\varepsilon_{\text{eff}}} = \frac{1}{\varepsilon_b} + \left(\frac{1}{\varepsilon_i} - \frac{1}{\varepsilon_b} \right) \frac{t_i}{t},
\]

resulted in large errors, as the determination of the permittivity requires the STO film thickness, which is associated with higher uncertainty. However, the intercepts of these fits, which are determined by the bulk permittivity, showed similar values to those obtained from the slopes of Fig. 4.
are determined by the effective permittivity. Still, there was a systematic deviation, as can be seen in Fig. 5. A possible explanation was a temperature dependence of the interface capacitance. This became more apparent because of the moderate temperature dependence of the permittivity compared to materials like (Ba,Sr)TiO3 (BST) and also single crystal STO, which typically show a stronger temperature dependence.25

The reasons for the insignificant interfacial passive layers of the investigated samples compared to other results in literature were more subject to conjecture. As mentioned in the beginning, there are numerous models for the explanation of interfacial passive layers and as many assumptions how their impact can be reduced. Our approach to prevent their formation was the combination of several factors. SRO as a perovskite electrode gave the best known material match with STO. The smooth surface of the layers provided interfaces of very high quality. Using in situ vacuum processing of the complete capacitor stack at elevated temperatures, targets of high purity, and inert process gas prevented contamination of the deposited layers.

Apart from the processing and material approach, a finite electronic screening length is an intrinsic effect of the metal-insulator interface and therefore cannot be neglected. For instance, Black and Welser14 introduced an effective dielectric constant for the electrode material and determined the effect of a Thomas Fermi screening length on MIM structures with BST as an exemplary high-k dielectric. Comparing these considerations with the investigated samples, we found good agreement with the order of magnitude of the derived interface capacitances. However, there was an amount of uncertainty which made it impossible to clearly distinguish the origin of interfacial passive layers and isolate the decisive effect, which is in agreement with literature.27

In summary, we fabricated SRO/STO/SRO ultrathin film capacitors on oxidized silicon substrates by rf sputtering. Capacitance measurements showed the STO films to have a dielectric constant of about 200 without indicating significant interfacial passive layers. This makes the investigated material combination to be one of the most promising candidates for far future DRAM capacitor applications.

The work for this paper was supported within the scope of technology development by the EFRE fund of the European Community and by funding of the Free State of Saxony (Project No. 12462/2043—MERLIN). The authors would like to thank P. Grewe, M. Kohnen, and S. Starschich from RWTH Aachen as well as C. Makovicka and R. Borowski from the research center Jülich for their support.

23ITRS 2009.