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Robust interatomic potentials must be able to describe the making and breaking of interatomic
bonds in a computationally efficient format so that the potentials may be employed in large-
scale atomistic simulations. We summarize the fundamentals of such potentials, the bond-order
potentials, and their derivation from the electronic structure. By coarse graining the tight-
binding electronic structure and relating it to the local atomic environment, the bond-order
potentials are derived as quantum-mechanical footed effective interatomic interactions.

1 What are Bond-Order Potentials?

Bond-order potentials are interatomic potentials that arederived from quantum mechanics.
In contrast to classical empirical potentials, bond-orderpotentials capture bond formation
and breaking, saturated and unsaturated bonds, dangling bonds and radical bonds, as well
as single, double or triple bonds. The bond-order potentials provide similar accuracy as
tight-binding calculations at less computational effort,and thus open the way to large-
scale atomistic simulations of systems which cannot be described by classical empirical
potentials.

The bond-order potentials (BOPs) are derived by systematically coarse graining the
electronic structure at two levels of approximation,

1. In the first step, the density functional theory (DFT) formalism is approximated in
terms of physically and chemically intuitive contributions within the tight-binding
(TB) bond model1, 2. The TB approximation is sufficiently accurate to predict struc-
tural trends across the sp-valent and d-valent elements, aswell as sufficiently simple
to allow a physically meaningful interpretation of the bonding in terms ofσ, π andδ
contributions. The parameters of the TB model can be obtained from ab-initio calcu-
lations in a systematic way.

2. In the second step, the TB electronic structure is coarse grained and related to the local
topology and coordination of the material. The functional form of the bond energy
is derived as a function of the positions and the types of atoms that surround a given
bond.

The first step of coarse graining from DFT to TB is discussed byAnthony Paxton in his
contribution to this issue1. In this contribution we will start from the TB description of
the electronic structure, focus on the second level of coarse graining and discuss how the
electronic structure may be hidden in effective interatomic interactions.
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1.1 Aim of this Contribution and some Literature

With this short introduction we do not aim at giving an overview of the bond-order po-
tentials. Instead, with our contribution we would like to give an easy to read summary of
the ideas and concepts that are used to coarse grain the electronic structure into effective
interatomic interactions. A recent special issueModelling Electrons and Atoms for Ma-
terials Scienceof Progress in Materials Science3 contains a number of reviews that give
a detailed overview of the bond-order potentials and their application to the simulation of
elastic and plastic properties of transition metals, the growth of semiconductor thin films
and hydrocarbons4–7. We would like to recommend these reviews to the interested reader.

2 Binding Energy

The starting point for the derivation of bond-order potentials is the tight-binding bond
model2 that is introduced in the lecture of Anthony Paxton1. The binding energy within
the tight-binding bond model is given as the sum of covalent bond energyUbond, promotion
energyUprom, and repulsive energyUrep ,

UB = Ubond + Uprom + Urep . (1)

The promotion energy is calculated as a sum over orbitals|iα〉 centred on atomi (whereα
labels the valence orbital), whereas the repulsive energy is often approximated as sum over
pairs of atoms

Uprom =
∑

iα

E
(0)
iα

(

Niα −N
(0)
iα

)

, (2)

Urep =
∑

ij

φij (Rij) , (3)

with the free atom reference onsite levelsE(0)
iα . The promotion energy accounts for the

redistribution of the electrons across the orbitals of an atom due to hybridisation. The
simplest form of the repulsive energy as given above is a pairwise term that depends solely
on the interatomic distanceRij between atomsi andj. Some materials require a more
complex description of the repulsive energy,e.g.Mrovecet al.8 introduced a Yukawa-type
environment-dependent term to account for the strong core repulsion in transition metals.

As we will see in the following, the bond energyUbond can be given in either onsite
representation (in terms of the atom-based density of states) or intersite representation
(in terms of the bond-based density matrix or bond order). The two representations are
equivalent but offer different views on the formation of bonds in materials.

2.1 Bond Energy: Onsite Representation

The onsite representation of the bond energy is based on the local density of statesniα(E)
of orbitalα on atomi. The contribution of each orbital to the bond energy is calculated by
integrating its local density of states (DOS) up to the FermilevelEF

Ubond = 2
∑

iα

EF
∫

(E − Eiα)niα(E)dE . (4)
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The factor of two accounts for the neglect of magnetism in themodel, so that spin up
and spin down spin channels are degenerate. The onsite levelEiα is shifted relative to its
free atom valueE(0)

iα until self-consistency is achieved (cf. lecture of Anthony Paxton1).
The local density of statesniα(E) may be obtained from the eigenfunctions|ψn〉 of the
HamiltonianĤ,

Ĥψn = Enψn , (5)

by expressing the eigenfunctions|ψn〉 in an orthonormal basis centred on atomsi

|ψn〉 =
∑

iα

c
(n)
iα |iα〉 , (6)

where the indexα denotes the valence orbital. Then, by calculating the band energyUband

as the sum over all occupied orbitals, we find that

Uband = 2
occ
∑

n

En = 2
occ
∑

n

〈ψn|Ĥ|ψn〉 = 2
occ
∑

n

En〈ψn|ψn〉

= 2
occ
∑

n

∑

iα

∑

jβ

Enc
∗(n)
iα c

(n)
jβ 〈iα|jβ〉 = 2

occ
∑

n

∑

iα

∑

jβ

Enc
∗(n)
iα c

(n)
jβ δiαjβ

= 2
∑

iα

EF
∫

E
∑

n

δ(E − En)c
∗(n)
iα c

(n)
iα dE . (7)

We identify the local density of states of orbital|iα〉 as

niα =
∑

n

∣

∣

∣c
(n)
iα

∣

∣

∣

2

δ(E − En) , (8)

such that the band energyUband is written as

Uband = 2
∑

iα

EF
∫

Eniα(E)dE . (9)

The bond energy Eq.(4) is the band energy calculated with respect to the onsite levelsEiα,

Ubond = 2
∑

iα

EF
∫

(E − Eiα)niα(E)dE = Uband −
∑

iα

EiαNiα , (10)

with the number of electronsNiα in orbital |iα〉,

Niα = 2
∑

iα

EF
∫

niα(E)dE . (11)

Some authors prefer not to calculate thebondenergy that is calculated with respect to the
onsite levels but to use thebandenergy instead, such that

UB = Uband + Uprom + Urep . (12)

However, as discussed in the lecture of Anthony Paxton1, this tight-bindingbandmodel is
inconsistent with the force theorem2, 9, 10while the bond energy in the tight-bindingbond
model properly accounts for the redistribution of charge due to the shift of the onsite levels
that arise from atomic displacements.
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2.2 Bond Energy: Intersite Representation

An alternative but equivalent representation to the onsiterepresentation of the band energy
Eq.(9) is the intersite representation. The intersite representation is obtained by expanding
the eigenfunctions|ψn〉 =

∑

iα

c
(n)
iα |iα〉 in terms of the TB basis,

Uband = 2

occ
∑

n

En = 2

occ
∑

n

〈ψn|Ĥ |ψn〉 = 2
∑

iα

∑

jβ

occ
∑

n

c
∗(n)
iα c

(n)
jβ 〈iα|Ĥ |jβ〉

= 2
∑

iαjβ

ρiαjβHiαjβ , (13)

with the density matrix

ρiαjβ =
occ
∑

n

c
∗(n)
iα c

(n)
jβ . (14)

Thebondenergy is obtained from thebandenergy in intersite representation by restricting
the summation to off-diagonal elements asNiα = ρiαiα. Therefore, the bond energy in
intersite representation is given by

Ubond = 2
∑

iα6=jβ

ρiαjβHiαjβ . (15)

The bond orderΘiαjβ of a bond between the valence orbitalsα andβ of two atomsi and
j is just two times the corresponding element of the density matrix

Θiαjβ = 2ρiαjβ . (16)

By construction the onsite and intersite representation ofthe bond energy are equivalent

Ubond = 2
∑

iα

EF
∫

(E − Eiα)niα(E)dE =
∑

iα6=jβ

ΘiαjβHiαjβ , (17)

however, the two representations offer different views on bond formation. We see that
while the bond energy in onsite representation is obtained by filling electrons into the local
density of statesniα(E) on each atom, the intersite representation calculates the bond
energy as a sum over pairwise Hamiltonian matrix elementsHiαjβ that are weighted with
the density matrix elementρiαjβ . In the following we will discuss some properties of the
density matrix.

3 Properties of the Bond Order

In the previous section we decomposedglobalquantities, like the bond energy or the band
energy, in theirlocal contributions, the atom-based local density of states in the onsite rep-
resentation and the bond-based bond order in the intersite representation. In the following
we will discuss some properties of the bond order, while the properties of the local density
of states will be discussed in section 4.
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An intuitive physical interpretation of the bond order becomes apparent when we trans-
form the atomic orbitals to linear combinations (dimer orbitals)

|+〉 =
1√
2

(|iα〉 + |jβ〉) bonding , (18)

|−〉 =
1√
2

(|iα〉 − |jβ〉) antibonding . (19)

The number of electrons in the bonding and antibonding dimerorbitals may be obtained
by projection on the occupied eigenstates,

N+ = 2

occ
∑

n

|〈+|ψn〉|2 , N− = 2

occ
∑

n

|〈−|ψn〉|2 , (20)

By expanding the eigenstates in the atomic basis, Eq.(6), and by making use of the defi-
nition of the bond order Eq.(16), one finds that the bond orderis one-half the difference
between the number of electrons in the bonding state compared to the antibonding state

Θiαjβ =
1

2
(N+ −N−) . (21)

With a maximum of two electrons in an orbital, the bond order takes its largest absolute
value of 1 for two electrons of opposite spin in the bonding and and none in the antibonding
orbital. Furthermore, as the number of electrons in the bonding stateN+ is less or equal to
the total number of electrons in the bondNiαjβ = 1

2 (Niα +Niβ) = 1
2 (N+ +N−),

N+ ≤ N+ +N− , (22)

the value of the bond order in general is limited by an envelope function11

|Θiαjβ | ≤
{

Niαjβ for 0 ≤ Niαjβ ≤ 1 ,
2 −Niαjβ for 1 < Niαjβ ≤ 2 .

(23)

As an example, consider the H2 molecule with ones-orbital on each atom. The eigen-
states of the H2 dimer are given by bonding and antibonding linear combinations of the
s-orbitals. Both valence electrons occupy the bonding state, while the antibonding state
remains empty. Therefore we expect that the H2 dimer forms a fully saturated covalent
bond with bond orderΘ = 1. If we look at a He2 dimer instead, the eigenstates are also
given by bonding and antibonding linear combinations of thes-orbitals just like in the case
of H2. However, now the 4 valence electrons have to completely fillboth, the bonding and
the antibonding states such that the bond order is zeroΘ = 0. Therefore, we expect that the
He2 molecule does not form a covalent bond. In contrast to these two extremal cases, the
bond order usually takes intermediate values (see Fig. 1) that depend sensitively on local
coordination and number of valence electrons. It is the aim of the bond-order potentials to
describe these intermediate values as accurately as possible. More examples and a detailed
discussion of the bond order of different molecules and solids is given in the textbook of
Pettifor12.

233



not saturated

saturated

Figure 1. Schematic of the bond order as a function of the number of electrons in the bond (bond-filling fraction
f = Niαjβ/2). The bond order of a saturated bond closely follows the envelope function Eq.(23) and is close to
1 at half-full band. Typically materials with open structures like, for example, Si in the diamond lattice, show the
formation of saturated bonds. In close-packed crystals, for example ind-valent transition metals, the electrons
cannot be distributed only into bonding states, the bonds are not saturated and the bond order takes a smaller
value.

4 Moments

For the development of effective interatomic potentials wewould like to bypass the numer-
ical diagonalisation of the TB Hamiltonian̂H and instead determine local quantities like
the local density of statesniα(E) or the bond orderΘiαjβ directly from the local atomic
environment. This may be achieved by making use of the moments theorem13 that relates
the electronic structure (niα(E), ρiαjβ ) to the crystal structure (the position of the atoms).
TheN th moment of orbital|iα〉 is given by

µ
(N)
iα =

∫

ENniα(E)dE . (24)

Inserting the density of states from Eq.(8) and making use ofthe identity operator

1̂ =
∑

n

|ψn〉〈ψn| , (25)

results in an expression for the moments in terms of atomic orbitals|iα〉 and the Hamilto-
nianĤ:

µ
(N)
iα =

∫

EN
∑

n

∣

∣

∣c
(n)
iα

∣

∣

∣

2

δ(E − En)dE

=
∑

n

|〈iα|ψn〉|2EN
n

=
∑

n

〈iα|ĤN |ψn〉〈ψn|iα〉

= 〈iα|ĤN |iα〉 . (26)
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By using an orthogonal basis set that completely spans the TBHilbert space,i.e.

1̂ =
∑

jβ

|jβ〉〈jβ| , (27)

theN th power of the Hamilton operator acting on orbital|iα〉 can be written as the product
of N Hamilton matrices,

〈iα|ĤN |iα〉 =
∑

jβkγ···

〈iα|Ĥ |jβ〉〈jβ|Ĥ |kγ〉〈kγ|Ĥ | . . . 〉 · · · 〈. . . |Ĥ |iα〉 . (28)

Each Hamiltonian matrix elementHiαjβ = 〈iα|Ĥ |jβ〉 connects two neighbouring atoms
i andj and is frequently called ahop. Looking at the indices, we see that the product of
Hamiltonian matrices defines a path through the atomic structure (|iα〉 → |jβ〉 → |kγ〉 →
· · · → |iα〉) which we will refer to as hopping path. Therefore theN th momentµ(N)

iα ,
Eq.(26), can be understood as the sum over all hopping paths of lengthN that start and
end on the same orbital|iα〉,

µ
(N)
iα =

∫

ENniα(E)dE =
∑

jβkγ···

HiαjβHjβkγHkγ... · · ·H...iα . (29)

Figure 2 illustrates one hopping path that contributes to the 4th moment. As different
crystal structures have different numbers of hopping pathsof a given lengths, the moments
are sensitive to changes in the crystal structure. Higher moments correspond to longer
hopping paths and thus to a more far-sighted sampling of the atomic environment.

H

iα

jβiα jβ

Figure 2. A path that contributes to the 4th moment of orbitaliα. The 4th moment is important for the energy
difference of thefcc andbccstructure of the transition metals.

Moments are well known in statistical mathematics as a concept to describe a distribu-
tion (in our case the local DOS). The first few moments are often discussed as measures of
specific properties of the distribution,

µ
(0)
iα =

∫

niα(E)dE : norm , (30)

µ
(1)
iα =

∫

Eniα(E)dE : centre of gravity , (31)

µ
(2)
iα =

∫

E2niα(E)dE : rootmean square width , (32)

µ
(3)
iα =

∫

E3niα(E)dE : skewness , (33)

µ
(4)
iα =

∫

E4niα(E)dE : bimodality . (34)
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While µ(0)
iα andµ(1)

iα do not contain any information of the surroundings of an atom, the

second momentµ(2)
iα is the lowest moment that contains physical information of the envi-

ronment of an atom (the root mean square width of the density of states). The Hamiltonian
is typically attractive, therefore the third moment is typically negative

µ
(3)
iα =

∑

jβkγ

〈iα|Ĥ |jβ〉〈jβ|Ĥ |kγ〉〈kγ|Ĥ|iα〉 < 0 , (35)

and gives rise to a skewed DOS as illustrated in Fig. 3(a). Therefore, if one calculates the
energy difference of two densities of states at identical second moment but withµ(3)

iα = 0

andµ(3)
iα < 0, one obtains as a function of band filling a figure similar to Fig. 3(b). For less

than half-full band the negative 3rd moment contribution tends to stabilise the DOS with
µ

(3)
iα < 0 relative to the DOS with vanishing third moment. The third moment gives a first

a)

E

n(E)

µ   = 0(3)
iα

µ   < 0(3)
αi

b)

E∆

N

0

0 1

Figure 3. The 3rd moment gives rise to a skewing of the DOS (a) that typically (forµ(3)
iα < 0) stabilises close-

packed structures for less than half-full band (b).

indication of the crystal structure of elements with less than half-full band (like Mg and
Al): the observed close-packed structure offers many self-returning paths of length three
and therefore has a large third moment. In contrast, elements with more than half-full band
(like Cl and S) tend to avoid a large third moment and therefore form open structures or
molecules that have no hopping paths of length three.
The fourth moment characterises the bi-modal (in contrast to uni-modal) behaviour of the
density of states as shown in Fig. 4(a). A bimodal DOS has a lowdensity of states at the
centre of the band and tends to be stable over a unimodal DOS athalf-full band as shown
in Fig. 4(b). This is the reason whysp-valent elements with half-full band (such as Si, Ge)
have a tendency to crystallise in the diamond structure. Thediscussion of the first four
moments may be generalised for higher moments. For example,six moments are required
to resolve the energy difference between the close-packedfcc andhcp lattices14, many of
the small differences between more complex crystal structures can also be resolved with an
expansion to only about the 6th moment15, 16. Furthermore, if two structures are different
only at the level of theN th moment and thisN th moment dominates, then the energy
difference between the two structures showsN − 2 zeros between empty and full band17.
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a)

E

n(E) b)

E∆

N

0

0 1

Figure 4. The 4th moment causes the DOS to take a bimodal shape(a), thereby favouring the diamond structure
at half-full band.

5 Recursion

In the previous section we showed that the moments of the density of states relate the
atomic structure to the electronic structure. A mathematically equivalent way of relating
the electronic structure to the crystal structure is the recursion method18.
Given a starting state|u0〉, which we may think of for example as an atomic orbital|iα〉,
the Hamilton operator is used to generate a new state|u1〉 by

b1|u1〉 =
(

Ĥ − a0

)

|u0〉 . (36)

The new state is normalized (〈u1|u1〉 = 1) and orthogonal to|u0〉 (〈u1|u0〉 = 0). The
coefficientsa0 andb1 are determined by multiplying from the left with|u1〉 and|u0〉:

b1 = 〈u1|Ĥ|u0〉 , (37)

a0 = 〈u0|Ĥ|u0〉 . (38)

In a similar fashion, the Hamiltonian is used to generate from |u1〉 an other new state|u2〉
that cannot be written as a linear combination of|u0〉 and|u1〉:

b2|u2〉 =
(

Ĥ − a1

)

|u1〉 − b1|u0〉 , (39)

which is again normalized (〈u2|u2〉 = 1) and orthogonal to|u1〉 (〈u2|u1〉 = 0). The
coefficientsa1 andb2 are given correspondingly by

b2 = 〈u2|Ĥ|u1〉 , (40)

a1 = 〈u1|Ĥ|u1〉 . (41)

The general form of the recursion may be written as

bn+1|un+1〉 =
(

Ĥ − an

)

|un〉 − bn|un−1〉 , (42)

with the matrix elements

bn = 〈un|Ĥ |un−1〉 , (43)

an = 〈un|Ĥ |un〉 . (44)
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The states|un〉 are orthogonal,〈un|um〉 = δnm. This means that in the basis
{|u0〉, |u1〉, |u2〉, . . . }, which is generated from the atomic-like orbitals|u0〉 = |iα〉 by
recursion, the Hamiltonian matrix takes the following, tridiagonal form

〈un|Ĥ|um〉 =



























a0 b1
b1 a1 b2
b2 a2 b3
b3 a3 b4

b4 a4
. . .

. . .
. . .

. . .
. . .

. . .



























.

All elements that are not in the diagonal or next to the diagonal are identical to zero. This
Hamiltonian matrix may be thought of as the Hamiltonian of a one-dimensional chain
with only nearest neighbour hopping matrix elements, see Fig. 5. Using the recursion

a0

...

aa3 4

b4

|u >

b3

|u >

a2a1

b2b1

|u > |u >2 3 4|u >0 1

Figure 5. Graphical representation of the recursion Hamiltonian as one-dimensional chain: the Lanczos chain.

and writing|un〉 as linear combination of atomic orbitals, the moments are related to the
expansion coefficientsan andbn. TheN th moment can be determined by summing over
all possible paths of lengthN that start and end on orbital|u0〉. For example, the first four
moments are given by

µ
(0)
iα = 1 , (45)

µ
(1)
iα = a0 , (46)

µ
(2)
iα = a2

0 + b21 , (47)

µ
(3)
iα = a3

0 + 2a0b
2
1 + a1b

2
1 , (48)

which is easily verified by identifying all paths of corresponding length in Fig. 5. The
purpose of introducing the recursion method in the context of bond-order potentials is to
transform the TB Hamiltonian to an orthogonal basis where ittakes a tridiagonal form. This
procedure of transforming the Hamiltonian to a semi-infinite one-dimensional nearest-
neighbour chain is the Lanczos algorithm19 and establishes anO(N) approach to calculate
the local electronic density of states as we shall see in the following.

6 Green’s Functions

In the previous section we learned how to calculate the moments of the density of states
from the crystal structure. We would like to use the information contained in the moments

238



to calculate the bond energyUbond, Eq.(4). The Green’s function̂G is closely related to
the density of states Eq.(8) and the density matrix Eq.(14),as we will see in the following.
It will therefore be helpful for the construction of the bondenergyUbond, Eqs.(4) and (15).
As a first step in this direction we will use the Green’s functions to reconstruct the local
density of statesniα(E) from the moments. Once we have obtained the local density of
states, we can integrate it to calculate the bond energy. We define the Green’s function̂G
as the inverse of the Hamiltonian,

Ĝ =
(

E1̂ − Ĥ
)−1

. (49)

As the Hamilton operator in the basis of the eigenstatesψn is written as

〈ψn|
(

E1̂ − Ĥ
)

|ψm〉 = (En − E)δnm , (50)

and by definition ofĜ,

〈ψn|
(

E1̂ − Ĥ
)

Ĝ|ψm〉 = 〈ψn|ψm〉 = δnm , (51)

the Green’s function matrix elements of the eigenstates maybe written explicitly as

〈ψn|Ĝ|ψm〉 =
δnm

E − En

. (52)

This can be verified by inserting the identity1̂ =
∑

k |ψk〉〈ψk|,

〈ψn|
(

E1̂ − Ĥ
)

Ĝ|ψm〉 =
∑

k

〈ψn|
(

E1̂ − Ĥ
)

|ψk〉〈ψk|Ĝ|ψm〉 (53)

=
∑

k

(E − En) δnk

δkm

E − Em

(54)

= (E − En) δnm

1

E − Em

(55)

= δnm . (56)

The matrix elements of the Green’s function in the atomic orbital basisGiαjβ(E) =

〈iα|Ĝ|jβ〉 are obtained as

Giαjβ(E) =
∑

nm

〈iα|ψn〉〈ψn|Ĝ|ψm〉〈ψm|jβ〉 =
∑

n

c
∗(n)
iα c

(n)
jβ

E − En

, (57)

By making use of the identity/residue

− 1

π
Im

∫

1

E − En

dE =

∫

δ(E − En)dE , (58)

we can replace Eq.(8) and Eq.(14) using matrix elements of the Green’s function

niα(E) = − 1

π
ImGiαiα(E) , (59)

ρiαjβ = − 1

π
Im

EF
∫

GiαjβdE . (60)
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Connection can now be made to the recursion method introduced in the previous section.
The diagonal element of the Green’s function at the startingorbital of the semi-infinite
one-dimensional Lanczos chain is given as a continued fraction20

Giαiα = G00 =
1

E − a0 −
b21

E − a1 −
b22

E − a2 −
b23
.. .

. (61)

The continued fraction expansion provides a direct way of calculating the density of states
which in turn may be used to calculate the bond energy.
Taking the continued fraction to an infinite number of recursion levels corresponds to an
exact solution of the tight-binding model. Byterminatingthe continued fraction after a
certain number of levels, a local expansion of the electronic structure is obtained. The
different flavors of using truncated Green’s function expansion for a local calculation of
the bond energy are presented in the following section. A more detailed review of the
connection between bond-order potentials, Green’s functions and the recursion method is
given,e.g., in Refs. 21–23.

7 Calculation of the Bond-Energy I – Numerical Bond-Order
Potentials

The recursion expansion representation of the HamiltonianEq. (42) offers a direct way of
writing the onsite Greens-function matrix elementsGiαiα = 〈iα|Ĝ|iα〉 = G00 in the form
of a continued fraction expansion, Eq.(61). For the bond-order potentials we are interested
in a local calculation of the bond energy and not in an exact solution of the underlying TB
model. This is achieved byterminatingthe expansion after a few recursion levelsn. This
is equivalent to evaluating the first2n + 1 moments of the density of states (cf. Sec. 5).
In the simplest case, the recursion coefficientsam andbm for m > n are replaced by a
constant terminator

am = a∞, bm = b∞ for m > n . (62)

By inserting the continued fraction expression for the Green’s function matrix element
Eq.(61) in Eq.(59) one obtains an approximate closed-form representation of the density
of statesniα. The bond energy Eq.(4) is obtained bynumericalintegration of

Ubond = − 2

π
Im

EF
∫

(E − Eiα)
1

E − a0 −
b21

.. . −
. . .

E − a∞ − b2∞

E − . . .

dE (63)

and therefore this representation of the energy is called numerical bond-order potential.
In general the approximation error in the bond energy will become smaller with more
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recursion levelsn taken into account exactly. Therefore, the number of recursion levels
provides a way of systematically converging the bond energyto the bond energy that one
obtains from an exact solution of the TB Hamiltonian.
For the calculation of the forces on the atoms one requires the bond-order/density matrix
and therefore the calculation ofGiαjβ . For numerical stability and convergence of the
continued fraction expansion ofGiαjβ , one relatesGiαjβ to the onsite matrix elements
Giαiα andGjβjβ . This is achieved by using a linear combination of atomic orbitals in the
recursion expansion

|u0〉 =
1√
2

(

|iα〉 + eiϑ|jβ〉
)

, (64)

with ϑ = cos(λ) such that

G00 = λGiαjβ +
1

2
(Giαiα +Gjβjβ) . (65)

Therefore, the intersite matrix elements of the Green’s function is given as a derivative of
the onsite elements of the starting Lanczos orbital, a central result of BOP theory24

Giαjβ =
d

dλ
G00

∣

∣

∣

∣

λ=0

. (66)

At any level of approximation exists a termination of the expansion ofGiαjβ which ensures
that the onsite and intersite representation of the bond energy are identical25, as of course
it would have to be if the problem would have been solved exactly. A detailed review of
the numerical bond-order potentials is available in Ref. 5.

8 Calculation of the Bond-Energy II – Analytic Bond-Order
Potentials

As the integral for the calculation of the bond energy in Eq.(63) is carried out numerically
in numerical BOPs, no analytic representation of the effective interactions between atoms
and therefore no analytic interatomic potential may be obtained. In this section we will
discuss how analytic representations of the bond energy maybe obtained, such that explicit
analytic interatomic potentials may be written down.

8.1 Analytic Bond-Order Potentials for Semiconductors

If the expansion ofGiαiα in Eq.(61) is terminated witha∞ = 0 andb∞ = 0 after only
two recursion levels (n = 2) corresponding to four moments, the integral for the bond
energy Eq.(63) may be carried out analytically. In order to achieve a good convergence
with only two recursion levels, the starting state of the recursion |u0〉 must be taken as
an as close approximation of the solution as possible. For semiconductors with saturated
covalent bonds one achieves very good convergence if the starting state is chosen as a
dimer orbital26, 27

|u0〉 =
1√
2

(|iα〉 + |jβ〉) . (67)

241



The resulting analytic bond-order potentials26, 27have been applied to modelling the growth
of semiconductor films and hydrocarbons. A detailed review of the analytic BOPs for
semiconductors may be found in Refs. 6,7. If one takes the expansion of this analytic bond-
order potential only to two moments of the density of states instead of four moments, then
an expansion is obtained that is very close28 to the empirical potential given by Tersoff29.
Therefore the analytic BOP may be viewed as an systematic extension of the Tersoff-
Brenner-type potentials.

8.2 Analytic Bond-Order Potentials for Transition Metals

In a close-packed transition metal, the bonds between atomsare not saturated. Therefore
the expansion of the analytic BOPs for semiconductors that is built on a saturated dimer
bond may not be directly applied to transition metals. Instead of taking a dimer orbital as
the starting state of the expansion, inserting a spherical atomic orbital into a close-packed
crystal structure leads to a faster convergence of the expansion. However, in order to re-
solve for example the energy difference between thefcc andhcpstructure in a canonical
TB model30, at least six moments are required14. For six moments or equivalently three
recursion levels, the integration of Eq.(63) cannot be carried out analytically. Instead of
integrating Eq.(63), one therefore constructs a perturbation expansion of the continued
fraction representation ofGiαiα. This perturbation expansion may then be integrated ana-
lytically.

The starting point of the expansion is the observation that the Green’s function may
be written down in a compact form if all the expansion coefficientsan andbn are taken
identical to

an = a∞ , (68)

bn = b∞ . (69)

Then the density of states is given by

n
(0)
iα (ε) =

2

π

√

1 − ε2 , (70)

with the normalized energyε,

ε =
E − a∞

2b∞
. (71)

The density of statesn(0)
iα (ε) is then used as the reference density of states in a perturbation

expansion31

niα(ε) = n
(0)
iα (ε) + δniα(ε) . (72)

Chebyshev polynomialsPn(ε) of the second kind are orthogonal with respect to the weight
functionn(0)

iα ,

2

π

+1
∫

−1

Pn(ε)Pm(ε)
√

1 − ε2dε = δnm . (73)
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The density of states is thus expanded in terms of Chebyshev polynomials

niα(ε) =
2

π

√

1 − ε2

(

σ0 +
∑

n=1

σnPn(ε)

)

, (74)

with expansion coefficientsσn. The expansion coefficients are related to the moments of
the density of states Eq.(29) by writing the Chebyshev polynomials explicitly in the form
of polynomials with coefficientspmk,

Pm(ε) =

m
∑

k=0

pmkε
k . (75)

Then the expansion coefficientsσm are obtained in terms of the momentsµ(k)
iα ,

σm =

+1
∫

−1

m
∑

k=0

pmkε
kniα(ε)dε =

m
∑

k=0

pmk

+1
∫

−1

εkniα(ε)dε =

m
∑

k=0

pmkµ̂
(k)
iα , (76)

where we introduced the normalized moments

µ̂
(n)
iα =

1

(2bi∞)n

n
∑

l=0

(

n

l

)

(−ai∞)(n−l)µ
(l)
iα . (77)

Therefore, by calculating the momentsµ(k)
iα according to Eq.(29) by pathcounting and

inserting the expansion coefficientsσn into the expansion Eq.(74), one obtains a closed-
form approximation of the density of states. Integration ofthe density of states analytically
yields an analytic expression for the bond energy associated with orbitaliα

Ubond,iα =

EF
∫

(E − Eiα)niα(ε)dε =
∑

n

σn [χ̂n+2(φF) − γχ̂n+1(φF) + χ̂n(φF)] ,

(78)
where we introduced the so-called response functions

χ̂n (φF) =
1

π

(

sin(n+ 1)φF

n+ 1
− sin(n− 1)φF

n− 1

)

, (79)

and the Fermi phaseφF = cos−1(EF/2bi∞).
The lowest order approximation of the analytic bond-order potential that includes only

two moments is similar to the Finnis-Sinclair potential32, so that the analytic BOP expan-
sion may be viewed as a systematic extension of the Finnis-Sinclair potential to include
higher moments. On the other hand, as the expression for the bond energy may be inte-
grated analytically for an arbitrary number of moments, theexpansion Eq.(78) provides an
effective interatomic interaction that may be systematically converged with respect to the
exact solution of the TB Hamiltonian by including higher moments. As in the case of the
numerical bond-order potentials, the bond energy, Eq.(78), may be rewritten as an equiva-
lent intersite representation. A detailed derivation of the analytic bond-order potentials for
transition metals may be found in Ref. 14.
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9 Calculation of Forces

The computationally fast and efficient calculation of forces is important for efficient
molecular dynamics simulations. In self-consistent electronic structure calculations the
Hellmann-Feynman theorem33, 34makes an efficient calculation of forces possible, as only
gradients of the Hamiltonian matrix elements need to be evaluated. The contribution of the
bond energy to the forces may be written as

FFF k = ∇kUbond =
∑

iα6=jβ

Θiαjβ∇kHjβiα . (80)

The Hamiltonian matrix elements are pairwise functions, therefore the calculation of the
gradients is very efficient. For the bond-order potentials Hellmann-Feynman-like forces14

may be derived that may be written in a form similar to the Hellmann-Feynman forces
Eq.(80),

FFF k = ∇kUbond =
∑

iα6=jβ

Θ̃iαjβ∇kHjβiα , (81)

whereΘ̃iαjβ is an approximate representation of the bond order. Just as in the case of
the Hellmann-Feynman forces, the calculation of the forcesin the bond-order potentials
requires only the calculation of the gradient∇kHjβiα and not the differentiation of a
complex many-body function and is therefore computationally efficient compared to the
evaluation of the gradient of an empirical many-body potential.

10 Conclusions

This introductory lecture provides a brief guide to the central ideas and concepts behind the
derivation of the bond-order potentials. Instead of diagonalising the TB Hamiltonian, the
bond-order potentials provide an approximate local solution of the TB Hamiltonian and the
binding energy. The local solution is constructed as a function of the crystal structure or,
more general, the positions of the atoms, by relating the electronic structure to the crystal
structure using the moments theorem. In this way explicit parametrisations of the energy as
a function of the atomic positions are obtained. The accuracy of the bond-order potential
with respect to the corresponding tight-binding solution can be improved systematically
by including higher moments, which corresponds to taking into account more far-sighted
atomic interactions. Hellmann-Feynman-like forces allowfor an efficient calculation of
the forces in molecular dynamics simulations.
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