High-Temperature Fuel Cells in Decentralized Power Generation

R. Steinberger-Wilckens, N. Christiansen

This document appeared in
Detlef Stolten, Thomas Grube (Eds.):
18th World Hydrogen Energy Conference 2010 - WHEC 2010
Parallel Sessions Book 6: Stationary Applications / Transportation Applications
Proceedings of the WHEC, May 16.-21. 2010, Essen
Schriften des Forschungszentrums Jülich / Energy & Environment, Vol. 78-6
Institute of Energy Research - Fuel Cells (IEF-3)
Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, 2010
ISBN: 978-3-89336-656-9
High-Temperature Fuel Cells in Decentralized Power Generation

Robert Steinberger-Wilckens and Niels Christiansen

Abstract
Decentralised power generation (DG) can contribute to increases in efficiency of the entire power generation and distribution network. It reduces grid losses by moving the generation closer to the customer, thus also allowing the use of the waste heat generated in electricity production. At the same time it offers competitive advantages to industrial customers in supplying cost effective peak production, grid stabilisation and uninterruptible power supply. Total power generation efficiency, and subsequently also CO₂ balances, though, is only increased if the DG electrical efficiency meets minimum standards. These are defined by the grid characteristics within which the DG is operated. High temperature fuel cells offer a high value due to their high electrical conversion efficiencies of above 50%, reaching up to over 60% with the Solid Oxide Fuel Cell (SOFC). High efficiency, though, is only achieved with adequate system architectures. Worldwide, a number of manufacturers and developing groups are working on fuel cells for distributed electricity generation, with increasing success.

Copyright