A Pilot Study of Nitrogen Composition and Effect on Biohydrogen Production

S.-S. Cheng, M.-D. Bai, Y.-C. Chao, Y.-H. Lin

This document appeared in
Detlef Stolten, Thomas Grube (Eds.):
18th World Hydrogen Energy Conference 2010 - WHEC 2010
Parallel Sessions Book 2: Hydrogen Production Technologies – Part 1
Proceedings of the WHEC, May 16.-21. 2010, Essen
Institute of Energy Research - Fuel Cells (IEF-3)
Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, 2010
ISBN: 978-3-89336-652-1
Biohydrogen Production from Combined Dark-photo Fermentation under a high Ammonia Content in the Dark Fermentation Effluent

Chun-Yen Chen¹², Yung-Chung Lo¹, Kuei-Ling Yeh¹, Jo-Shu Chang¹²³
¹ Department of Chemical Engineering, National Cheng Kung University
² Sustainable Environment Research Center, National Cheng Kung University
³ Microalgae Biotechnology and Bioengineering Laboratory, Center for Biotechnology and Biosciences, National Cheng Kung University, Tainan, Taiwan

Abstract

Integrated dark and photo (two-stage) fermentation was employed to enhance the performance of H₂ production. First, the continuous dark fermentation using indigenous Clostridium butyricum CGS5 was carried out at 12 h HRT and fed with sucrose at a concentration of 18750 mg/l. The overall H₂ production rate and H₂ yield were fairly stable with a mean value of 87.5 ml/l/h and 1.015 mol H₂/mol sucrose, respectively. In addition, a relatively high ammonia nitrogen content (574 mg/l) in the dark fermentation effluent was observed. The soluble metabolites from dark fermentation, consisting mainly of butyric, lactic and acetic acids, were directly used as the influent of continuous photo-H₂ production process inoculated with Rhodopseudomonas palustris WP 3-5 under the condition of 35°C, 10000 lux irradiation, pH 7.0 and 48 h HRT. The maximum overall hydrogen production rate from photo fermentation was 16.4 ml H₂/l/h, and the utilization of the soluble metabolites could reach 90%. The maximum H₂ yield dramatically increased from 1.015 mol H₂/mol sucrose (in dark fermentation only) to 6.04 mol H₂/mol sucrose in the combined dark and photo fermentation. Surprisingly, the operation strategy applied in this work was able to attain an average NH₃-N removal efficiency of 92%, implying that our photo-H₂ production system has a higher NH₃-N tolerance, demonstrating its high applicability in an integrated dark-photo fermentation system.

1 Introduction

Hydrogen is a clean energy since combustion of H₂ produces only water without greenhouse gases. Hydrogen can also be directly utilized by hydrogen fuel cell to generate electricity at very high efficiency [1], thereby being considered a promising alternative energy carrier of the future [2,3]. To this end, developing hydrogen production technology leading to a sufficient and sustainable H₂ supply is highly demanded. Biological H₂ production considered as the most environmentally friendly route of producing H₂ [4], thereby fulfilling the goals of recycling of renewable resources and clean energy production [5]. Hydrogen can be produced biologically through dark fermentation and photo fermentation [6]. These routes all possess advantages and drawbacks, but they seem to interact complementarily. Thus, effective integration of the three pathways may lead to optimal performance of biohydrogen production.
production [7]. In this study, sucrose was used in a dark-fermentation batch bioreactor with *Clostridium butyricum* CGS5 to produce hydrogen and volatile fatty acids. The effluent from dark fermentation broth (containing mainly volatile fatty acids) was continuously introduced to photo fermentation culture inoculated by *Rhodopseudomonas palustris* WP3-5. The stability of continuous operation of the integrated dark/photo H₂ fermentation system was evaluated.

2 Materials and Methods

2.1 Bacterial strain and cultivation medium

The strain used for dark fermentation was *Clostridium butyricum* CGS5 isolated from municipal sewage sludge in central Taiwan [8]. The *Rhodopseudomonas palustris* WP3-5 isolated from a swine wastewater treatment plant located in central Taiwan [9] was used for phototrophic H₂ production. The culture medium was using 2000 mg/l sodium acetate as a sole carbon substrate. The cells were cultivated at 32°C anaerobically for 48 h under a light intensity of approximately 50 W/m² (illuminated by tungsten filament lamp). The initial pH value of medium prior to incubation was adjusted to 7.0-7.1. Argon gas was used to create an anaerobic condition.

2.2 Setup of the bioreactor

The batch dark H₂ fermentation conducted by inoculating 3 ml of *C. butyricum* CGS5 into 200 ml flasks containing 150 ml of dark-fermentation medium, which was incubated at 37°C and an initial pH of 7.5. A continuously stirred tank reactor (CSTR) was also conducted to produce H₂ from sucrose via dark fermentation using *C. butyricum* CGS5 as the H₂ producer. The continuous culture was operated at 37°C, pH 6.5. The dark H₂ fermentation broth was centrifuged (9000 × g, 10 min) and the collected supernatant was diluted and then the pH was adjusted to 7.1. This pretreated supernatant was used as the substrate for phototrophic H₂ production with *R. palustris* WP3-5. The photobioreactor (PBR) was a 1-liter glass-made vessel equipped with external light sources (100 W tungsten filament lamps) adjusted to a light intensity of ca. 95 W/m².

3 Results and Discussion

3.1 Continuous dark-fermentation H₂ production using sucrose as substrate

In this work, a pure strain of *Clostridium pasteurianum* CGS5 was used to produce H₂ via continuous dark fermentation using sucrose as the carbon source. The soluble products generated from dark fermentation were then used for phototrophic H₂ production in the following stage. The dark fermentation operated at 32°C, 12 h HRT and fed with a sucrose concentration of 18750 mg/l gave an H₂ yield of 1.105 mol H₂/mol sucrose, and overall H₂ production rate of 87.5 ml/l/h, respectively. Moreover, a relatively high ammonia nitrogen content of 574 mg/l was observed in the effluent of dark fermentation system. Meanwhile, the nearly 70-90% of soluble metabolites in the dark fermentation broth (mainly lactate, acetate, and butyrate) was produced to serve as substrates for photo fermentation, which
seems to be feasible substrates for H$_2$ production in the photo fermentation system as will be discussed next.

3.2 Continuous bioH$_2$ production with integrated photo fermentation processes

The dark fermentation metabolites mentioned above were further utilized as the influent of continuous photo-H$_2$ fermentation process inoculated with *R. palutris* WP3-5 under the condition of 32°C, 100 W/m2 irradiation, pH 7.0 and 96 h HRT. The overall H$_2$ production rate in photo fermentation was fairly stable with a mean value of 16.4±1.31 ml H$_2$/l/h. The cell concentration also reached a steady-state value of nearly 5.18±0.51 g/l over a 5-day operation. The H$_2$ content in biogas was essentially constant at 91.3±1.75% for 5-fold soluble metabolites. The total hydrogen yield calculated from integration of the yield from dark and photo fermentation reached a high value of 6.04 mol H$_2$/mol sucrose, which is nearly 5.95-fold of that obtained from using dark fermentation alone (1.015 mol H$_2$/mol sucrose). Nearly 92.0±1.5% for 5-fold soluble metabolites of the ammonia nitrogen entering the photo fermentation process was consumed, implying that our photo-H$_2$ production system has a higher NH$_3$-N tolerance, demonstrating its high applicability in an integrated dark-photo fermentation system. This suggests the feasibility and advantage of using the two-stage process combining dark and photo fermentation for high-yield bioH$_2$ production with an excellent stability.

References

