Is There an Intrinsic Limit to the Charge-Carrier-Induced Increase of the Curie Temperature of EuO?

T. Mairoser,1 A. Schmehl,1,* A. Melville,2 T. Heeg,2 L. Canella,3 P. Böni,4 W. Zander,5 J. Schubert,5 D. E. Shai,6 E. J. Monkman,6 K. M. Shen,6 D. G. Schlom,2 and J. Mannhart1

1Zentrum für elektronische Korrelation und Magnetismus, Universität Augsburg, Universitätstraße 1, 86159 Augsburg, Germany
2Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
3Institut für Radiochemie, Technische Universität München, 85748 Garching, Germany
4Physik-Department E21, Technische Universität München, 85748 Garching, Germany
5IBM 1-IT and JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
6Department of Physics, Cornell University, Ithaca, New York 14853, USA

(Received 6 August 2010; published 14 December 2010)

Rare earth doping is the key strategy to increase the Curie temperature (T_C) of the ferromagnetic semiconductor EuO. The interplay between doping and charge carrier density (n), and the limit of the T_C increase, however, are yet to be understood. We report measurements of n and T_C of Gd-doped EuO over a wide range of doping levels. The results show a direct correlation between n and T_C, with both exhibiting a maximum at high doping. On average, less than 35% of the dopants act as donors, raising the question about the limit to increasing T_C.

DOI: 10.1103/PhysRevLett.105.257206 PACS numbers: 75.47.Lx, 75.50.Pp

Increasing the Curie temperature (T_C) of the half-metallic ferromagnetic semiconductor europium monoxide (band gap $E_{\text{gap}} = 1.12 \text{ eV}$ at 300 K [1]) is the key problem which has to be addressed to make this versatile material attractive for wide use. EuO offers the third strongest saturation magnetization of all known ferromagnets [2], one of the largest magneto-optic Kerr effects [3], pronounced insulator-to-metal transitions [4] as well as colossal magneto-resistive effects [5]. The recent demonstration of its half-metallic behavior and its structural and electronic compatibility with the technological relevant semiconductors silicon, GaN [6] and GaAs [7] make EuO a promising material for semiconductor-based spintronics. In addition, epitaxially strained EuO has been predicted to be ferroelectric and even multiferroic [8]. Despite these outstanding properties, the potential of EuO critically depends on the improvement of its Curie temperature of 69 K [9]. To address this challenge, several strategies have been proposed and are pursued, including the application of isostatic pressure [10,11], epitaxial strain [12], and charge carrier doping by either oxygen vacancies [13] or by substituting Eu$^{2+}$ with trivalent ions like Fe$^{3+}$ [14], La$^{3+}$, or Gd$^{3+}$ [15]. As the latter approach potentially offers the easiest way to substantially boost the T_C of EuO, rare earth doping has been extensively studied [6,15–22]. For optimized doping concentrations x in Eu$_{1-x}$B$_x$O, Curie temperatures have been reported to reach 170 K for $B = \text{Gd}$, $x = 0.04$ [21], and 180 K for $B = \text{Fe}$, $x = 0.077$ [23]. For doping concentrations exceeding these optimized values, however, the Curie temperature is progressively suppressed, giving rise to a maximum in T_C. Both the increase of T_C and the existence of a maximum of the Curie temperature for optimized doping have been attributed to an indirect exchange interaction, mediated via the conduction electrons. This indirect exchange acts in addition to the direct Heisenberg exchange between the localized 4f magnetic moments of the Eu atoms and is supposed to become stronger with increasing carrier density. Several theoretical models have been introduced which describe this indirect exchange interaction and its effects on T_C via an effective charge carrier doping [12,24,25]. In these models, the existence of a maximum of the Curie temperature is associated with a critical carrier density, above which magnetic instabilities [24] or antiferromagnetic ordering [12] reduce the indirect exchange. These models imply the existence of an intrinsic limit on how far the T_C of EuO can be increased by charge carrier doping. Although the change of T_C is ultimately resulting from a change of n, the comparison of experiment and theory has been based on the measurements of the dependence of the T_C on the doping concentration x, assuming that every dopant donates one electron to the EuO conduction band [12,24,25]. To assess the validity of this assumption and to investigate if increasing the carrier density in EuO inevitably leads to a maximum of T_C, we have systematically measured the carrier densities and Curie temperatures of Gd-doped EuO films over a wide range of doping concentrations. These measurements reveal that only a small fraction of the introduced dopants donate electrons to the conduction band. With increasing n, no maximum of T_C is found; T_C shows a maximum only if plotted as a function of the dopant concentration x. These findings open the question of whether the observed maxima of the $T_C(x)$ for various dopants are truly the intrinsic limit for the doping-induced T_C increase of EuO.
The Eu$_{1-x}$Gd$_x$O films with doping concentrations in the range of $0 \leq x \leq 0.195$ were grown using reactive oxide molecular-beam epitaxy. Gadolinium was chosen as its effects on T_c of EuO have been widely investigated and therefore offers the broadest database of all possible dopants. Europium and gadolinium were coevaporated from effusion cells in oxygen partial background pressures of 1×10^{-9} Torr. The substrate temperature (T_{growth} = 350 °C) and the oxygen pressure were chosen for adsorption-controlled growth [26] to minimize the density of oxygen vacancies, which would otherwise act as uncontrolled dopants. The incident Eu and Gd fluxes were calibrated using a quartz crystal microbalance and adjusted to result in the desired Gd/Eu ratio (Eu-flux = 10^{14} atoms/cm2/s). All films were grown to thicknesses d of ~35 nm on (110)-orientated YAlO$_3$ single crystalline substrates [26]. YAlO$_3$ was chosen because of its outstanding insulating properties (band gap = 7.5 eV [27]) which prevent shunting of the highly resistive films at low doping concentrations x. Twelve samples were grown in three batches. The thicknesses of the samples were determined by Rutherford backscattering spectrometry. These thicknesses were assumed to be the same for all films of a batch. The Gd content x for the four samples with the highest doping concentrations was determined by prompt-gamma activation analysis and by the Eu and Gd $M_{4,5}$ edges using x-ray absorption spectroscopy (XAS) [22]. With these values, the average ratio between calibrated Gd flux and measured Gd content was calculated and hence x of the remaining samples determined.

After growth the films were capped in situ with ~20 nm of amorphous silicon to prevent oxidation in air. The crystalline quality of all films was examined by four-circle x-ray diffraction. $\theta - 2\theta$ scans demonstrated single-phase films within the resolution limit of XRD. Rocking curves of the 002-peaks indicate that the main fractions of the films are coherently strained by the substrates with a clear onset of relaxation [28]. The in- and out-of-plane magnetic properties of all samples were characterized by superconducting quantum interference device magnetometry [28]. Temperature dependent measurements of the magnetization (zero-field cooled) were used to determine the Curie temperatures of the films. The measured characteristics [Fig. 1(a)] are in agreement with the behavior reported in the literature [6,19,20,22]. Field-dependent magnetization measurements performed at 5 K were used to determine the in-plane and out-of-plane saturation magnetizations (M_{sat}) and fields (H_{sat}). Typical values for μ_0H_{sat} range from 0.12 to 0.19 T for in-plane and 2.6 to 3.2 T for out-of-plane measurements [28].

To measure transport properties, bridges were patterned into the Eu$_{1-x}$Gd$_x$O films using photolithography in combination with in situ ion-etching and sputter deposition [29]. Low resistance contacts were provided by Mg pads. On the patterned bridges, the temperature dependence of the resistivities [$\rho(T)$] were measured in a four point geometry.

![Graph](image_url)

FIG. 1 (color online). (a) temperature dependence of the magnetization of Eu$_{1-x}$Gd$_x$O samples measured in zero magnetic field; (b) resistivities of Eu$_{1-x}$Gd$_x$O films as a function of temperature; (c) simplified band diagram of Gd-doped EuO. Below T_c the large splitting of the conduction band leads to draining of the dopant electrons into the lower conduction band. For $T \ll T_c$ the carrier density is almost exclusively determined by the active dopants.

Figure 1(b) displays the temperature dependence of the resistivities of Eu$_{1-x}$Gd$_x$O films with x in the range of 0.0025 to 0.195. The $\rho(T)$ curves show the typical behavior for doped EuO (see, e.g., [20,30]). For all temperatures, the resistivities strongly depend on the doping concentration x, with a minimum at $x = 0.096$ [Fig. 1(b)].
Out-of-plane magnetic fields H were applied to measure the Hall resistance R_H of the bridges at $T = 4.2$ K [28]. From these measurements, the mobile carrier densities n of the films were calculated. At these low temperatures, contributions of the anomalous Hall effect are negligible [5], and for fields above H_{sat}, the Hall resistance depends linearly on the applied magnetic field:

$$R_H(H) = - \frac{1}{en} \mu_0 (H + M_{sat}).$$ \hspace{1cm} (1)$$

Here e designates the elementary charge and μ_0 the vacuum permeability. For the determination of n the slopes of $R_H(H)$ were fitted for fields $4 \, T \leq |\mu_0 H| \leq 8 \, T$, well above the measured out-of-plane saturation fields. The measurements were performed on two different bridges on every sample. At $T = 4.2$ K $< T_C$, the Zeeman splitting of $\Delta E_Z = 0.6$ eV of the conduction band [31] causes the lower conduction band to intersect with the donor level, which energetically is located closely below the conduction band [Fig. 1(c), [18]]. This induces a charge transfer from the donor levels into the conduction band. At 4.2 K, thermal excitations of electrons from the valence band into the conduction band can be neglected and the measured carrier density originates almost exclusively from electrons donated by the dopants.

The dependence of T_C and n on the doping concentration x are shown in Fig. 2. The data provide evidence that T_C and n are closely correlated. Both increase with x and reach a maximum in the range of $x = 0.10$. The maximum values are $T_C = 129$ K for $x = 0.102$ and $n = 9.0 \times 10^{20}$ cm$^{-3}$ for $x = 0.096$. The $T_C(x)$ dependence is in good agreement with the behavior reported in the literature [17,21,22]. The carrier density measurements, however, reveal that the reduction of T_C at high doping levels is accompanied by a reduction of n. This behavior is in contrast to the existing assumption that the maximum of the $T_C(x)$ characteristics is caused by n exceeding a critical threshold [12,24,25]. The direct correlation of T_C and n is demonstrated in the $T_C(n)$ plot shown in Fig. 3. T_C increases almost logarithmically with n, up to the highest achievable charge carrier densities. A minimum carrier density of $n \sim 1 \times 10^{19}$ cm$^{-3}$ is needed to induce a measurable increase of T_C.

To understand the reduction of n at high doping levels and to assess how many of the dopants donate electrons, we have calculated the expected carrier density n_{ex} assuming that every Gd atom donates one electron into the conduction band according to $n_{ex} = x n_{Eu}$, where n_{Eu} designates the density of Eu atoms in EuO. The ratio of the measured charge density n and the expected charge carrier density therefore provides the fraction of active dopants $p = n/n_{ex}$. The dependence of the dopant activation p on x is shown in Fig. 4. All samples show activations below 35%. After an activation plateau of $p = 30\%$ for $0.014 \leq x \leq 0.10$, the sample with the highest doping concentration again shows a strongly reduced activation. For $x = 0.195$, only 10.1% of the dopants donate an electron into the conduction band.

The data indicate that in our samples the reduction of T_C at high doping levels originates from a decrease in dopant activation. This is, in particular, surprising, because the XAS data show no indication of Gd ionization states other than Gd$^{3+}$ [28]. Therefore almost all dopants must have donated one electron. This result implies the existence of charge compensating effects, which block the majority of the donated electrons from being transferred into the conduction band. Only once has a related effect been reported. The origin of this behavior of a Gd-doped EuO crystal has, however, not been identified [16]. As even at the highest doping level neither the $\theta - 2\theta$ scans nor the rocking curves indicate the presence of a second phase or a decline in crystalline quality of the Eu$_{1-x}$Gd$_x$O films, the origin of the low dopant activation remains an important question.

The results provide a new perspective to utilize rare earth doping to increase T_C in EuO films. In providing a model for the $T_C(x)$ dependence, Mauger, for example,
与时温伴随着的充电载流子密度增大但显示了曲氏温度的内在限制

图4：（彩色在线）。计算的掺杂激活p作为掺杂浓度x在Eu1-xGdO的函数。

根据的存在的TC温度的螺旋结构在铁磁性秩序的[111]欧-欧方向，那是由于n > 2 × 10^21 cm^-3[24]（x > 0.068对于p = 1）。在模型的开发由Ingle和Elfimov，掺杂水平x > 0.08（n > 2.35 × 10^21 cm^-3对于p = 1）是预期导致反铁磁性秩序的旋度。我们的数据表明在n > 1 × 10^19 cm^-3需要增加TC（图3）。这个发现是在定性的同意下根据Mauger的模型，然而测量的载流子密度需要是关于一个数量级的较小于预测[24]。

在结论，我们的测量的外延Eu1-xGdO薄膜显示一个紧密的对应TC和n。我们的测量说明最大在TC是伴随由n的最大。这在与现有理解中是不同的，这里的最大是由于充电载流子密度超过一个临界水平。

我们发只有一小部分（< 35%）的引入的掺杂剂作为能带，而主要是的Gd是被在为活性。这明确地证明了这个广泛的假设是的能带是能带的能带，而掺杂实验来增加曲氏温度的欧-欧必须和曲氏温度的欧-欧相关，但不只是增加的载流子密度的掺杂浓度的掺杂。能带的最低的低掺杂激活已被识别。进一步，数据证明了这个最小的充电载流子密度是需要增加TC。最后我们想指出，我们的数据在非常好的定性的同意与那些[22]和曲氏温度的两个实验是为Gd掺杂的欧-欧。作为后实验是被性能在多晶薄膜与未知的氧内饰率，影响的氧的空位和缺陷是的掺杂激活是重要的问题。我们可以与之竞争的是进一步增加的曲氏温度的欧-欧。

我们感谢讨论与L. H. Tjeng和特别感谢T. Regier为他的支持在XAS测量。这项工作是支持了DFG (TRR 80)，EC (oxIDes)，AFOSR (FA9550-10-1-0123)，和NSF (DMR-0820404)。

*andreas.schmehl@physik.uni-augsburg.de

[29] For more information about patterning process, see supplementary material of Ref. [6].