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Stiepeler Strasse 129, 44801 Bochum, Germany
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Robust interatomic potentials must be able to describe thiéng and breaking of interatomic
bonds in a computationally efficient format so that the pidésimay be employed in large-
scale atomistic simulations. We summarize the fundamenfatuch potentials, the bond-order
potentials, and their derivation from the electronic suoe. By coarse graining the tight-
binding electronic structure and relating it to the localmaic environment, the bond-order
potentials are derived as quantum-mechanical footedt®feinteratomic interactions.

1 What are Bond-Order Potentials?

Bond-order potentials are interatomic potentials thati@rézed from quantum mechanics.
In contrast to classical empirical potentials, bond-opgentials capture bond formation
and breaking, saturated and unsaturated bonds, danglimtstamd radical bonds, as well
as single, double or triple bonds. The bond-order potenpiedvide similar accuracy as
tight-binding calculations at less computational effamd thus open the way to large-
scale atomistic simulations of systems which cannot beritestby classical empirical
potentials.

The bond-order potentials (BOPs) are derived by systenibticoarse graining the
electronic structure at two levels of approximation,

1. In the first step, the density functional theory (DFT) fatism is approximated in
terms of physically and chemically intuitive contributemvithin the tight-binding
(TB) bond modet?. The TB approximation is sufficiently accurate to predictist
tural trends across the sp-valent and d-valent elementgeligs sufficiently simple
to allow a physically meaningful interpretation of the borglin terms ofo, = andé
contributions. The parameters of the TB model can be ohidioen ab-initio calcu-
lations in a systematic way.

2. Inthe second step, the TB electronic structure is coaesrey and related to the local
topology and coordination of the material. The functiorahi of the bond energy
is derived as a function of the positions and the types of atibrat surround a given
bond.

The first step of coarse graining from DFT to TB is discussed\bthony Paxton in his
contribution to this issufe In this contribution we will start from the TB descriptiofi 0
the electronic structure, focus on the second level of eograining and discuss how the
electronic structure may be hidden in effective interatoimieractions.
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1.1 Aim of this Contribution and some Literature

With this short introduction we do not aim at giving an ovewiof the bond-order po-
tentials. Instead, with our contribution we would like tovgian easy to read summary of
the ideas and concepts that are used to coarse grain theeledtructure into effective
interatomic interactions. A recent special isddedelling Electrons and Atoms for Ma-
terials Sciencef Progress in Materials Scienteontains a number of reviews that give
a detailed overview of the bond-order potentials and thgilieation to the simulation of
elastic and plastic properties of transition metals, tr@wgin of semiconductor thin films
and hydrocarborfs’. We would like to recommend these reviews to the interestadar.

2 Binding Energy

The starting point for the derivation of bond-order potalstiis the tight-binding bond
modef that is introduced in the lecture of Anthony PaxtoThe binding energy within
the tight-binding bond model is given as the sum of covalend®energy/i,onq, promotion
energylUp:om, and repulsive energy,ep, ,

UB = Ubond + Uprom + Urep . (1)

The promotion energy is calculated as a sum over orljitajscentred on atom (wherex
labels the valence orbital), whereas the repulsive ensrgftén approximated as sum over
pairs of atoms

Uprom = Z Ez(g) (Nia - Nl(g)) ) (2)
Uep = >, &1 (Rij) 3)
ij

with the free atom reference onsite Ievﬂg). The promotion energy accounts for the
redistribution of the electrons across the orbitals of amatlue to hybridisation. The
simplest form of the repulsive energy as given above is ayisgrterm that depends solely
on the interatomic distanck;; between atoms andj. Some materials require a more
complex description of the repulsive energyy. Mrovecet al8 introduced a Yukawa-type
environment-dependent term to account for the strong @gelsion in transition metals.

As we will see in the following, the bond ener@¥,,.q can be given in either onsite
representation (in terms of the atom-based density ofStateintersite representation
(in terms of the bond-based density matrix or bond order)e fito representations are
equivalent but offer different views on the formation of lsrin materials.

2.1 Bond Energy: Onsite Representation

The onsite representation of the bond energy is based on¢hkdensity of states;, (E)
of orbital o« on atomi. The contribution of each orbital to the bond energy is daked by
integrating its local density of states (DOS) up to the Fdevel Er

Er
Ubond =2 / (E — Ein)nio(E)dE. (4)

230



The factor of two accounts for the neglect of magnetism inrttealel, so that spin up
and spin down spin channels are degenerate. The onsiteAgyéd shifted relative to its
free atom vaIueEi(g) until self-consistency is achievedf( lecture of Anthony Paxtoi.
The local density of states;,(E) may be obtained from the eigenfunctions,) of the
HamiltonianH,

Hipn, = Enipp, (5)

by expressing the eigenfunctiohﬁ,& in an orthonormal basis centred on atoins
Z ¢ |2a (6)

where the indexx denotes the valence orbltal. Then, by calculating the barthgUyanq
as the sum over all occupied orbitals, we find that

occ occ occ

Uband = QZEn = QZWMHWn) = QZEn<wn|1/}n>

occ occ

_QZZZE cmn) (n @Oé|jﬁ _QZZZE c*(n (-g)(siozjﬁ

n ia jB n i B

:22;/E§:6E Ec e mag . )

We identify the local density of states of orbitéak) as
(o

Nja =

S(E - E,), (8)

such that the band energ¥,.,.q is written as

Er
Uband = 22 / Enio(E)dE . 9)

The bond energy Eq.(4) is the band energy calculated wiietdo the onsite levelg;,,,

Unona =23 [ (B~ Eia) nia EUE = Ui = 3" BaNia, (10)

with the number of electrond’,, in orbital |ic),

Er
Nia =2 / Nia(E)dE . (11)

Some authors prefer not to calculate Hendenergy that is calculated with respect to the
onsite levels but to use thmndenergy instead, such that
UB = Uband + Uprom + Urep . (12)

However, as discussed in the lecture of Anthony Paxtthis tight-bindingoandmodel is
inconsistent with the force theoré*°while the bond energy in the tight-bindirgpnd
model properly accounts for the redistribution of charge tfuthe shift of the onsite levels
that arise from atomic displacements.
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2.2 Bond Energy: Intersite Representation

An alternative but equivalent representation to the omsjpeesentation of the band energy
Eq.(9) is the intersite representation. The intersitegsgntation is obtained by expanding

the eigenfunctiong),,) = > Cz('Z) |ice) in terms of the TB basis,

Uband - 2ZEn - 22 wn|H|’l/)n - 2222 *(71) (n) ZQ|H|jﬂ>
i jB n
=2 Z PicjsHiajp s (13)
o8

with the density matrix

occ
piajs = Y €l cy (14)
n
Thebondenergy is obtained from tHeandenergy in intersite representation by restricting
the summation to off-diagonal elements/Z§s, = piaio- Therefore, the bond energy in
intersite representation is given by

Ubond = 2 Z PiajsHiajs - (15)
ia#jB
The bond orde®;, ;3 of a bond between the valence orbitalsind 5 of two atoms; and
j is just two times the corresponding element of the densitlyirna

Oiajs = 2Piajs - (16)

By construction the onsite and intersite representatidgh@bond energy are equivalent

Ubond - 22/ E Eza)nwz( dE - Z Gwzjﬁchjﬁa (17)
iaFjB

however, the two representations offer different views ondformation. We see that
while the bond energy in onsite representation is obtaiyddling electrons into the local
density of states;,(E) on each atom, the intersite representation calculatesdhd b
energy as a sum over pairwise Hamiltonian matrix eleméhisg that are weighted with
the density matrix element,;z. In the following we will discuss some properties of the
density matrix.

3 Properties of the Bond Order

In the previous section we decomposggabal quantities, like the bond energy or the band
energy, in theitocal contributions, the atom-based local density of statesérotisite rep-
resentation and the bond-based bond order in the inteegitesentation. In the following
we will discuss some properties of the bond order, while tioperties of the local density
of states will be discussed in section 4.
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An intuitive physical interpretation of the bond order bews apparent when we trans-
form the atomic orbitals to linear combinations (dimer tats)

)= = (i) +1is)  bonding, (19
|-) = % (lic) — 15 0)) antibonding . (19)

The number of electrons in the bonding and antibonding dioneitals may be obtained
by projection on the occupied eigenstates,

occ occ

Ny =2 [(Hln)®, No=2) (=)l (20)

By expanding the eigenstates in the atomic basis, Eq.(6)bgrmaking use of the defi-
nition of the bond order Eq.(16), one finds that the bond oiglene-half the difference
between the number of electrons in the bonding state compatbe antibonding state

1
Oiajs = 5 (N4 = N-) . (21)

With a maximum of two electrons in an orbital, the bond orddes its largest absolute
value of 1 for two electrons of opposite spin in the bonding and none in the antibonding
orbital. Furthermore, as the number of electrons in the bpstate/V, is less or equal to
the total number of electrons in the boAg, 3 = % (Nio + Nig) = % (N4 + N_),

N+§N++N*7 (22)
the value of the bond order in general is limited by an envefopctiort!

Niajﬁ for 0 < Niajﬁ < 1 s
|®wz]ﬁ| < {2 — Niajﬁ forl < Niajﬁ <2. (23)

As an example, consider the, Hnolecule with ones-orbital on each atom. The eigen-
states of the Bl dimer are given by bonding and antibonding linear combameatiof the
s-orbitals. Both valence electrons occupy the bonding stakdéle the antibonding state
remains empty. Therefore we expect that thedimer forms a fully saturated covalent
bond with bond orde® = 1. If we look at a Hg dimer instead, the eigenstates are also
given by bonding and antibonding linear combinations ofstlzebitals just like in the case
of Hy. However, now the 4 valence electrons have to completelydith, the bonding and
the antibonding states such that the bond order is@er00. Therefore, we expect that the
He, molecule does not form a covalent bond. In contrast to thesesktremal cases, the
bond order usually takes intermediate values (see Fig.at)d#pend sensitively on local
coordination and number of valence electrons. It is the dithebond-order potentials to
describe these intermediate values as accurately as [@ddire examples and a detailed
discussion of the bond order of different molecules andisal given in the textbook of
Pettifor'?.
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Figure 1. Schematic of the bond order as a function of the murabelectrons in the bond (bond-filling fraction

f = Niajp/2). The bond order of a saturated bond closely follows the lepesfunction Eq.(23) and is close to

1 at half-full band. Typically materials with open struaarike, for example, Siin the diamond lattice, show the
formation of saturated bonds. In close-packed crystatsexample ind-valent transition metals, the electrons
cannot be distributed only into bonding states, the bondsat saturated and the bond order takes a smaller
value.

4 Moments
For the development of effective interatomic potentialsweeld like to bypass the numer-
ical diagonalisation of the TB HamiltoniaH and instead determine local quantities like
the local density of states,,(E) or the bond orde®,,;5 directly from the local atomic
environment. This may be achieved by making use of the mesribabrert® that relates
the electronic structurew, (E), pia;s) to the crystal structure (the position of the atoms).
The Nth moment of orbitajia) is given by

W = [ BBy, (24)
Inserting the density of states from Eq.(8) and making ugaefdentity operator

L= |} (¢l (25)

results in an expression for the moments in terms of atontitads i) and the Hamilto-

nian H:
Hia = /ENZ
= _lGalyn)l” By
=D _{ialH i) (Ynlic)

= (ia|HNia) . (26)

2
§(E — E,)dE

et
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By using an orthogonal basis set that completely spans thidilb@rt spacei.e.
1=>"1iB)isl, (27)
JB

the N'th power of the Hamilton operator acting on orbijtal) can be written as the product
of N Hamilton matrices,

(ial HNJic) = Y (ia|H|jB) (8| H k) (ky|H]|...)--- (... |H|ia) . (28)
Bk

Each Hamiltonian matrix elemeit;. ;s = (ia|H|j3) connects two neighbouring atoms
1 andj and is frequently called hop. Looking at the indices, we see that the product of
Hamiltonian matrices defines a path through the atomicstradia) — |j3) — |kv) —

.-+ — |ic)) which we will refer to as hopping path. Therefore thegh momentugiv),
EqQ.(26), can be understood as the sum over all hopping pétesgth N that start and
end on the same orbitak),

pin) = / EVnio(E)YAE = Y HiajgHjpeyHio.. - H. ia (29)
JBky--

Figure 2 illustrates one hopping path that contributes &4th moment. As different

crystal structures have different numbers of hopping patlasyiven lengths, the moments
are sensitive to changes in the crystal structure. Highemems correspond to longer
hopping paths and thus to a more far-sighted sampling ofttdmaia environment.

Figure 2. A path that contributes to the 4th moment of orhiital The 4th moment is important for the energy
difference of thefcc andbccstructure of the transition metals.

Moments are well known in statistical mathematics as a quirtoedescribe a distribu-
tion (in our case the local DOS). The first few moments arenadiscussed as measures of
specific properties of the distribution,

Mz(g) = [nia(E)dE :norm, (30)
Mz(';) = [ Enio(E)dE : centre of gravity , (31)
p? = [ E?n;o(E)dE : root mean square width, (32)
Nz('z) = [ E3nio(E)dE : skewness, (33)
1 = [ E*no(E)AE : bimodality . (34)
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While Mgg) andﬂz(.;) do not contain any information of the surroundings of an attira

second momer)tz(.i) is the lowest moment that contains physical informatiorhefenvi-
ronment of an atom (the root mean square width of the denkgtates). The Hamiltonian
is typically attractive, therefore the third moment is tglly negative

w = 3" (il H1jB) (81 H k) (k| Hlia) < 0, (35)
JBky

and gives rise to a skewed DOS as illustrated in Fig. 3(a)réffbee, if one calculates the
energy difference of two densities of states at identicebsd moment but Witl]le(-Z) =0

andugz) < 0, one obtains as a function of band filling a figure similar tg.B&i(b). For less
than half-full band the negative 3rd moment contributiamdeto stabilise the DOS with

ugz) < 0 relative to the DOS with vanishing third moment. The thirdmemnt gives a first

(3)_

uiG—O /\
0

WY<o

a) n(E) b) o 1 N

Figure 3. The 3rd moment gives rise to a skewing of the DOSh@)typically (forug) < 0) stabilises close-
packed structures for less than half-full band (b).

indication of the crystal structure of elements with lesantimalf-full band (like Mg and
Al): the observed close-packed structure offers manyretifrning paths of length three
and therefore has a large third moment. In contrast, eleswéttt more than half-full band
(like Cl and S) tend to avoid a large third moment and theesform open structures or
molecules that have no hopping paths of length three.

The fourth moment characterises the bi-modal (in conteasht-modal) behaviour of the
density of states as shown in Fig. 4(a). A bimodal DOS has adlemsity of states at the
centre of the band and tends to be stable over a unimodal D@&fdull band as shown

in Fig. 4(b). This is the reason why-valent elements with half-full band (such as Si, Ge)
have a tendency to crystallise in the diamond structure. diggussion of the first four
moments may be generalised for higher moments. For exasipleoments are required
to resolve the energy difference between the close-packeahdhcp lattices*, many of
the small differences between more complex crystal strastcan also be resolved with an
expansion to only about the 6th mom®&nt®. Furthermore, if two structures are different
only at the level of theVth moment and thisVth moment dominates, then the energy
difference between the two structures shaws- 2 zeros between empty and full banid
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Figure 4. The 4th moment causes the DOS to take a bimodal $appbereby favouring the diamond structure
at half-full band.

5 Recursion

In the previous section we showed that the moments of theitgienfsstates relate the
atomic structure to the electronic structure. A mathera#lfiequivalent way of relating
the electronic structure to the crystal structure is themsion methoéf.

Given a starting statp:o), which we may think of for example as an atomic orbjtal),
the Hamilton operator is used to generate a new $taeby

blu) = (H - ao) lug) - (36)

The new state is normalizedu|u;1) = 1) and orthogonal tgug) ((u1|ug) = 0). The
coefficientsay andb, are determined by multiplying from the left with,) and|u):
b1 = <U1|IA{|Uo> N (37)
ao = (uo|H |uo) - (38)

In a similar fashion, the Hamiltonian is used to generatmff@, ) an other new statg:)
that cannot be written as a linear combinatiomgf and|u):

bglUg) = (H — al) |U1> — b1|u0) s (39)

which is again normalized({z|u2) = 1) and orthogonal tdu;) ((uz|ui) = 0). The
coefficientsa; andb, are given correspondingly by

by = (ug|H|us), (40)
a; = <U1|H|U1> . (41)
The general form of the recursion may be written as
bn+1|un+1> - (H - an) |Un> - bn|un*1>7 (42)
with the matrix elements

b = (| H|tn_1), (43)
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The states|u,) are orthogonal,(u,|u;,) = dnm. This means that in the basis
{Juo), |u1),|usz), ...}, which is generated from the atomic-like orbitélg)) = |ia) by
recursion, the Hamiltonian matrix takes the followingdiaigonal form

an b1
b1 ay bg
bg as b3

. b3 a3z by
(un|H |tm) = .
b4 aq

All elements that are not in the diagonal or next to the diadare identical to zero. This
Hamiltonian matrix may be thought of as the Hamiltonian ofree-alimensional chain
with only nearest neighbour hopping matrix elements, sge i Using the recursion

v

w>  u> u>  Ju>  Ju>

Figure 5. Graphical representation of the recursion Hamiéin as one-dimensional chain: the Lanczos chain.

and writing|u,,) as linear combination of atomic orbitals, the moments aed to the
expansion coefficients, andb,,. The Nth moment can be determined by summing over
all possible paths of lengtN that start and end on orbitaly). For example, the first four
moments are given by

i =1, (45)
W = ay, (46)
) = ad + 03, (47)
1Y = a3 + 2a0b? + 102, (48)

which is easily verified by identifying all paths of correspling length in Fig. 5. The
purpose of introducing the recursion method in the contékibmd-order potentials is to
transform the TB Hamiltonian to an orthogonal basis whetakiés a tridiagonal form. This
procedure of transforming the Hamiltonian to a semi-infinine-dimensional nearest-
neighbour chain is the Lanczos algoritthand establishes afi(N) approach to calculate
the local electronic density of states as we shall see indit@Afing.

6 Green’s Functions

In the previous section we learned how to calculate the mesnathe density of states
from the crystal structure. We would like to use the inforim@tcontained in the moments
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to calculate the bond enerdt,o.qa, Eq.(4). The Green’s functio@ is closely related to
the density of states Eq.(8) and the density matrix Eq.@slye will see in the following.

It will therefore be helpful for the construction of the boewlergylUy,ond, EQs.(4) and (15).

As a first step in this direction we will use the Green'’s fuans to reconstruct the local
density of states;, (F) from the moments. Once we have obtained the local density of
states, we can integrate it to calculate the bond energy. afieedthe Green'’s functio@

as the inverse of the Hamiltonian,

~ N N\ —1
G = (E1 - H) . (49)
As the Hamilton operator in the basis of the eigenstgtes written as
(Yal (BL = H) [Ym) = (En = E)dum (50)
and by definition of,
(Unl (B1 = 1) Gltom) = (Waltm) = dum (51)
the Green’s function matrix elements of the eigenstatestmayritten explicitly as
A 5nm
This can be verified by inserting the identity= 3", |1 ) (1],
(Wl (BL = B) Glom) = > (al (B = B) [n) (0elGlom) — (83)
k
o 5km
_ ;(E—En)énkiE_Em (54)
1
= (E - En) 5nmE _E, (55)
= Gpim - (56)

The matrix elements of the Green's function in the atomicitalthbasisG;qg(E) =
(ia|G|jB) are obtained as

#(n) (n)

B . A o Cia "Cjp
Giajp(B) = ;<m|wn><wn|0|wm><wm|a6> =2 % h, (57)
By making use of the identity/residue
1 1
——1 E= FE—-FE,)dE
tin [ o dE = [6(E - E)aE, (58)
we can replace Eq.(8) and Eq.(14) using matrix elementseoGiteen’s function
1
nia(E) =——Im Giaia (E)7 (59)
™
Er
1
piajﬁ = ——Im /GiadeE- (60)
™

239



Connection can now be made to the recursion method intradindde previous section.
The diagonal element of the Green’s function at the staririgtal of the semi-infinite
one-dimensional Lanczos chain is given as a continueddra€t

1
Giaia = GOO =

5 (61)
bl
E - ap —

b2
E—alf 2 b2
E—ag——3

The continued fraction expansion provides a direct way trfudating the density of states
which in turn may be used to calculate the bond energy.

Taking the continued fraction to an infinite number of reandevels corresponds to an
exact solution of the tight-binding model. Bgrminatingthe continued fraction after a
certain number of levels, a local expansion of the electrafiucture is obtained. The
different flavors of using truncated Green’s function exgan for a local calculation of
the bond energy are presented in the following section. Aenttatailed review of the
connection between bond-order potentials, Green’s fanstand the recursion method is
given,e.g, in Refs. 21-23.

7 Calculation of the Bond-Energy | — Numerical Bond-Order
Potentials

The recursion expansion representation of the HamiltoB@an(42) offers a direct way of
writing the onsite Greens-function matrix eleme@ts,;., = (z‘a|G‘|z‘a) = G in the form

of a continued fraction expansion, Eq.(61). For the boradkppotentials we are interested
in a local calculation of the bond energy and not in an exdatism of the underlying TB
model. This is achieved bigrminatingthe expansion after a few recursion levelsThis

is equivalent to evaluating the firgt, + 1 moments of the density of states (cf. Sec. 5).
In the simplest case, the recursion coefficiantsandb,, for m > n are replaced by a
constant terminator

Um = Go0y  bm = boo form >n. (62)

By inserting the continued fraction expression for the @ieéunction matrix element
Eq.(61) in Eqg.(59) one obtains an approximate closed-fapnasentation of the density
of statesn;,. The bond energy Eq.(4) is obtainedtiymericalintegration of

Er
2 1
Unona = 2T / (E - Fia) dE (63)

b2
E*(I()* !

b2
E—ayp— —=

E—-".
and therefore this representation of the energy is calledenical bond-order potential.
In general the approximation error in the bond energy witdree smaller with more
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recursion levels: taken into account exactly. Therefore, the number of récarevels
provides a way of systematically converging the bond entrdlie bond energy that one
obtains from an exact solution of the TB Hamiltonian.

For the calculation of the forces on the atoms one require®dmd-order/density matrix
and therefore the calculation 6f;,;3. For numerical stability and convergence of the
continued fraction expansion @f;,,3, one relates7;, ;g to the onsite matrix elements
Giaia andGjg;s. This is achieved by using a linear combination of atomidtatbin the
recursion expansion

1, 0
[uo) = —= (lie) +¢™1jB)) (64)
with ¢ = cos(X) such that
1
Goo = AGiajg + 5 (Giaia + Gjgis) - (65)

Therefore, the intersite matrix elements of the Green’stion is given as a derivative of
the onsite elements of the starting Lanczos orbital, a abresult of BOP theorf

d
—Goo . (66)

Chrass = dA A=0

At any level of approximation exists a termination of the @gpion oiG;. ;g which ensures
that the onsite and intersite representation of the bonhgrage identic&P, as of course
it would have to be if the problem would have been solved éxaét detailed review of
the numerical bond-order potentials is available in Ref. 5.

8 Calculation of the Bond-Energy Il — Analytic Bond-Order
Potentials

As the integral for the calculation of the bond energy in BE8)(s carried out numerically
in numerical BOPs, no analytic representation of the dffeéhteractions between atoms
and therefore no analytic interatomic potential may beiabth In this section we will
discuss how analytic representations of the bond energybmaptained, such that explicit
analytic interatomic potentials may be written down.

8.1 Analytic Bond-Order Potentials for Semiconductors

If the expansion of7,,;, in EQ.(61) is terminated with., = 0 andb,, = 0 after only
two recursion levelsi{ = 2) corresponding to four moments, the integral for the bond
energy Eq.(63) may be carried out analytically. In ordercdhieve a good convergence
with only two recursion levels, the starting state of theurson|u) must be taken as
an as close approximation of the solution as possible. Faicemductors with saturated
covalent bonds one achieves very good convergence if thiéngtatate is chosen as a
dimer orbitaf® 2’

o) = % (lict) + 18)) - (67)
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The resulting analytic bond-order potentf4l$’ have been applied to modelling the growth
of semiconductor films and hydrocarbons. A detailed reviéwhe analytic BOPs for
semiconductors may be found in Refs. 6,7. If one takes tharesipn of this analytic bond-
order potential only to two moments of the density of statesgad of four moments, then
an expansion is obtained that is very ciSse the empirical potential given by Ters®if
Therefore the analytic BOP may be viewed as an systematensixin of the Tersoff-
Brenner-type potentials.

8.2 Analytic Bond-Order Potentials for Transition Metals

In a close-packed transition metal, the bonds between admensot saturated. Therefore
the expansion of the analytic BOPs for semiconductors thhtilt on a saturated dimer
bond may not be directly applied to transition metals. lagdtef taking a dimer orbital as
the starting state of the expansion, inserting a spherioatia orbital into a close-packed
crystal structure leads to a faster convergence of the eipanHowever, in order to re-
solve for example the energy difference betweenftiteandhcp structure in a canonical
TB modef?, at least six moments are requitédFor six moments or equivalently three
recursion levels, the integration of Eq.(63) cannot beiedrout analytically. Instead of
integrating Eq.(63), one therefore constructs a pertiobaxpansion of the continued
fraction representation @¥,.,. This perturbation expansion may then be integrated ana-
lytically.

The starting point of the expansion is the observation thatGreen’s function may
be written down in a compact form if all the expansion coedfitsa,, andb,, are taken
identical to

Gp = 0o (68)
by, = b - (69)
Then the density of states is given by

W) = 2V/1-22, (70)

™
with the normalized energy,
FE —ax
2boo

(71)

E =

The density of state;sz(.g) (¢) is then used as the reference density of states in a pertunbat
expansiof

nia(e) = nio) (€) + dnia(e). (72)

Chebyshev polynomialB, (¢) of the second kind are orthogonal with respect to the weight
functionn?,

+1
% /Pn(E)Pm(E)\/ 1—¢e2de = by, - (73)
]
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The density of states is thus expanded in terms of Chebydigagmials

nia(€) = %\/ 1—¢2 (Uo + Z anPn(5)> , (74)

with expansion coefficients,,. The expansion coefficients are related to the moments of
the density of states Eq.(29) by writing the Chebyshev patyials explicitly in the form
of polynomials with coefficients,,,x,

Pm(g) = mekgk . (75)
k=0

Then the expansion coefficients, are obtained in terms of the momemg),

m m + .1

+1 m
Tm = / > ke nia(e)de = pmk / e nia(e)de =Y pmrin (76)
k=0 k=0

7 k=0

where we introduced the normalized moments

~(n 1 = n n— l
Mz('a) = (2b )n Z (l) (_aioo)( Z)Mz(';' (77)

=0

Therefore, by calculating the momeméz) according to Eq.(29) by pathcounting and
inserting the expansion coefficients into the expansion Eq.(74), one obtains a closed-
form approximation of the density of states. Integratiothefdensity of states analytically
yields an analytic expression for the bond energy assatiaith orbitalio

Er
Ubond,ia = / (E = Eia) nia(e)de = > 0n [Xn42(0F) = YRn41(¢F) + Xn(dr)] |
' (78)
where we introduced the so-called response functions
. _ 1 (sin(n+1)¢r sin(n—1)¢r
Xn(d)F)ﬂ'< n+1 n—1 ’ (79)

and the Fermi phasgr = cos 1 (Er/2bis)-

The lowest order approximation of the analytic bond-ordgeptial that includes only
two moments is similar to the Finnis-Sinclair poterfako that the analytic BOP expan-
sion may be viewed as a systematic extension of the Finnigledi potential to include
higher moments. On the other hand, as the expression forotha énergy may be inte-
grated analytically for an arbitrary number of moments gkeansion Eq.(78) provides an
effective interatomic interaction that may be systemédticanverged with respect to the
exact solution of the TB Hamiltonian by including higher memts. As in the case of the
numerical bond-order potentials, the bond energy, Eq, A8y be rewritten as an equiva-
lent intersite representation. A detailed derivation &f éimalytic bond-order potentials for
transition metals may be found in Ref. 14.
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9 Calculation of Forces

The computationally fast and efficient calculation of farde important for efficient
molecular dynamics simulations. In self-consistent etetdt structure calculations the
Hellmann-Feynman theorefh®**makes an efficient calculation of forces possible, as only
gradients of the Hamiltonian matrix elements need to beuawed. The contribution of the
bond energy to the forces may be written as

F=VilUsona= Y ©iajsViHjpia - (80)
ia#j6

The Hamiltonian matrix elements are pairwise functionsyrefore the calculation of the
gradients is very efficient. For the bond-order potentiadtirdann-Feynman-like forcéb
may be derived that may be written in a form similar to the kelhn-Feynman forces
Eq.(80),

F=Vilsona= Y _ ©iajsViHjpia, (81)
ia#j6

where©,,;s is an approximate representation of the bond order. Just t®icase of
the Hellmann-Feynman forces, the calculation of the foindlhe bond-order potentials
requires only the calculation of the gradievii, H,s:, and not the differentiation of a
complex many-body function and is therefore computatigrefficient compared to the
evaluation of the gradient of an empirical many-body pastnt

10 Conclusions

This introductory lecture provides a brief guide to the calitleas and concepts behind the
derivation of the bond-order potentials. Instead of diadising the TB Hamiltonian, the
bond-order potentials provide an approximate local sotutif the TB Hamiltonian and the
binding energy. The local solution is constructed as a fonaif the crystal structure or,
more general, the positions of the atoms, by relating thetraeic structure to the crystal
structure using the moments theorem. In this way explictetrisations of the energy as
a function of the atomic positions are obtained. The acquofthe bond-order potential
with respect to the corresponding tight-binding solutiam de improved systematically
by including higher moments, which corresponds to takirig account more far-sighted
atomic interactions. Hellmann-Feynman-like forces alfowan efficient calculation of
the forces in molecular dynamics simulations.
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