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Symmetric Bragg-case reflections from a thick, ideally imperfect, crystal slab
are studied mostly by analytical means. The scattering transfer function of
a thin mosaic layer is derived and brought into a form that allows for
analytical approximations or easy quadrature. The Darwin—-Hamilton equations
are generalized, lifting the restriction of wavevectors to a two-dimensional
scattering plane. A multireflection expansion shows that wavevector diffusion
can be studied independently of the real-space coordinate. Combining analytical
arguments and Monte Carlo simulations, multiple Bragg reflections are found to
result in a minor correction of the reflected intensity, a moderate broadening of
the reflected azimuth angle distribution, a considerable modification of the polar

© 2014 International Union of Crystallography

1. Introduction

Purposely imperfect crystals have important applications in
neutron and X-ray optics. However, the available literature,
reviewed in International Tables for Crystallography (Sabine,
2004), seems to be mostly concerned with extinction correc-
tions required in crystallographic studies of imperfect speci-
mens, and less with their uses as optical elements. The
established theory provides no adequate foundation for
computing the directional distribution of radiation deflected
by a thick mosaic crystal. This limits for instance the reliability
of simulations (Meyer et al., 2003; Hennig et al., 2011) of a
phase-space transforming rotating beam deflector for third-
generation neutron backscattering spectrometers (Schelten &
Alefeld, 1984; Meyer et al., 2003; Wuttke et al., 2012).

Following Darwin (1922), a mosaic crystal is modelled as an
assembly of perfectly crystalline blocks that are to some
degree orientationally disordered. In an ideally imperfect
crystal, every block is so thin that it reflects at most a small
fraction of the incident beam. Therefore, primary extinction
and all kind of quantum effects arising from coherent super-
position of multiple reflections within a block can be
neglected. Here we consider a thick, ideally imperfect, crystal,
consisting of so many block layers that secondary extinction
and multiple reflections between blocks are of practical
importance. To arrive at specific conclusions, we consider a
slab with surface normal along the average block normal, we
only study ‘Bragg’ reflection geometry (as opposed to the
‘Laue’ deflected-transmission case), and we exclude grazing
incidence and near backscattering.

Since reflections from different blocks add incoherently,
they can be treated by classical transport theory. This is usually
done in form of the Darwin—-Hamilton equations (Hamilton,
1957):

angle distribution, and a noticeable shift and distortion of rocking curves.

ko VI, = pl — v, (1)

where IA(i are the directions of the incident and diffracted
beam and I, are the corresponding currents. The lineic
reflectivity p accounts for gains by Bragg scattering; the
attenuation coefficient v = p + o, + 0ipe + 04ire accounts for
losses by Bragg scattering, by absorption, by inelastic scat-
tering and by diffuse scattering. Werner (1974) has formally
solved the equations (1) for a parallelepiped. Sears (1997) has
obtained a practicable closed expression for a slab. Solutions
for v = u have been known for a long time (Bacon & Lowde,
1948).

The Bragg reflectivity i depends on the distribution W of
block orientations and on the blocks’ shape transform X.
Excluding excessively thin blocks from further consideration,
we can assume X to be a much narrower bandpass than W.
The reflectivity then depends only on W, not on X:

w=aw(o—6g), @

where 0 is the incident glancing angle and 6y is the Bragg angle
of an untilted crystallite (Zachariasen, 1945, equation 4.19;
Sears, 1989, equation 5.2.70).

Implicitly, the Darwin—Hamilton equations confine block
normals and wavevectors to a fixed scattering plane. Only in
this approximation the diffracted beam direction is unique. In
reality, for a given incoming wavevector, the Bragg condition
is fulfilled by a pencil of block orientations, and the diffracted
beam is spread accordingly into a pencil of rays. From the
second reflection onwards, the wavevectors form a two-
dimensional manifold. As pointed out by Werner (1974), this
was fully appreciated by Darwin (1922, p. 818): ‘The problem
of these multiple reflections would be exceedingly difficult if it
were treated exactly: for each layer will, on account of
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diffraction, spread out incident parallel rays into a certain
range of angles and so will continuously change the angle at
which they attack successive layers.’

Unafraid of what seemed exceedingly difficult almost a
century ago, this paper presents a thorough investigation of
the angular spread of multiply diffracted rays. The initial idea
was to solve the problem by Monte Carlo simulation, a
method that was not available for Darwin, but has long since
become standard for the study of radiation transport (e.g.
Spanier & Gelbard, 1969). However, in setting up the simu-
lation it became necessary to investigate the peculiar kernel of
the transport equation by analytical means, and in the end, a
coherent picture emerged with only a little need for comple-
mentary simulations.

In the following, we first assemble a formalism for Bragg
reflections by a thin mosaic layer and investigate analytical
approximations (§2). We then derive generalized Darwin—
Hamilton equations and study them analytically (§3). Monte
Carlo integration is outlined briefly (§4). In conclusion, we can
say how out-of-plane scattering affects reflectivity of a thick
mosaic and how the wavevector distribution broadens (§5).

2. Reflectivity of a thin mosaic layer

As a foundation for the following investigation of a thick
mosaic crystal, we need to derive the Bragg reflectivity of a
thin mosaic layer. In the following, we first review the reflec-
tivity of a single block (§2.1). We then average over block
orientations (§2.2) and introduce a few restrictions, assump-
tions and approximations to settle on a transfer function that
constitutes a simple, yet realistic, mathematical model of a
mosaic crystal (§2.3). We then discuss some analytical
approximations (§2.4) and test them numerically (§2.5).

2.1. Transfer function of a crystalline block

Crystalline blocks are required to be so thin that we can
work in kinematical approximation, neglecting multiple scat-
tering within blocks. The orientation of a block shall be indi-
cated by the normal vector @, as shown in Fig. 1. The double
differential cross section, normalized to the block volume V,
can then be written as a transfer function

C> ¢

Figure 1

Geometry for a single Bragg reflection by a crystalline block within a
mosaic crystal shaped as a slab of thickness d. While the incoming
wavevector k is chosen to lie in the xz plane, the block orientation & and
the outgoing wavevector k' may also have y components. The angle ¢’ is
not in the drawing plane unless K’ is.

1 o
T VK2 9Q0k’

i.e. the probability per unit length that a particle with incoming
wavevector k is scattered into an infinitesimal phase-space
volume d*k" around K'.

In the following, we only consider elastic scattering:

Fo
020k’

The losses by inelastic scattering are comprised in the
attenuation coefficient v as introduced in (1), and will there-
fore be ignored in the following. The delta function ensures
energy conservation.

We assume that there is exactly one possible Bragg reflec-
tion, given by

1a(K', ) ©))

oo,
=3a 3(k" — k) + losses. 4)

K =k ¥ 2ra, )

where 7 is a material constant, and the factor two is chosen for
later convenience. The double sign has the same meaning as in
the Darwin—-Hamilton equations (1): the upper sign holds for
the geometry shown in Fig. 1 and more generally for each
second reflection in a multiple-reflection series.

The differential cross section for elastic coherent scattering
(Sears, 1989, equations 5.2.18) now takes the form

3 27)’
b0 _,,@m)
aQ V2

IFI2(K — k & 27a). (6)

The unit-cell volume V and the unit-cell structure factor |F |2
(which includes the Debye—Waller factor) shall be lumped into
a material constant with the dimension of a wavenumber,

3 o2 1V
P [Lﬂv 'F'} . ™)

Equation (6) further contains the squared modulus of the
crystallite shape transform (Sears, 1989, equations 5.1.10,12)

2

S(k) = , (®)

V(27t)3 /v d3rexp(ikr)

which is a very narrow bandpass except for very thin crystal-
lites. In the following, we approximate it as

(k) = 8 (k). 9)

The superscript three emphasizes that this delta function has a
vectorial argument, as opposed to the delta function of a scalar
argument in (4).

To summarize, the reflectivity of a crystalline block is
governed by the transfer function

(kK K) = g(ﬁ (k' —k +2t0)5(k' — k). (10)

In the context set by the two delta functions, we are allowed to

equate

K2 -k (kF20h) - K
2k 2k

K —k=

= 2T (e ki), ()
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so that (10) becomes

4
L (K —k+2m)s(kaFr). (12

(K, k) =
(k' k) = ——

2.2. Orientational average

The transfer function of a thin mosaic layer is obtained by
averaging (12) over block orientations,

nk', k) = / d*aw (@) g (K, k). (13)

The integral runs over the unit sphere. The second delta
function in (12) restricts the contributing u to a plane. The
intersection of the unit sphere and the plane is a circle. In the
following, we work out an explicit expression for (13) as a line
integral along this circle.

From this point on, we work in the specific coordinate
system introduced in Fig. 1. We also need the polar coordi-
nates of the incoming wavevector,

cos 6, cos ¢,
cosf sing, |. (14)
+sin 6,

k=k

We set up a rotation matrix

cosg, —sing, 0
R, :=R(¢,) := | sing, cosg, 0], (15)
0 0 1

so that R 'k lies in the xz plane. We parameterize the rotated
block normal

v =R/t (16)

by its orthographic projection into the xy plane:
Wa p) = (o . T= 07 = PP). (17)

We will make sustained use of the assumption that the mosaic
is highly ordered so that W(a) takes substantially nonzero
values only in a small subregion of the unit sphere. This region
is centred at (u) = z and it has a diameter of a few 5, which is
small compared with one. This justifies the parameterization
(17) as fully sufficient to cover the relevant part of the unit
sphere. Throughout this paper we exclude grazing incidence,
requesting 6 > n, so that even and odd reflection orders
remain strictly separated. The sign of k. = 0 then agrees with
the double sign introduced in (1) and (6).

We have argued that (13) is a line integral along a circle.
Orthographic projection of this circle into the xy plane yields
an ellipse. We now determine a parameterization of this
ellipse. From (12) we read off the Laue diffraction condition

kil = +, (18)

which defines the plane to be intersected with the unit sphere.
We divide both sides by k and denote the Bragg angle of
untilted crystallites as

0 := arcsin (7/k). (19)
From here on it is convenient to abbreviate
¢ 1= cosfy, cg = cosby, (20)
S, = sin 6, sg = sinfg.

The scalar product in (18) can be worked out as
kit — (R;lf()e —qatsn/l—— . 1)

By rearranging (18), squaring and rearranging again, we
obtain the ellipse equation

_ 2
Skz(a + SBCk) + ﬂz = 5123 (22)

that must be obeyed by diffracting block orientations. Resol-
ving for « as a function of B, we obtain two solutions:

g1 (/32) = £sp¢, F v/ ¢ — B2,
akz(ﬂz) = +spe T s/ — B

The delta function from (12) can be linearized in « as

(23)

2 2
~ Isg TF o4, (B )| 2
d(kuat 1) = —5(05 — oy, (B )) (24)
; ksyy/ci — B
The « integration in the orientational average (13) can now be
carried out, leaving us as intended with a one-dimensional
integral

+cp

M(k/’ k)=p Z / dg W(ﬁkb(ﬂ))hkb (/32)
b C

x 8 (k' — k % 271, (B)) (25)
with a prefactor (as in Sears, 1989, equation 5.2.71)
P4
=, 26
R = sin 26, (26)
with a new, B-dependent correction factor
s Isp Faog(B)l
hg(B) 1= e 27)
g — P Sk

and with the diffracting-block orientation
iy, (B) = Rke’(akh(ﬂz)» ,3) (28)

From here on, the parameters 7, P and k will no longer appear
separately as they only influence particle trajectories through
the combined forms 6 and f.

2.3. Model transfer function

Equation (25) contains a line integral along an ellipse. Fig. 2
shows this ellipse for different values of 8, = 6. It also shows
the region where W(u) is substantially nonzero for a realisti-
cally chosen n = 0.025. One sees that the branch ¢, lies
outside this region, except near backscattering (6 — 0, ellipse
is almost a circle, with radius going to zero) and near grazing
incidence (6 — /2, ellipse is extremely eccentric). Hence-
forth we exclude these two special geometries and retain only
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the branch o, (8?). Accordingly, we can omit the summation in
(25). Furthermore, we will drop all indices b.

From here on, we assume that the distribution of block
orientations is isotropic:

W) = G(a)G(B), (29)

where G is an even normalized one-dimensional distribution
function truncated at =cg. Accordingly, we can send the
integration limits in (25) to +=c0. With these choices, (25) takes
the form

W 1) = / ABG(B)G () ()
x 8 (k' — k & 27, (B)). (30)

This equation constitutes our mathematical model of a Bragg
reflection by a thin mosaic layer.

2.4. Analytical approximations

The K’ integral over (30) is trivial and yields an expression
for the lineic Bragg reflectivity

W) = i / ABG(B)G (e () e (B). (31)

To derive systematic approximations for (30) and (31), we
need expansions of o, and A in B and in

e :=60—0g. (32)
From (23), we find
) =Fe £ DB g LOE B ()

From (27),

Figure 2

Orthographic projection of block normals 1 into the xy plane (parallel to
the surface of the mosaic slab). The scales «, B run from —1 to +1. The
grey shaded circles in the centre illustrate a Gaussian distribution of block
orientations, W(a), with n = 0.025. They contain 90, 99 and 99.9% of all
blocks. The coloured ellipses (22), plotted for different angles 6 = 6,
show which block orientations fulfil the diffraction condition (18). For
each ellipse, the left branch (solid line) is given by oy, (8%), the right
branch (dashed) by o,(8?).

tan® 0
2
For a first approximation to (31), we retain only the first term
in (33) and (34), neglecting any 8 dependence. Geometrically,
this means the original elliptical integration line is replaced by
a vertical line that touches the ellipse at 8 = 0. Everthing
except the normalized distribution G() can be drawn in front

of the integral, which then trivially yields unity. The result

w(k) ~ @G(e) (35)

is known [equation (2)] from the Darwin—-Hamilton approx-
imation, which imposes 8 = 0 by neglecting out-of-plane
scattering from the beginning.

With a little extra effort we can do better. To make the
vertical line representative not just for in-plane scattering, but
for the average of 8° within the region of interest defined by
the distribution W, we should shift it horizontally from ¢, (0) to
a slightly larger value of «. Let us write (...) for an average
under the distribution G(B), and apply the pre-averaging

<hk (,32)G<ak(ﬂz))> ~ Iy ((52))G(ak((ﬁ2))). (36)

Using the expansions (31) and (33) up to the order g? and
writing 7 for the standard deviation of G, the reflectivity
becomes

_ tan’ 6 tan @

h(B) =1- B+ OB e, £). (34)

Compared with (35), this predicts a reduction of intensity and
a shift of the effective Bragg angle of the mosaic. Being of
quadratic order in 7, these are rather small corrections except
in the limit 6y — /2 where tan 6y diverges — but the case of
near backscattering needs special consideration anyway and is
out of the scope of this work.

2.5. Numerical quadrature

For all numerical work in this paper we choose a mosaic
spread parameter of n = 0.025. In terms of the block tilt angles
arcsino or arcsin f, it corresponds to a full width at half

- T T T T T T T T T T T ]

_.
9
o

e o o

0 5 85 90

. 6(°)
Figure 3
Contributions of the two ellipse branches (23) to the orientationally
averaged Bragg reflectivity (k) as a function of the angle § = 6. Except
near backscattering and near grazing incidence, the b = 2 branch
contributes almost nothing.
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maximum of 3.37°. This is a realistic value for pyrolytic
graphite crystals used in special neutron optical applications,
as mentioned in §1. Furthermore, we choose G to be a
Gaussian truncated at +min(57, cg). For the quadrature of
integrals we use non-adaptive 61-point Gauss—Kronrod inte-
gration with a required relative accuracy of 107° (Galassi et al.,
2013).

Fig. 3 shows the contributions of the two ellipse branches
oy, (%) to the orientationally averaged Bragg reflectivity u(k),
determined by numerical integration of (31), as a function of
0 = 6. As expected, the b =2 branch contributes almost
nothing, except near grazing incidence and near back-
scattering. In the following, we restrict the angles 6 and 65 to
values between about 5 and 85°, where the b = 2 branch can
be neglected for good. The figure shows that this introduces a
relative error of less than 1078,

To assess the error of the analytical approximations from
§2.4, we consider rocking curves, namely p as a function of 6
for fixed 6;. We choose a rather large Bragg angle 65 = 80° so
that the integration-line ellipses, shown in Fig. 4, have
considerable curvature on the scale set by n. Fig. 5 shows the
resulting (k). As expected, the literature approximation (35)
is slightly shifted when compared with the quadrature result.
The pre-averaging approximation (37) agrees better with the
quadrature result, though it slightly underestimates the wings
of the rocking curve. For all practical purposes, it should be
good enough. However, to avoid subtle normalization errors
in our Monte Carlo simulations, we work throughout with the
numerical quadrature, though this costs about a factor of five
in overall computation time.

3. Analytical theory of multiple Bragg reflection

In this section, we study radiation propagation in a thick
mosaic crystal by analytical means. The transfer function of a
thin mosaic layer, obtained in §2.2, is used to formulate the
exact transport equation of our physical model, generalizing
the Darwin—-Hamilton equations (§3.1). We expand the
generalized Darwin-Hamilton equations into a recursion of

== 86°

84°

82°
= 80°
- 78°
- 76°
= 74°

Figure 4

Block orientations in orthographic projection as in Fig. 2, zoomed into the
region around « = B = 0, where the orientational distribution W(u) is
substantially nonzero (grey circles as in Fig. 2). The Bragg angle is fixed at
6y = 80°. The coloured ellipses show which block orientations fulfil the
diffraction condition (18) for different incident angles 6 from 74 to 86°.

inhomogenous differential equations, which are easily
quadrated (§3.2). The evolution of wavevectors under multiple
Bragg reflection can be studied independently of the z coor-
dinate (§3.3); the azimuth angle ¢ performs a random walk on
the unit circle (§3.4), whereas the polar coordinate 6 is
confined to a narrow band around 6y (§3.5). To quantify the
importance of this wavevector diffusion, we break down the
reflectivity, computed in Darwin-Hamilton approximation,
into contributions from different scattering orders (§3.6).

3.1. Generalized Darwin—Hamilton equations

For a realistic description of multiple Bragg reflections in a
mosaic crystal we need to generalize the Darwin—Hamilton
equations (1) by allowing for a wavenumber dependence of
the currents /.. We shall not care about lateral displacement of
the multiply deflected beam, so that we need no other real-
space coordinate than the depth z. We obtain a stationary
Boltzmann equation system, the generalized Darwin—
Hamilton equations

k,0,1,(k, z) = —v(k) (k, z) + /d3k’,u(k, K)I(K,z). (38)
The attenuation coefficient is

v(k) = n(k) + o, (39)

with u(k) = fd3k/pc(k,k/) as determined in §2, and with a
k-independent coefficient o accounting for the other loss

15 literature
— preaveraging

— quadrature

L L S S B S S S S B

P S T A R T S|

Relative error

76 78 80 82 84
0(°)

Figure 5

Orientationally averaged reflectivity w(k) as a function of 6, at fixed
Bragg angle 6 = 80°. The three colours correspond to the literature
approximation [equation (35), green], to the pre-averaging approxima-
tion [equation (37), blue] and to numerical quadrature [equation (31),
magenta]. The lower panel shows the relative error of the two analytical
approximations with respect to the quadrature.
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channels mentioned in §1. For a slab at 0 <z <d, the
boundary conditions are

1, (k, 0) = [(k),

1.(k,d) =0, (40)

with a given incident current /;. Note that primes are used
differently than in §2: here we are concerned with scattering
from k' towards k. Using IAcZ = *siné,, we introduce the
reduced function

(k) ;= v(k)/sin6,, Ak, k) = puk,k')/sin6,  (41)

to rewrite (38) as

(0 + (k)1 (k, 2) = f &Pl ak, K)L(K, 2).  (42)

3.2. Multi-reflection expansion

To get rid of the mutual coupling between I, and /_, to gain
more insight into trajectory statistics and to prepare for a
Monte Carlo simulation, the generalized Darwin—Hamilton
equations shall be expanded into a hierarchy of equations with
unidirectional coupling:

(0s: + D)L, (k, 2) = [m = 1] / &Kk, K, (K, 2),

(43)

where m =0, 1, ... counts the number of Bragg reflections,
the double sign is + = (—)", and the bracket in front of the
integral is the Iverson—-Knuth indicator function (Knuth, 1992;
[S]is 1 if condition S is true, otherwise 0).

The boundary conditions (40) become

1,,(k, 0) = [m = 0]/,(k), for even m,

(44)
I,(k,d) =0, for odd m.
We assume the incoming current to be normalized to
f FPhL(k) =1, (45)

so that the transmission of the slab is simply
T = / &kl (k, d) = Z / &kl (k, d), (46)

and the reflectivity is

R = / d*kI_(k, 0) = / d&*kI, (k, 0). 47)

modd

The linear inhomogenous differential equation (43) with
boundary conditions (44) is solved in the standard way up to
quadrature. For m = 0,

Iy(k, z) = exp[—v(k)z]f;(k), (48)

else

Ik, 2) = / % / el K)AL (K, 2. O, (K. 0).  (49)

with the kernel A, defined by

Ak, z,0) =[0 < ¢ < z]exp[—v(k)(z — ¢)],
A_(k, z,8) =[z = ¢ < d]exp[+v(k)(z — O)].

Iterating (49), we obtain a closed solution

m(knw Zm) - 1_[ fdz /d3k A( )"H Zjt10 2 )

=0
X ,u(kH],kj)Io(ko, ZO)- (1)

This can be rearranged as

m—1
m’z H{/dz A )’“( ]’ZJ+1’Z’)}
m—1
x H{/d e ( j+1,k])}10(k0,z0) (52)

J=!

(50)

which means that the spread of wavevectors can be studied
independently of the real-space coordinate z. In contrast, the
penetration of real space depends on wavevectors. We there-
fore start the investigation of (52) with a z-independent study
of wavevector diffusion.

3.3. Wavevector evolution

The z-independent part of (52),
m—1
L) =T] { / &kl ])}Joaco) (53)
j=0

describes the evolution of wavevectors under multiple forth
and back reflections inside an infinitely thick mosaic crystal.
Introducing two more abbreviations,

L) = AG(B)G (e () () (54)
and
qj(:B) = :szﬁkj(ﬂ) (55)

with the double sign £ := (—Y*', we can write the transfer
function (30) as

pllrok) = [aBr (S e, — 6~ a (). GO
Carrying out one k integration,

T (kyyy) = /dﬂF (B (k; + q;(B)), (57)

and iterating it yields

m—1 m—1
Jj=0 i=0

This allows for a straightforward interpretation in Monte
Carlo terms: at each reflection j, a random variable §; is drawn
from the distribution I',(8,). The wavevector after m reflec-
tions is then obtained as the aggregated random variable
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k, =k, + Z q;(B,)- (59)

To investigate this random process, we start again from a
single reflection:

R (K

—k) = :|:2r€'(ak/.(,3]2)v B)- (60)

Using polar coordinates (14), expanding the left-hand side of
(60) to first order in A and Ag, the right-hand side to first
order in « and B, and approximating 6 = 6 on the right-hand
side, we find for the azimuth angle

@1 — ;= F2tanbgf;, (61)
and for the polar angle

Oy — 6,= 20, (B)). (62)

3.4. Azimuth angle: random walk on the unit circle

Let us first study the evolution of ¢. The difference equation
(61) allows straightforward summation,

m—1
O =@y —2tanby Y (=YB;. (63)
=0
3
[an)
180 ‘ T
o
=
_180I P S I ‘ P —
0 100 200 300
m
Figure 6

Spherical coordinates 6,, and ¢,, of wavevectors k,, for even numbers of
reflections m, from three Bragg-only simulation runs with different
starting vectors k,, but with equal sequences of random-drawn
orientations f3,, of the reflecting crystalline blocks. The grey 6 bands
show regions where the Bragg reflectivity « amounts at least 75, 50 and
25% of the maximum value attained at 6 = 6.

The alternating sign is inconsequential since the 8; are drawn
from a symmetric distribution. Equation (63) describes a
standard random walk with mean (g, ) =0 and variance
(@2,) =4mtan® Ogn.

For verification of this first-order analysis, Fig. 6 (lower
panel) shows random walks simulated according to (60), hence
without any approximations beyond our constitutive model
(30). Three graphs, generated with identical random-number
sequences but different starting values 6,, evolve in parallel.
This demonstrates that terms in ¢ (32), neglected in (61), have
little importance so that the description of ¢ evolution as a
simple, f-independent random walk on the unit circle is
accurate enough for all practical purposes.

3.5. Polar angle: confined random walk
To study the evolution of the polar angle (62), we express
the 6 through ¢ (32) and use the o expansion (33):

€41 = —& — tan by (812 + ,sz) (64)

The leading term —e implies a zigzag walk of 6 around 6,
which is of little consequence since (k) is in good approx-
imation with an even function of ¢. To get rid of the zigzag, we
consider the combined effect of one forth and one back
reflection. Iterating (64) once, we get

gy, =& +tanby (B — B7,) — 2tan’ Oy (e] + Bfy)e;.  (65)

If there were only the first and the second term, this would be
a symmetric random walk, with variance of the order n* in
contrast to the order of n* for the ¢ walk. The third term,
however, has always the sign of —e¢. It is thus a restoring force,
and has two effects: after a sufficient number of iterations, the
6,, value depends less and less on the initial value. This can be
clearly seen in Fig. 6 (upper panel). And in the long run, the
restoring force confines 6,, to a band around 6;.

To estimate the width of this band, we need to investigate
(65) closer. To deal with the first parenthesis, we write
= /3,2 — B = (B; — Bi+1)(B; + Bj11)- The two factors are
independent normal-distributed random variables, and so is ¢,
with (¢) =0 and (¢,¢,) = 4n°[k = []. Pre-averaging the last
parenthesis in (65), we obtain

€4, — & = tan ¢ — 2 tan” O ((¢°) + ') e. (66)

This is a discrete Langevin equation of the form

Ag = at — be, (67)
solved by
a .
& = mk;oo(l b (68)
The variance is
<£2) = 2ba_2 = 4. (69)

Anticipating b < 1, we obtain
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2_2a2n2_ 1,]2
=" G

(70)

where the factors tan 6y of (66) have miraculously cancelled.
The solution of this quadratic equation involves the golden
ratio,

(%) = _fsz— L

Fig. 7 shows values of k,,, generated in one hundred Monte
Carlo runs, in orthographic projection. With increasing m1, the
random walk in ¢,, causes the k,, to loose memory of the
incoming direction and to be distributed around an entire
circle. In contrast, the 6,, remain confined to a narrow band.
This confirms that our analysis, based on expansions in & and
B, captures the essence of the wavevector diffusion during
multiple forth and back reflections.

(71)

3.6. Reflected intensity by reflection order

To assess the effect of wavevector diffusion upon the
reflected radiation, we need to know the partial currents

R, = / d&*kl,(k, 0) (72)
as a function of reflection order m (where m is odd). We
consider a semi-infinite crystal (d — o00). This provides a
worst-case estimate since the relative importance of multiple
reflections increases with increasing crystal thickness.

We go back to the Darwin—Hamilton approximation, which
means no out-of-plane scattering, 6 = const, and therefore
also (k) = const and v(k) = const. The kernel A, (50) then
loses its k dependence, and the iterated integration (52) can be
carried out algebraically. This is so interesting that it has been
published separately (Wuttke, 2014). The result is

m=202-400

e

Figure 7

Orthographic projection of wavevectors k,, for even numbers of
reflections m, from 100 different simulation runs. The coordinate scales
k., k, run from —k to +k. The initial wavevector k, lies in the xz plane,
and has a polar angle that equals the Bragg angle, 6, = 6, = 45°.

(73)

m 2n+1
R2n+1 = Cn (5) ’

with Catalan’s numbers (The On-Line Encyclopedia of Integer
Sequences (2014), sequence A000108)

(2n)!
=—— 74
" nl(n+1)! (74)
The R,,,, sum up to
- w
R = Ry =—F7m——— 75
2Rt = s )

as expected from the d — oo limit of Sears’ (Sears, 1997)
solution of the Darwin—-Hamilton equations.

As (73) confirms, the relative importance of multiple
reflections increases with decreasing probability of non-Bragg
losses. To continue our worst-case estimate, we therefore
consider the unphysical limiting case v =pu, R=1. The
asymptote

1

Ry ~ 3 (76)
it 2/m(n + 1)3/2

is easily computed from Sterling’s approximation. The inten-

sity due to trajectories with 2n 4+ 1 or more reflections is

00 00

1
Y R :/ dkRy oy~ . (77)
s 2k+1 12 2k+1 \/_7_1: l’l+1/2

Fig. 8 shows that it is a surprisingly good approximation even
for the lowest n. Convergence of this curve is slow; there is a
10% contribution from trajectories with 63 and more Bragg
reflections. However, as the figure also shows, this long tail
disappears as soon as there is some non-Bragg attenuation.
For . = 0.95v, no more than 1% of the particles reflected by
the mosaic undergo more than 25 Bragg reflections.

1 o E
; °u=1.00v
« Fe » u=0.99v
~ L <> nu=0.98v
+¢ 5 °o u=095v
) Iy = n=0.90v
& 0.1 7
o F o o
+ AN
[ %
001, o2, [ %, N N B
0 25 50 75 100
Figure 8 n

Relative contributions to the radiation reflected by a semi-infinite mosaic
crystal from trajectories with at least 2n 4 1 Bragg reflections. Computed
in Darwin—Hamilton approximation by summing (73). Different symbols
for different values of w/v. The solid line is the asymptote (77) for p = v.
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4. Monte Carlo simulation

In this paper, analytical methods prevail, and only a few
Monte Carlo results are shown to confirm and complement
analytical results. However, in future applications of the
generalized Darwin—Hamilton equations for the design of
optical components, Monte Carlo simulations will become
indispensable. As a starting point for such work, the code
developed here is made available online (§4.1). Since the
algorithm is mostly standard, only a few explanations are in
order, concerning the propagation in real space (§4.2) and the
random drawing of wavenumbers (§4.3).

4.1. Simulation code

The source code of the multi-reflection simulation software
developed for this work is released under the GNU General
Public License, and has been deposited as supporting infor-
mation.! It is published as used in the latest simulations
performed for this paper, without any cleaning up, without any
pretension of showing particularly good coding practice and
without much optimization. It is published for only two
reasons: to provide a complete documentation of the present
work and to offer a starting point for future developments.

The code is written in the C++ programming language. A
random number generator with dedicated support for parallel
processing (Bauke & Mertens, 2007; Bauke, 2014) allows the
simulation to run in multi-processor mode.

4.2. Simulating real-space trajectories

There is a good rule in Monte Carlo simulation to do
analytically whatever can be done analytically. From equations
(50) and (52) it appears that the entire z dependence of our
currents is a strong candidate for a fully analytical treatment.
For a given wavevector sequence k;, iterated z integrals over
different exponential function yield sums of exponential
functions, which in principle should allow for an algebraic
computation. However, the small variations of the reflection
coefficient v(k;) cause problems with nearly cancelling differ-
ences. In fact, in the special case of constant v, iterated inte-
gration does not reproduce exponential kernels, but an
exponential times a polynomial (Wuttke, 2014). Therefore, an
analytical treatment of the realistic problem with finite d and
L < Vv is not viable.

Instead, a standard algorithm from neutron transport
simulations (e.g. Spanier & Gelbard, 1969; Copley, 1974) is
employed: at each Bragg reflection, the contribution to the
transmitted (46) or reflected (47) score is computed. The
particle is forbidden to leave the slab; instead, its stochastical
weight is adjusted for the escape probability. To terminate
simulated trajectories without bias, Russian roulette is played.

In the case of a very thick slab we run into a numeric
problem that is well known from shielding calculations (Kahn,
1950; Leimdorfer, 1964): only few trajectories penetrate the
slab deeply enough to allow for an accurate estimation of

! The source code is available from the TUCr electronic archive (reference:
SC5071).

logarithmically small transmissions 7, unless appropriate
variance-reducing techniques are applied. In our context, we
expect little interest in the residual transmission of excessively
thick crystals; we concentrate on the reflectivity, which can be
simulated in straightforward ways.

4.3. Wavevector drawing

Recently, Hennig et al. (2011) have combined Sears’ in-
plane multiple-reflection intensity with an out-of-plane single-
reflection random drawing of deflected wavevectors. With the
additional complication of a Galilei transform into the moving
frame of a rotating-crystal chopper, they arrived at a rather
involved formalism.

Based on the preceding investigation of the mosaic transfer
function (30), we can derive a much simpler prescription for
drawing reflected wavevectors. For each simulated Bragg
reflection we need to draw a representative block orientation
u. The outgoing wavevector is then determined by (5). The
pertinent distribution of @ is a conditional probability: we
consider a thin layer of the mosaic crystal and ask for the
probability that scattering is caused by a block of orientation a
under the condition that scattering takes place at all. This
conditional probability can be computed using Bayes’
theorem:

P(scalu)W(a)
[ di’ P(scal@)W(@)’

P(tsca) = (78)
with P(scala) o p4(k) given by the k' integral of (12). As in
§2.2, 0 is parameterized by « and B. Excluding the second

ellipse branch, we can conclude from (24) that « is uniquely
determined by B as o, (8°), and that S is distributed as

h(B)G (o4 (B)) G(B)
JdB m(BAG(au(B?))G(B)

P(Blsca) = (79)

In the B range where G(J) is substantially nonzero, the factors
h(B?) and G(o(B?)) are slowly varying functions of . To
simulate a scattering event in a simple and efficient way, we
just draw B from G(gB). All other factors of (79) are taken into
account as stochastical weight of the scattered particle.

5. Simulational vs analytical results

Combining Monte Carlo simulations with analytical results,
the following questions can now be answered. How does out-
of-plane scattering affect the reflectivity of a thick crystallite
(§5.1)? How does it modify rocking curves (§5.2)? How do
different reflection orders contribute to the total reflectivity
(§5.3)? And what is the orientational distribution of the
reflected radiation (§5.4)?

5.1. Mosaic reflectivity

In the following, we investigate the reflectivity of a mosaic
slab as a function of the Bragg angle 6 and the incident angle
6,. To avoid results being dominated by the trivial variation
of path lengths with 1/sin6,, we parameterize reflectivity
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and attenuation in terms of f,:= pG(0)/sin6, and
0, : = o/sinf,.

In the Darwin—-Hamilton approximation with 6, = 6, the
index 0 can be dropped since reflections do not change (& and
0. Reflectivity and transmission computed by Sears (1997)
reduce to

. asinhp
" pcoshp+ Usinhp’
0
TOZ = ~ ~ . ~ 3
pcoshfiL 4 psinhfi

0 (30)

with

b= — . (81)

The generalized Darwin—-Hamilton equations allow for fluc-
tuations of 6, and in consequence also of u and v. We now
enquire whether these fluctuations result in a noticeable
change of R and T.

In the limit d — 0, the reflectivity R = [i,d is not influenced
by multiple Bragg reflections. In the opposite limit d — oo, it
is just R = 1 unless there is some non-Bragg attenuation.
Therefore, effects of out-of-plane reflections are expected to
be most important for intermediate slab thicknesses, and when
there is substantial concurrence between scattering and
absorption. Furthermore, since various effects of out-of-plane
scattering go with tan6fg [(37), (63) and (66)], we expect
deviations from the Sears solution to be largest for 6 — /2.
All this is confirmed by simulations. Fig. 9 shows R as a
function of 6, = 6 for different combinations of fi,d and &,d
chosen to yield the same Sears reflectivity of 0.5. The true
reflectivity, determined by Monte Carlo integration of the
generalized Darwin—-Hamilton equations, shows small but
systematic deviations from the Sears solution that increase
with increasing 6 and with increasing o /.

The increase of R with increasing g contrasts with (37),
which predicts a decrease of (k) for increasing tan 6g. This
shows that the inaccuracy of the conventional Darwin—
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Figure 9

Reflectivity of a mosaic slab of thickness d as a function of Bragg angle 6,
with the incident collimated beam perfectly aligned to 6, = 65, for
different combinations of reduced Bragg reflectivity (i, and reduced non-
Bragg attenuation coefficient ¢, that all yield a Sears reflectivity of 0.500
(line).

Hamilton equations is not primarily due to the in-plane
approximation for the thin-layer reflectivity u(k), but to the
neglect of 6 fluctuations in multiple reflections.

5.2. Rocking curves

We now consider 6, scans at constant 6. The incoming
beam is collimated, the mosaic slab is rotated around an axis
perpendicular to the incoming beam direction and detectors
cover enough solid angle to capture all transmitted or
reflected intensity. Fig. 10 shows the reflected intensity R, the
transmitted intensity 7" and the non-Bragg losses 1 — R — T as
a function of 6, for two Bragg angles 6.

For 65 = 45°, Monte Carlo results, based on the generalized
Darwin—Hamilton equations, deviate only little from Sears’
solution of the conventional Darwin-Hamilton equations.
Furthermore, the reflectivity curves can be fitted almost
perfectly by a damped Gaussian, obtained by concatenating a

D
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Figure 10

Reflectivity R (green), transmission 7' (blue) and non-Bragg losses
1 — R — T (red) in a mosaic slab with thickness d, thin-layer reflectivity
flod = 4.5, non-Bragg attenuation coefficient 6,d = 0.5, as a function of
incident angle 6,. The Bragg angle is (a) 63 = 45°, (b) 65 = 80°. Solid
lines according to Sears’ solution of the conventional (in-plane) Darwin—
Hamilton equations. Circles from Monte Carlo integration of the
generalized Darwin—Hamilton equations; error bars smaller than the
symbols. Dashed lines: fits with a damped Gaussian as described in the
text.
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Gaussian [which can be justified by combining (35) with a
small-d expansion of (80)] with the simplest description of
saturation, R—R/(1 + R).

For 6; = 80°, on the other hand, there are noteworthy
differences between the simulation results and Sears’ solution.
The maximum of the reflectivity curve is shifted from 80° to
about 80.5°, and the maximum reflectivity is increased by
about 3%. The damped Gaussian still fits Sears’ solution, but
no longer the simulated reflectivity; deviations highlight the
asymmetry of the simulated reflectivity curve.

5.3. Reflection order statistics

In §3.6, we have discussed how different reflection orders
contribute to the total reflectivity of a semi-infinite mosaic in
Darwin-Hamilton approximation. For a more realistic esti-
mation, we consider a slab of finite thickness and describe
multiple reflections by the generalized Darwin—Hamilton
equations. Fig. 11 shows Monte Carlo results for different slab
thicknesses d, with constant attenuation ratio /v, = 0.1.

In the large-d, small-n limit, we find perfect agreement with
the Darwin—Hamilton infinite-d asymptote (73). At large d
and large n, deviations from this asymptote are due to out-of-
plane wavevectors, which cause fluctuations in 6 and thence in
[ and v, whereas the finite value d is irrelevant. However, for
not so large values of d the dependence of R,, ; on d is
dramatic; in this regime, the main shortcoming of the analy-
tical model is not the confinement of wavevectors to a plane,
but the choice of a semi-infinite crystal. In conclusion, (73) is
reliable as a worst-case estimate of multiple-reflection effects
and it provides realistic partial reflectivities in the case of
relatively thick crystals, particularly for low reflection orders.

5.4. Orientational distribution

As Darwin anticipated, multiple reflections increase the
orientational spread of the reflected radiation. We now
quantify this spreading. We consider again a rather large angle
6, = 0 = 80° and a rather thick crystal (V,d = 16) for which

10° £

Figure 11

Partial reflectivity R,,,; as a function of the reflection order m = 2n + 1
for 6, = 6y = 80°. Different symbols for different sample thickness;
constant ratio /v, =0.1. The black line shows R,,.; in Darwin-
Hamilton approximation for the limiting case d — oo (73).

we expect relatively important contributions from multiply
reflected rays. On the other hand, to remain realistic, we
assume 10% non-Bragg attenuation as we did in Fig. 11.

Fig. 12 shows the azimuth angle distribution of the reflected
radiation. Up to reflection order n < 7, the partial distribu-
tions are almost perfectly predicted by combining the intensity
per reflection order (73) with the random-walk variance
derived from (63):

2n+1
R2n+1(<p)=cn(2“—v) G(¢: Vamuanoyn).  (2)

where G(x; s) is a Gaussian in x with standard deviation s. By
summing (82) numerically, an excellent approximation to the
total intensity distribution is obtained, which is a Gaussian
with additional exponential wings. For the parameters chosen
in the figure, the central Gaussian has a standard deviation of
18.2°, which is only 12% more than the standard deviation
2tanfgn = 16.2° of the single-reflection distribution as
obtained from (63). About 5.8% of the total reflected intensity
belongs to the non-Gaussian tails.

Fig. 13 shows the polar angle distribution as a function of
& = 0 — 0. After the first Bragg reflection, £ must be negative
[equation (64)]. It takes several reflections for this asymmetry
to average out. For n > 10, the 6 distribution approaches a
Gaussian with width as expected from (71). There is no simple
functional approximation to the highly asymmetric total
intensity distribution.

6. Conclusion

We have studied multiple Bragg reflection in a mosaic crystal.
Following Darwin (1922), the mosaic is modelled as an
assembly of randomly oriented thin perfect crystalline blocks.
Past studies of radiation propagation in such a mosaic were
based on the Darwin—-Hamilton equations, which assume that
wavevectors are confined to the scattering plane. To overcome
this uncontrolled approximation, we have derived and solved
generalized Darwin—Hamilton equations that include out-of-
plane scattering.

N T
10725« total sn= 4
F an=0 n=5
sl o n=1 (- n= 7
= 107F s n=2 v n=10
o} F vn=3
E L
—4 |
10
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-180 -90 0 90 180
9 (°)

Figure 12

Azimuth angle distribution of reflected radiation and partial distributions
by reflection order n for 6, = 0 = 80°, V,d = 16, o/v = 0.1. Solid lines
show the analytical approximation (82).
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Figure 13

Polar angle distribution of reflected radiation, and partial distributions by
reflection order n for the same parameters as in Fig. 12. Solid lines show a
Gaussian with standard deviation 1.13° as expected for the limit n — oo

7).

We studied a wide range of Bragg angles and incoming
angles, excluding only the special cases of grazing incidence
near backscattering. Since several effects of out-of-plane
scattering go with tan6y [(37), (63) and (66)], we mostly
concentrated on a rather large Bragg angle of 80°. However,
since the wavevector declination is k,/k = cosfsing, the
denominator cosine in tan6y cancels, so that there is no
physical singularity for 6; — 90°.

In a zeroth approximation, one can combine reflectivities
from Sears’ (Sears, 1997) solution of the Darwin—Hamilton
equations with the orientational distribution from single
scattering, as Hennig et al. (2011) have done implicitly. In a
first approximation, multiple reflection can be taken into
account by combining the intensity per reflection order (73)
with a random-walk description of the azimuth angle evolu-
tion (61). This matches the simulated distribution almost
perfectly (Fig. 12). However, since no analytic approximation
has been obtained for the highly asymmetric polar angle
distribution (Fig. 13), Monte Carlo simulations remain indis-
pensable.

The asymmetry of the 6 distribution causes rocking curves
to be shifted and skewed (Fig. 10). Of all results, this shift of
the rocking curves is the most likely to admit experimental
verification. In contrast, the tails of the ¢ distribution, though

looking spectacular in a log plot (Fig. 12), would not provide a
convincing proof of multiple-reflection effects: they could also
result from non-Gaussian tails of the actual crystalline block
orientation distribution. In reality, both effects probably
combine. The right conclusion from Fig. 12 is therefore: To
derive block orientation distributions from measured rocking
curves, either use a very thin crystal sample or correct for
multiple reflection.
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