Fabrication of simulated minor actinide containing fuel particles and analytical characterization methods

C. Schreinemachers*, R. Middendorp, A. A. Bukaemskiy, M. Klinkenberg, S. Neumeier, G. Modolo, D. Bosbach

In the context of advanced nuclear fuel cycles including partitioning and transmutation, actinide co-conversion processes play an important role. Therefore, actinide ceramics are considered to be used as precursor for the fabrication of innovative fuels.

Suitable conversion methods are the sol-gel route by internal gelation (IG)\[1]\ and the weak-acid resin process \[2]\ . Both synthesis routes have the advantage of a dustless fabrication. Within the project ASGARD these methods were applied to prepare $\text{UO}_2/\text{Nd}_2\text{O}_3$ microspheres.

In the context of advanced nuclear fuel cycles including partitioning and transmutation, actinide co-conversion processes play an important role. Therefore, actinide ceramics are considered to be used as precursor for the fabrication of innovative fuels. Suitable conversion methods are the sol-gel route by internal gelation (IG)\[1]\ and the weak-acid resin process \[2]\ . Both synthesis routes have the advantage of a dustless fabrication. Within the project ASGARD these methods were applied to prepare $\text{UO}_2/\text{Nd}_2\text{O}_3$ microspheres.

Introduction

In the context of advanced nuclear fuel cycles including partitioning and transmutation, actinide co-conversion processes play an important role. Therefore, actinide ceramics are considered to be used as precursor for the fabrication of innovative fuels. Suitable conversion methods are the sol-gel route by internal gelation (IG)\[1]\ and the weak-acid resin process \[2]\ . Both synthesis routes have the advantage of a dustless fabrication. Within the project ASGARD these methods were applied to prepare $\text{UO}_2/\text{Nd}_2\text{O}_3$ microspheres.

Sol-gel method by internal gelation

Characterization

- U/Nd microspheres ($\chi(\text{Nd}) = 0 - 42.63\%$) prepared via internal gelation.
- Average masses and diameters with small standard deviations.
- EDX results (top 5 μm) in good correlation with ICP-MS measurements.
- Sphericity proven by SEM, cracks found for air dried particles.
- Proper surface integrity after treatment in H_2/Ar.
- Crack formation proven by ESEM (850 Pa → 70 Pa).
- Linear dependence of lattice parameter on $\chi(\text{Nd}) \leq 25\%$.
- Unexpected behaviour for $\chi(\text{Nd}) > 25\%$ (1300 °C → 2 phases).

Weak-acid resin process

Characterization

- Adsorption equilibrium reached after 18 h.
- Decrease of Nd^{3+} fraction after $t > 18$ h
- Nd^{3+} kinetically favoured; UO_2^{2+} thermodynamically favoured.
- The pH value is a major factor on the adsorption.
- Treated in air: Amberlite IRC-86 broken, Lewatit TP-207 suitable.
- No equilibrium solid solution has been achieved (reducing atmosphere).

[Thanks to F. Sadowski (ICP-MS analyses) and J. Dellen (XRD measurements).]
[This research was partially supported by the European Atomic Energy Community’s 7th Framework Programme within the project ASGARD - grant agreement No. 295825.]

[Example for production of UO_2 microspheres using Amberlite IRC-86.]

[TP-207 Nd^{3+} UO_2^{2+}
Lewatit IRC-86 Nd^{3+} UO_2^{2+}
Lewatit IRC-86 Nd^{3+} UO_2^{2+}]