Ansatz: Combination of laser ablation and quantitative spectroscopy.

Laser Induced Ablation Spectroscopy (LIAS)

- Laser pulse with high power density \((k=1064 \text{ nm}, \ E_{\text{Laser}} = 1.5 \text{ J, } \tau_{\text{pulse}} = 7 \text{ ns}) \) irradiates pre-deposited sample inserted through limiter lock.
- Laser beam leads to rapid heating and sublimation/evaporation of sample material.
- Ablated particles enter the tokamak edge plasma.
- Light emitted due to interaction with fusion plasma is observed.

Investigation Method: Laser energy scan for mixed (W/C/Al) layer in ohmic discharge.

Linear dependence for D_2 photons (injected atoms) found.

Reason for discrepancy between S/XB values under investigation.

W/C/Al mixed layer: Laser energy variation

- \(0.8 \text{ J/cm}^2 \), \(1.5 \text{ J/cm}^2 \), \(3.2 \text{ J/cm}^2 \)

Photon efficiency of Deuterium in a-C:D layers

- Linear dependence for \(D_2 \) photons (injected atoms) found.
- Reason for discrepancy between S/XB values under investigation.

Radial profile comparison

- Radial emission profiles remain unchanged.
- Radial emission profiles extend further with increased laser power.
- No indication of plasma perturbation.

Toroidal profile comparison

- Toroidal FWHM decreases with laser energy.
- Consistent with plasma perturbation.
- No indication of plasma perturbation.

Summary and Conclusions

LIAS was performed on different pre-deposited samples to show the feasibility as a diagnostic for the first wall in fusion devices.

- The ability to utilize LIAS for hydrogen inventory measurements is shown. Layers thinner than 100 nm can be resolved in TEXTOR.
- Quantitative spectroscopy allows inventory measurements for a-C:D layers with S/XB=67.8±20.4.
- Indication of plasma perturbation for mixed layers \(\Rightarrow \) variation of laser parameters.

Outlook

Modeling work of radial profiles started to explain observed S/XB value with ERO (www.ero-code.de) and Hydkin (www.hydkin.de) at Forschungszentrum Jülich.