Development of corrosion protection layers for current collectors

Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung IEK-1, Jülich, Germany

Introduction: The first approaches of lithium ion batteries with simultaneous lithium and anion intercalation are based on commercial electrolytes consisting of organic solvents and a dissolved Li-salt. These solvents have a limited electrochemical and thermal stability. Therefore in the new dual-ion cell these solvents are replaced by ionic liquids, which are compatible with higher cell voltages. But some anions are corrosive to the aluminum current collector at potentials above 5 V. The approach of depositing an electronically conductive protection layer made of metal oxides is presented in this work.

Corrosion of current collector:
- aluminum oxide layer is locally removed
- Pit corrosion triggered by fluorinated anions like TFSI: bis(trifluoromethylsulfonyl)imide

Approach:
- Deposition of thin ceramic layers on aluminum foil by sol-gel method (dip- or spin-coating) and subsequent heat treatment or PVD (reactive sputtering)
- Materials: electronically conductive metal oxides, e.g. CGO, ZnO:Al

Figure 1: Aluminum working electrode in 1 M LiTFSI/PMPyr-FSI electrolyte (a) cyclic voltammetry, 10 mV/s; (b) FE-SEM after CV; from Cho, E. et al., Electrochem. Comm., 2012, 22, 1-3.

Characterization:
- Laser ellipsometry for film thickness
- SEM and XRD for layer structure

Figure 4: CV of ZnO:Al layer on aluminum foil. The low and decreasing current density indicates a suppressed corrosion. Data from P. Meister, MEET Battery research center.

Conclusion and Outlook:
- Diverse mixed/doped oxides were synthesized and thin homogenous films were deposited on aluminum foil.
- Protection layers were characterized regarding their structure, firstly on silicon wafers.
- Samples of ZnO:Al films showed a promising electrochemical performance in CV tests.
- New materials with different compositions will be deposited and tested.
- The coating procedure will be improved referring to the layer’s densification.

Acknowledgements: Financial support by the BMBF project “Insider” (no. DB001089) is gratefully acknowledged.