
FORSCHUNGSZENTRUM JÜLICH GmbH
Jülich Supercomputing Centre

D-52425 Jülich, Tel. (02461) 61-6402

Technical Report

Jülich Blue Gene/P
Extreme Scaling Workshop 2011

Bernd Mohr, Wolfgang Frings (Eds.)

FZJ-JSC-IB-2011-02

April 2011

(last change: 08-Apr-2011)

Jülich Blue Gene/P Extreme Scaling Workshop

2011

Bernd Mohr and Wolfgang Frings
Jülich Supercomputing Centre

Executive Summary

From February 14 to 16, JSC organized the 2011 edition of its Blue Gene Ex-
treme Scaling Workshop. Similar to the previous workshops in 2009[1] and
2010[2], the main focus were application codes able to scale-up during the work-
shop to the full Blue Gene/P system JUGENE which consists of 72 racks with
a total of 294,912 cores – still the highest number of cores worldwide available
in a single system.

Interested application teams had to submit short proposals which were evalu-
ated with respect to the required extreme scaling, application-related constraints
which had to be fulfilled by the JUGENE software infrastructure and the sci-
entific impact that the codes could produce. The process was very competitive:
Only 8 out of the submitted 15 high-quality proposals were selected1:

• Improving Octopus Towards the new Generation of HPC Systems
J. Alberdi, X. Andrade, A. Arruabarrena, J. Muguerza, A. Rubio
University of the Basque Country, Spain and Harvard University, USA

• Extreme Scaling of Brain Simulations
S. Benjaminsson, A. Lansner
Royal Institute of Technology, Sweden

• Global Gyrokinetic PIC Simulations of Plasma Microturbulence
at Extreme Scale with the GTC-P Code
S. Ethier, W.M. Tang
Princeton Plasma Physics Laboratory, USA

• Billions-Body Molecular Dynamics at Extreme Scaling
A. Fratalocchi, N. Allsopp
King Abdullah University of Science and Technology (KAUST),
Saudi Arabia

• Lattice-Boltzmann Methods in Fluid Dynamics:
Turbulence and Complex Colloidal Fluids
D. Groen, O. Henrich, F. Janoschek, P. Coveney, J. Harting
University College London, UK and
Eindhoven University of Technology, The Netherlands and
University of Stuttgart, Germany

1Participants to the workshop marked in bold

1

• Scalability Test of µϕ and the Parallel Algebraic Multigrid solver
of DUNE-ISTL
O. Ippisch, M. Blatt
Heidelberg University, Germany

• Scaling of Eigenvalue Solver Dominated Simulations
R. Johanni, A. Marek, H. Lederer, V. Blum
Rechenzentrum der Max-Planck Gesellschaft, Garching and
Fritz-Haber Institut, Berlin, Germany

• Parallel Simulations of Quantum and Frustration Effects in
Molecular-based Nanomagnets
M. Antkowiak, L. Kucharski, P. Koz lowski, R. Matysiak, G. Kamieniarz
Adam Mickiewicz University, Poznań and
University of Zielona Góra, Poland

During the workshop, the teams were supported by JSC parallel application
experts, the JUGENE system administrators and two IBM MPI and compiler
experts; however, the participants shared a lot of expertise and knowledge, too.
The workshop was extremely successful: the 8 teams succeeded in submitting
one or more successful full 72-rack jobs for 11(!) different applications during
the course of the workshop as some teams experimented with more than one
code. A total of 308 jobs were launched using 122 rack days of the total 157
rack days reserved for the workshop.

Achieved Results

The following chapters give an account on more detailed execution and scaling
results achieved by the application codes during the workshop provided by the
participants themselves.

Acknowledgements

We would like to thank IBM Germany for their support of the workshop.

References

[1] Bernd Mohr, Wolfgang Frings, Jülich Blue Gene/P Extreme Scaling Work-
shop 2009, Technical Report FZJ-JSC-IB-2010-02, Forschungszentrum
Jülich, February 2010.
http://www2.fz-juelich.de/jsc/docs/autoren2010/mohr1

[2] Bernd Mohr, Wolfgang Frings, Jülich Blue Gene/P Extreme Scaling Work-
shop 2010, Technical Report FZJ-JSC-IB-2010-03, Forschungszentrum
Jülich, May 2010.
http://www2.fz-juelich.de/jsc/docs/autoren2010/mohr2

2

Improving Octopus Towards the new Generation

of HPC Systems

Joseba Alberdi Rodriguez, University of the Basque Country
Xavier Andrade, Harvard University

Agustin Arruabarrena, University of the Basque Country
Javier Muguerza, University of the Basque Country

Angel Rubio, University of the Basque Country

Description of the Code

Due to its importance as the main source of energy for biological systems, the
photosynthetic process carried out by plants and some bacteria has been ex-
tensively studied. It is a complex process that involves biological, chemical
and physical phenomena. From a molecular point of view, the basic units for
light absorption are chlorophyll molecules. These molecules, combined with
other chromophores and proteins, form the different complexes that take part
in photosynthetic processes. The large size of these molecules, of the order of
thousands or tens of thousand of atoms, makes them very challenging to model
computationally. However there are some details of the process that can only
be elucidated by performing first principle simulations of the excited states of
these systems [1].

The tool we used for such simulation is the Octopus code [2], a scientific
software package based on the numerical implementation of the time-dependent
density functional theory (TDDFT) [3]. This theory allows us to study from
first principles the excited states properties of large electronic systems. As a
test system we are focusing on the active part of a light harvesting complex of
Spinach, Figure 1(a). The full molecule contains 5879 atoms, but we can also
simulate portions of it that contain less atoms. Octopus applies a multilevel
parallelisation, using MPI for message-passing among nodes, and OpenMP for
intra-node (core) shared memory parallel computation, see Figure 1(b). Also
some specific parts are written in vectorial code to take advantage of the Blue
Gene dual FPU, x86 SSE/AVX instructions, or GPUs using OpenCL.

Octopus has been used in HPC centres all over Europe and it is routinely
used for calculations in parallel systems. From experience we have seen that the
scaling of the code is promising enough to use the whole Jugene machine.

Results

During the workshop, we performed runs simulating the absorption of light by
large molecular systems using the Octopus code. We were able to run without
problems in the whole machine, which we consider already as an achievement for

3

(a) Light harvesting complex of Spinach

Vectorization
OpenMP threads OpenCL tasks

Kohn­Sham states
Real­space domains

K­points / Spin
Task parallelisation

MP
I

CPU GPU

IN
NO

DE

(b) Parallelisation strategy

Figure 1:

a complicated software package of almost 200 thousand code lines and multilevel
parallelisation based on task and data distribution, using also HPC libraries. We
ran in SMP mode using a combined MPI and OpenMP parallelisation.

As mentioned before, this was the first time that we have used such a big
atomic system with Octopus. This was possible because in the preparation we
were able to overcome the memory limitation problem by using the ScaLAPACK
library for some dense linear algebra operations.

For this event, there was also a successful implementation of execution
pipelining, that we call task-parallelisation. Our main bottleneck, with a huge
number of processors, is the solution of the Poisson equation which originally
had to be done by all the processors. Now, we are able to solve the Poisson
equation on a subset of processors, allowing us to perform other operations by
the rest of the processors at the same time.

The task-parallelisation technique gives us a performance improvement of
around 22%, for the system of 2676 atoms using 8192 processors. In a first
execution, without the task-parallelisation, the time execution per iteration was
of in 6.6 seconds. In a second execution, with task-parallelisation, the execution
needed a time of 5.13 seconds per iteration, thus, a 78% of the time of the
first execution. A similar behaviour can be seen in the Figure 2(b) for the
bigger system of 5879 atoms. The execution of the system of 5879 atoms in
16K processors was performed without this improvement and we could see that
the next execution, with task-parallelisation, in 32K processors was twice as
good. Supposing a linear scaling of the general code, the improvement of the
task-parallelism was again around 22%.

With 32K processors and the 5879 atoms system we managed to achieve a
time of 3.7 seconds per iteration (Figure 2(b)), which means we could obtain an
absorption spectrum in less than 12 hours of computational time. This level of
performance makes it possible to obtain scientifically relevant results for these
large systems.

The throughput for this run is of at least 11.0 Teraflops which represents a
parallel efficiency of at least 25%. With 72 racks, however, scalability was quite
poor, the time per iteration increased up to 15 seconds. This slowing down can
be explained by the parameter adjustment required by the task-parallelisation,
that we have implemented recently and still needs to be improved.

4

Ti

m
e

(s
)

1

2

3

4

5

6

7

Processors
4,096 8,192 16,384

Real
Ideal

(a) 2676 atoms.

Ti
m

e
(s

)

2
4
6
8

10
12
14
16
18
20

Processors
16,384 32,768 65,536

Real
Ideal

(b) 5879 atoms.

Figure 2: Execution time per iteration for a different number of processors with
different system sizes. The ideal line is obtained by assuming a linear scaling
starting from the calculation with less processors.

There are other alternatives we are exploring to improve the parallelisation
of the Poisson solution by using more efficient parallel solvers based on parallel
libraries. The most promising approach is based on the FMM library [4], devel-
oped at the JSC, that has a very good parallel scaling. Our previous execution
suggested us a parallelisation improvement with a huge number of processors.
Although the execution time in a few nodes is greater than with the standard
Octopus solver (ISF) [5], Figure 3(a), the trend is that the FMM will continue
having good a speed-up, while the ISF will suffer from certain slowing down. As
a result, using the FMM will overcome the bottleneck of the Poisson equation
and Octopus will run more efficiently. Unfortunately, due to execution problems,
that have now been solved, we could not test the solver during the workshop.
Another alternative as an efficient parallel Poisson solver is the PFFT library [6],
which is currently under development.

Ti
m

e
(s

)

0

5

10

15

20

25

30

35

Processors
16 32 64 128 256

FMM
ISF

(a) Solution time.

Sp
ee

d-
up

1

10

Processors
16 32 64 128 256

FMM
ISF
Ideal

(b) Speed-up.

Figure 3: Comparison of parallel performance for the FMM and ISF Poisson
solvers for a system with 180 atoms.

Conclusion

The tests done in Jugene were our first opportunity to simulate large systems
such as full biological molecules. This type of simulations have a direct impli-

5

cation in our understanding of photo-induced processes in biological systems.
Indeed, for the first time in this workshop, we have been able to run molecules
with 2676 and 5879 atoms (whole chlorophyll molecule), that we could not run
before. In fact, the simulations from first principles of the excited states of a
molecule of thousands of atoms pushes the limit on what can be done by the
scientific community.

Acknowledgements

We would like to thank the organisers of the workshop for giving us the op-
portunity to visit the Jülich Supercomputing Centre, as well as interact and
discuss with its scientists and run our code in one of the fastest supercomputers
in the world. We think that the JSC scaling workshop is an excellent initiative
that allows scientists to become closer to the supercomputing community. We
also would like to thank IBM for the opportunity to interact with their HPC
experts.

We acknowledge funding by the Spanish MEC (FIS2007-65702-C02-01 and
FIS2010-21282-C02-01), ACI-promociona project (ACI2009-1036), the Basque
government grant “Grupos Consolidados UPV/EHU del Gobierno Vasco” (IT-
319-07), and the European Community through e-I3 ETSF project (Contract
No.211956). JA acknowledges support from a fellowship from the University
of the Basque Country UPV/EHU. XA acknowledges the US National Science
Foundation through the SOLAR (DMR-0934480) award.

References

[1] T. K. Ahn, T. J. Avenson, M. Ballottari, Y.-C. Cheng, K. K. Niyogi,
R. Bassi, and G. R. Fleming, “Architecture of a charge-transfer state reg-
ulating light harvesting in a plant antenna protein,” SCIENCE, vol. 320,
no. 5877, pp. 794–797, 2008.

[2] A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen,
M. A. Marques, E. Gross, and A. Rubio, “Octopus: a tool for the applica-
tion of time-dependent density functional theory,” Physica Status Solidi B
Basic Research, vol. 243, pp. 2465–2488, Apr. 2006.
http://www.tddft.org/programs/octopus/

[3] E. Runge and E. K. U. Gross, “Density-functional theory for time-
dependent systems,” vol. 52, pp. 997–1000, 1984.

[4] I. Kabadshow, “The Fast Multipole Method-Alternative Gradient Algo-
rithm and Parallelization,” Report Nr.: Berichte des Forschungszentrums
Jülich JUEL-4215, p. 83, 2006.

[5] L. Genovese, T. Deutsch, A. Neelov, S. Goedecker, and G. Beylkin, “Ef-
ficient solution of poisson’s equation with free boundary conditions,” The
Journal of Chemical Physics, vol. 125, no. 7, p. 074105, 2006.

[6] M. Pippig, “An Efficient and Flexible Parallel FFT Implementation Based
on FFTW,” 2011.

6

Extreme Scaling of Brain Simulations

Simon Benjaminsson and Anders Lansner

Department of Computational Biology

Royal Institute of Technology, Stockholm, Sweden

Description of the Code

Here we are investigating scaling of large-scale neural simulations using an ex-
perimental neural simulator (ANSCore) and an experimental code simulating a
model of the neocortical network of the brain (BrainCore).

ANSCore is a newly developed large-scale neural network simulator, used as
a base for a number of ongoing projects. These include models of the mammalian
olfactory system and for use as the information processing engine in artificial
olfactory systems based on polymer sensors. Parts of it have also been used for
large-scale data analysis [1]. All network communication is performed using MPI
collective functions. Abstract neural network operations, such as winner-take-
all functions across populations of neural units, are implemented using MPI
collective functions and MPI communicators for these specific network parts.
This is also used to integrate analysis algorithms of the network dynamics in
a scalable parallel fashion, reducing the need to store vast amounts of neural
activity for separate post-processing analysis.

BrainCore is an experimental code which simulates an abstract Poisson spik-
ing model of the global neocortical network of the brain. It is designed to obey
what is known in terms of the overall structure of the long-range cortico-cortical
connections. As in the brain at large, this connectivity is very sparse – the con-
nection matrix is filled to a fraction of about 10−6. All connections are trainable
using the BCPNN learning rule [2] and network units are adapting. The brain
process we are modeling is cortical associative memory in the form of a recur-
rent attractor memory. The aim is to design a modular network architecture
that can run in real time and scale to arbitrary machine sizes, i.e. that demon-
strates perfect weak scaling. Real time is here defined as learning and recall of
one pattern, and an inner loop execution time of less than 1 millisecond. The
modules, so called ”hypercolumns” or ”macrocolumns” will fit on one process
and the memory and computing demands will be fixed by design. This means
that network connectivity becomes increasingly sparse as the network size in-
creases. Also, the number of in- and outgoing spikes is constant for a module.
The main performance measure is the loop time which should remain at below
one millisecond regardless of the number of cores.

7

Results

Figure 1 displays scaling behavior of a network simulation using ANSCore com-
prising 65.5 million neural units and 393.2 billion connections. The model tests
the core components of the simulator by associative storage and retrieval of a
set of input patterns in a randomly and sparsely connected recurrent network.
The timing can be broken up in each individual component, displaying behav-
ior as the simulation is scaled up. As the number of processes increases for the
simulated model with a fixed network size, the fraction spent on communica-
tion compared to computation starts to become large, which is responsible for
the slight deviation from linear scaling. Analysis of the network dynamics is
performed by checking the closeness of the network state to memories stored in
the network in each time step. Runs over the full 72 rack system were also suc-
cessfully performed, as well as smaller networks using lower number of processes
with a lower baseline than 64K processes.

BrainCore was tested up to 32K processes already in advance of the work-
shop. The aim of the workshop efforts was to show that the design goals of
perfect weak scaling could be achieved on the most parallel machine in the
world, JUGENE. The memory performance was tested just by during testing
stimulating all hypercolumns except the last one. Then it was checked that the
activity was correctly filled in for that hypercolumn. We stored only a hundred
random patterns (with 1% activity) so the task was fairly simple. It was solved
perfectly in all reported cases. The network was run in virtual node mode. We
managed to demonstrate weak scaling performance for several large runs, the
largest running on the full machine, i.e. 72 racks with 294912 cores in total.
This amounts to more than 29 million spiking units connected by about 295 bil-
lion trainable connections. Point-to-point communication was used. The loop
time of the inner loop leveled off just a little above 1 millisecond which implies
real time performance (Figure 2). We also recorded the number of spikes sent
and received for a module during operation. This number was close to 47750
for 200 sec run for all our runs. This means that for the largest run more than
14 billion spikes were communicated, which amounts to about 70 million spikes
per second. Due to the network implementation, this corresponds to 100 times
more spikes on a unit-to-unit basis. Since one spike message contains only an
MPI INT this is a very small fraction of the maximum network bandwidth.

We further had the intension to compare scaling performance using collec-
tive communication with the initially developed point-to-point implementation.
Due to time constraints this was not achieved. It also remains to optimize the
code using a profiler to get a more precise idea of performance bottlenecks and
potential for optimization. We also intend to make the network model somewhat
more complete so that we can run some serious associative memory tests with
it. Additional runs will continue within the DEISA framework within which we
have CPU time on JUGENE.

Conclusion

We have successfully scaled up two experimental codes aimed at large-scale
neural simulations to the full system scale of JUGENE. Scaling of core compo-
nents for building a variety of neural models was featured in ANSCore. There

8

65,536 131,072 262,144
1

2

3

4

S
p

e
e

d
u

p

Processes

Memory storage and retrieval simulation

linear

6.6x10
7
 minicolumns, 3.9x10

11
 synapses

65,536 131,072 262,144
0

10

20

30

40

50

60

%
 T

im
e

 s
p

e
n

t
Processes

Fraction time spent in parts of simulation

Building network

Plasticity

MPI Communication

Simulating neural units

Population operations (WTA)

Analysis

Figure 1: Scaling of a memory task of a network comprising 65.5 million neural
units and 393.2 billion connections. Left shows speedup and right displays a
division of where the time is spent in the simulation.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.2

0.4

0.6

0.8

1

x 10
−3 BrainCore weak scaling

Number of processes

Ite
ra

tio
n

lo
op

 ti
m

e
(m

s)

Figure 2: Time spent in BrainCore inner loop. The leveling off around 1 mil-
lisecond implies real time performance of simulation compared to a real brain.

9

communication was handled by MPI collective calls while the BrainCore model
featured a large homogenous single network and a straight-forward application
in terms of associative memory using point-to-point communication. The re-
sults achieved open up for simulation of neural models of sizes comparable to
real mammalian nervous systems with a much higher complexity than so far
attempted. We will be able to handle spiking communication in models of the
neocortical network as these scales up to sizes of real mammalian brains. Fur-
thermore, our study paves the way for use of extremely scalable brain network
models for information processing of data obtained with e.g. large-scale sensor
arrays. The knowledge gained can also we used to investigate the design of
dedicated hardware.

Acknowledgements

The authors would like to thank Bernd Mohr and the Juelich team for the
organization of the workshop. Also, the DEISA consortium is acknowledged for
the provision of compute time and support.

References

[1] Benjaminsson S., Fransson P. and Lansner A. (2010): A novel model-free
data analysis technique based on clustering in a mutual information space:
application to resting-state fmri. Front. Syst Neurosci.: 4, 1-8

[2] Sandberg A., Lansner A., Petersson K.-M. and Ekeberg . (2002): Bayesian
attractor networks with incremental learning. Network: Computation in
Neural Systems: 13(2), 179-194.

10

Global Gyrokinetic PIC Simulations of Plasma

Microturbulence at Extreme Scale with the

GTC-P Code

Stéphane Ethier and William M. Tang
Princeton Plasma Physics Laboratory

Description of the Code

The Gyrokinetic Toroidal Code (GTC) is a 3D particle-in-cell (PIC) code de-
veloped at the Princeton Plasma Physics Laboratory for the study of turbu-
lent transport in magnetic confinement fusion devices called tokamaks [1]. The
non-linear gyrophase-averaged Vlasov-Maxwell system of equations is solved in
global toroidal geometry by following the trajectories of charged particles along
the characteristics in 5D phase space + time (Lagrangian scheme, ODE equa-
tions). The particles interact with each other via a self-consistently generated
field evaluated on a grid by solving the Poisson equation (PDE). Figure 1 shows
a volume rendering of the electrostatic potential in a typical GTC simulation
(curtesy of Chad Jones, UC Davis).

GTC consists of about 10,000 lines of Fortran 90 and some C. The Mes-
sage Passing Interface (MPI) library is used for communication between the
processes. The use of magnetic coordinates allows us to use a second-order
Runge-Kutta method to advance in time since the lowest order trajectory of
a particle in such coordinates is a straight line. The charge of each particle
is deposited on a grid and the gyrokinetic-Poisson equation is solved using a
non-spectral solver. Apart from being very fast, the non-spectral nature of this
solver allows it to completely avoid the very expensive ALL-TO-ALL commu-
nications of the widely used FFT-based solvers. On Blue Gene/P, calls to the
vectorized library MASSV have been added to take advantage of the double
floating-point unit on the BG/P core. Process placement has also shown to
improve the performance of production runs by up to 30% [2].

It is worth noting that two versions of the GTC code were exercised on
Jugene. The ”classic” version, which has been widely used for both produc-
tion and benchmarking runs, and the newer GTC-P version, which includes
an improved solver and 2D domain decomposition. Both versions implement
an MPI-based toroidal domain decomposition and OpenMP-based loop-level
shared memory parallelism. However, while the classic GTC further separate
the particles within each toroidal domain using MPI, GTC-P implements a full
radial domain decomposition that distributes both particles and grid points.
This allows GTC-P to simulate much larger tokamak devices than the classic
GTC for the same amount of memory [3]. This is especially important for a

11

Figure 1: An illustration of the turbulent electrostatic potential self-consistently
generated by the charged particles in a GTC simulation.

platform such as Blue Gene where the memory per node is small compared to
other systems. GTC-P also includes a fully parallel solver implemented with
the PETSc library (www.mcs.anl.gov/petsc). This permits us to easily switch
solvers depending on the physics being studied.

Results

What worked:

• 72-rack GTC run in VN mode for a small tokamak (2 million grid points,
95 billion particles)

• 32-rack GTC-P run in VN mode for a tokamak larger than ITER (525
million grid points, 52.5 billion particles)

What did not work

• 72 and 32-rack GTC-P runs in SMP mode for mixed-mode MPI+OpenMP
using the 32-rack case or larger.

• 72-rack GTC-P runs in VN mode using the 32-rack case and a propor-
tionally scaled case.

Our goal for the workshop was to run our latest production version of the
Gyrokinetic Toroidal Code, GTC-P, which includes a 2D domain decomposition
that has been very successful on the Blue Gene system and has allowed us to
carry out very large simulations with little memory per MPI process. This latest
version, however, makes heavy use of the PETSc library and we ran into prob-
lems while trying to push the code to the full 72-rack JUGENE system. GTC-P
easily scales to 32 racks on the INTREPID BG/P at the Argonne Leadership
Class Facility (ALCF) in the US, where production runs are routinely carried
out on 8 racks with this version. The production runs and scaling tests are
normally done in virtual node mode (VN) with only MPI although GTC-P, and

12

the classic GTC as well, can be run in mixed-mode MPI+OpenMP, where the
OpenMP is implemented at the loop-level. The idea was to compare test runs
for both with and without OpenMP to see if OpenMP gives an advantage at
large scale. Unfortunately, the only mixed-mode SMP test that worked was the
2-rack case that already ran successfully during preparation for this workshop.
I tried to run a 32-rack test case in SMP mode with 4 OpenMP threads, which
is essentially a weakly scaled version of the 2-rack case, but the code crashed
early on when preparing the matrix for the PETSc solver. I did not have a
chance to rerun this case with the debug version of PETSc so I did not get any
useful error messages back from PETSc itself. I also tried a 72-rack run with
the same test case so that the memory footprint would be even smaller but it
also crashed with little useful information.

I then switched to MPI-only tests in VN mode. On the first night of the
workshop I had tried a weakly-scaled version of my test case on 72 tacks. This
was an extremely large case, perhaps the largest ever attempted for this kind of
particle-in-cell simulation: 4.7 billion grid points with 470 billion particles. The
code failed with a segmentation violation, most probably due to the problem size
being too large. The particles have essentially perfect weak scaling but not the
grid. Because of the toroidal geometry of our system, it is practically impossible
to balance both the particles and the grid points for all the MPI processes with
the 2D domain decomposition. The 72-rack problem size probably tried to allo-
cate too much memory on some of the MPI processes. To make sure that it was
not due to a difference in the libraries between JUGENE and INTREPID I ran
the same 32-rack case that I normally run at ALCF. That case worked without
any issue. I then used that same case and ran it on 72 racks, performing strong
scaling to ensure that the case would not run out of memory. Unfortunately, it
failed with a segmentation violation inside PETSc but the accompanied message
was different from the previous one, indicating that the code did not run out of
memory, as expected, but something else produced the error. This will require
more investigation by trying to reproduce the same error at smaller scale.

After concluding that PETSc was most likely the cause of the failures, I
decided to switch to the classic GTC since it does not make use of the PETSc
library or any other external libraries. This version is now widely used for
benchmarking purposes although it was the main production version for many
years. NERSC, for example, has used it in its last two procurements of large
systems (Franklin and Hopper). The MPI parallelism in this version consists
of a 1D domain decomposition in the toroidal direction (long way around the
torus geometry of our simulation volume), and a particle distribution within
each toroidal domain. Each MPI process within a domain holds a fraction of
the particles but a full copy of the local grid, essentially 2 toroidal planes (1
real plane and 1 ghost plane). When simulating large tokamaks, such as ITER,
the copy of the local grid is too large to fit in the memory of the BG/P nodes.
Hence the test case for this version is a relatively small tokamak (2 million grid
points) but with a very large number of particles (95 billion). This test case ran
without problems on the full 72-rack JUGENE. The use of such a large number
of particles per grid point can be justified in the case of a simulation where the
particles represent the full distribution function in phase space as opposed to
only the perturbed part.

In light of these results, we believe that a full 3D domain decomposition will
probably be necessary in GTC as we move to exascale so that both particles

13

and grid get uniformly distributed. Alternatively, we will also explore a highly
multi-threaded algorithm that will keep a single plane per node depending on
the memory available.

References

[1] Z. Lin, T. Hahm, W. Lee, W. Tang, R. White, Turbulent transport reduction
by zonal flows: Massively parallel simulations, Science 281 (5384) (1998)
pp.1835–1837.

[2] S. Ethier, W. Tang, R. Walkup, L. Oliker, Large-scale gyrokinetic particle
simulation of microturbulence in magnetically confined fusion plasmas, IBM
Journal of Research and Development 52 (1-2) (2008) pp.105 –115.

[3] S. Ethier, M. Adams, J. Carter, and L. Oliker, Petascale Parallelization of
the Gyrokinetic Toroidal Code, in proceedings of VECPAR 2010 conference
on High Performance Computing for Computational Science, Berkeley, CA,
June 22–25, 2010 (http://vecpar.fe.up.pt/2010/papers/2.php).

14

Billions-Body Molecular Dynamics at Extreme

Scaling

Andrea Fratalocchi and Nicholas Allsopp
King Abdullah University of Science and Technology (KAUST)

Saudi Arabia

Description of the Code

Thanks to our Billions-Body Molecular Dynamics (BBMD) code, we will study
for the first time the behavior of large-size structured glasses characterized by
tens of Billions of particles. This will permit to answer long-standing questions
in the field of complex systems concerning the existence and the dynamics of
specific wave vibrations of structurally disordered systems like glasses.

The BBMD code is a highly optimized, parallel C++ MD code for Lennard-
Jones particles systems. To perform the time evolution of the system, forces
between particles have to be calculated and particle pairs whose distance is
below the cutoff range have to be found. For this task, we adopt an O(N)
linked-list method, with an inexclusive grid that allows more than one particle
to occupy a single cell. Newton’s third law is then applied in order to halve the
number of neighbors to be checked in the calculation of the forces.

The parallelization was implemented with the domain decomposition strat-
egy, also known as spatial decomposition, where the simulation box is divided
into sub-domains and each domain is assigned to each processor. The Mes-
sage Passing Interface (MPI) standard is then employed to handle all parallel
communications among processes. This type of parallelization has the advan-
tage to require only nearest-neighbor communications, with a few limited global
collective operations.

Results

The BBMD code was successfully run on all 72 racks of the Julich Supercom-
puting Centres Blue Gene/P system. The table below shows the strong scaling
results for 10 billion particles. The memory footprint is such the code was able
to run in VN mode, thus the scaling from 32786 cores (8 racks of BG/P) to
294912 cores (72 racks of BG/P) shows an efficiency of 89%.

The amount of communication to elapsed time can be seen to be less than
2% for 8 racks and only grows to 7% for 72 racks. This shows that utilizing
mainly nearest neighbour communication, with a very limited amount of global
communication, is very advantageous for extreme scaling.

15

Racks Comms Time Elapsed Time Memory % Ideal Scaling
8 242 17950 564

16 208 9296 300 97
32 167 4779 180 94
64 124 2484 143 90
72 136 2251 143 89

Table 1: Measurements using a fixed problem size of 10B (10.0 E+9) particles

Conclusion

The extreme scaling workshop was very helpful to us. It enabled the demon-
stration of the capability of the BBMD to scale further than had been achieved
previously. With a problem size of 10 billion particles the code was able to
achieve an excellent scaling of nearly 90% on 72 racks compared to 8 racks of
BG/P.

16

Lattice-Boltzmann Methods in Fluid Dynamics:

Turbulence and Complex Colloidal Fluids

Derek Groen, University College London

Oliver Henrich, University College London

Florian Janoschek, Eindhoven University of Technology

Peter Coveney, University College London

Jens Harting, Eindhoven University of Technology

and University of Stuttgart

Description of the Codes

Over the last years, the lattice Boltzmann method proved very successful in
modeling fluids in many different applications for science and engineering. Com-
pared to traditional Navier Stokes solvers, the method allows an easy implemen-
tation of complex boundary conditions and—due to the high degree of locality
of the algorithm—is well suited for the implementation on parallel supercom-
puters.

LB3D is a general purpose lattice Boltzmann implementation developed over
the last 12 years at three research institutes residing in the UK, Germany, and
the Netherlands. Among other applications, the code is used to study the rhe-
ology of ternary fluid mixtures [1] and blood flow under various conditions [2].
The main benchmark systems during the workshop are emulsions stabilized by
colloidal particles (Pickering emulsions) [3], for which a study of droplet size
distributions demands simulations of considerable spatial and temporal dimen-
sions.

HYPO4D is a four-dimensional extension to the existing lattice Boltzmann
implementation, which parallelizes in time as well as in space. The paralleliza-
tion in time aids us in identifying unstable periodic orbits (UPOs) in turbulent
flow. These UPOs provide a countable sequence of orbits and can therefore allow
us to characterize the structure and dynamics of the attractor of the system [4].
To accomplish this, we apply our solver with a novel spacetime variational al-
gorithm, which minimizes a candidate orbit to a UPO.

Results

First benchmarks of LB3D with additional timing functions performed during
the workshop showed that the coupling of suspended particles to the fluid in-
volved a subroutine that scaled linearly with the number of cores. Due to the
small pre-factor this was not recognized earlier. Another finding was that the
(serial) output of the Lagrangian particle trajectories would fail for large core
counts since it relied on point-to-point communication between every rank and

17

(a) (b)

Figure 1: Physical systems simulated by our codes. A plot with results from
our numerical 4D relaxation scheme is given in (a). Here the purple areas are
of special interest, as these regions contain UPO candidates. A snapshot of our
colloidal benchmark system: a Pickering emulsion (taken from [3]) is shown in
(b).

the root process instead of collective MPI calls. Turning off Lagrangian output,
we could still successfully run the code on 294912 cores for the first time and
produce parallel HDF5 output of velocity and density fields for a volume of
10242

× 1152 lattice sites containing two fluid components and 454508 colloidal
particles at a volume concentration of 20%.

In discussions, mainly with Pascal Vezolle (IBM), we learned that our code
could be optimized by better exploiting the network topology of JUGENE and
implementing a hierarchical output scheme for HDF5 data in which only part
of the tasks perform actual file IO. However, due to the limited time, it was not
possible for us to implement major optimizations at the workshop. Still, in the
following weeks, we enabled LB3D for manual matching of the physical geom-
etry of the problem to the hardware topology. This change is the main cause
for the improved speedup for a benchmark system of 10242

× 2048 lattice nodes
containing only one fluid species as shown in Figure 2(a). Further improvement
seems possible by integration of recent optimizations performed for HYPO4D.
Also the linear contribution to the computational cost of the particle-fluid cou-
pling was eliminated. The effect of both modifications together is visible in
Figure 2(b) comparing the speedup before and after the workshop for a system
of 10242

×2048 lattice sites carrying two fluid components and 4112895 colloidal
particles.

We also had the opportunity to test and diagnose a number of optimizations
which we recently inserted in the HYPO4D code. During the workshop we found
that the hand-written collective communication and File I/O operations posed
a barrier to perform diagnostics on the code for runs beyond 65536 cores and
to scale the code in general beyond 131072 cores. As a result, we spent a large
part of the workshop simplifying and rewriting these collectives. This effort
has been partially successful as we are now able to run across 131072 cores with
diagnostics enabled. Unlike previous version, the use of the collective operations
in the diagnostics no longer adversely affects the performance or stability of the
code. In addition, we eliminated some of the errors which prevented us from

18

 1

 2

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8 16 32 64 128 256

sp
ee

du
p

no
rm

al
iz

ed
 to

 1
02

4
co

re
s

number of cores [1024]

before
after
ideal

(a)

 1

 2

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8 16 32 64 128 256

sp
ee

du
p

no
rm

al
iz

ed
 to

 1
02

4
co

re
s

number of cores [1024]

before
after
ideal

(b)

Figure 2: Strong scaling of LB3D on JUGENE before and after the workshop.
(a) relates to a system with only one fluid component, (b) to one with two
fluid species and suspended particles similar as in Figure 1(b). The absolute
execution times for small core counts did not change significantly.

running across 262144 cores, and are in the process of diagnosing and resolving
several other issues which prevent the code from completing successfully at that
core count.

Converting the Lagrangian output of LB3D to collective operations cost
unexpectedly large effort: first, sending custom data types of zero lengths in
MPI gatherv() led to errors which were hard to identify since the MPI call
still pretended to have finished successfully. Secondly, MPI gatherv() proved
unacceptably slow. Using MPI allgatherv() instead, we could speedup the
communication by a factor of 77 on 131072 cores at the cost of allocating large
receive buffers for every task. In first tests, the new implementation successfully
wrote trajectories and full checkpoints for 435600 particles on 131072 cores.

Outlook

While all groups using LB3D profit from its increased efficiency the improvement
of the Lagrangian output is a crucial prerequisite for massively parallel produc-
tion runs. These will be employed soon for the study of Pickering emulsions.
The know-how obtained at the workshop is likely to foster further optimizations
in the future.

The knowledge acquired at the workshop also led to a number of revisions in
the HYPO4D code already, but we have planned a large number of additional
changes. First priority is to eliminate the remaining obstacles which prevent
us from running across 262114 cores. We also intend to implement the hierar-
chical file I/O solution described earlier in this report, and to optimize the 4D
relaxation scheme both for accuracy and performance.

19

 1

 2

 4

 8

 16

 32

 64

 128

 256

 1024 4096 16384 65536 262144

sp
ee

du
p

[r
el

at
iv

e
to

 5
12

 c
or

es
]

number of cores

HYPO4D (with diagnostics)
linear speedup

Figure 3: Weak scaling of HYPO4D on JUGENE

Acknowledgments

Besides support from the experts from JSC and IBM present at the workshop
we acknowledge fruitful discussions with our colleagues Luis Fazendeiro, Stefan
Frijters, Sebastian Schmieschek, and Florian Günther. Additional computing
resources on JUGENE were granted by PRACE (project pra036, PI F. Toschi).
Our visit was partially funded by the European MAPPER project (FP7:RI-
261507).

References

[1] R.S. Saksena and P.V. Coveney. Rheological response and dynamics of
the amphiphilic diamond phase from kinetic lattice-Boltzmann simulations.
Proc. R. Soc. A, 465:1977, 2009.

[2] F. Janoschek, F. Toschi, and J. Harting. Simplified particulate model for
coarse-grained hemodynamics simulations. Phys. Rev. E, 82:056710, 2010.

[3] F. Jansen and J. Harting. From bijels to pickering emulsions: a lattice
Boltzmann study. Phys. Rev. E, in press, 2011. arXiv:1004.4414.

[4] Ditza Auerbach, Predrag Cvitanović, Jean-Pierre Eckmann, Gemunu Gu-
naratne, and Itamar Procaccia. Exploring chaotic motion through periodic
orbits. Phys. Rev. Lett., 58:2387, 1987.

20

Scalability Test of µϕ and the Parallel Algebraic

Multigrid solver of DUNE-ISTL

Olaf Ippisch and Markus Blatt
Interdisciplinary Center for Scientific Computing

Heidelberg University, Germany

Description of the Code

Solution of Richards’ Equation with µϕ

Our objective was a scalability test of the application µϕ (MuPhi) to solve
Richards’ equation

∂θ(ψm, ~x)
∂t

− ∇ · {K(θ, ~x) · [∇ψm − ρwg~ez]}+ rw = 0, (1)

where ψm is the matrix potential, ρw the density of water, g gravitational accel-
eration, ~ez the unity vector in the vertical and rw a source sink term. θ(ψm, ~x)
is the volumetric water content and K(θ, ~x) is the hydraulic conductivity func-
tion. Both are highly nonlinear, spatially heterogeneous material functions of
ψm.

Richards’ equation is a second order partial differential equation (PDE) de-
scribing water flow in partially water saturated porous media. For time de-
pendent problems Richards’ equation is a non-linear (probably degenerated)
parabolic equation. For steady-state saturated porous media it is an elliptic
PDE (θ and K are then spatially variable constants).

Richards’ equation is solved using a cell-centred finite-volume scheme with
full up-winding in space and an implicit Euler scheme in time. Linearisation of
the nonlinear equations is done by an inexact Newton method with line search.

Algebraic Multigrid as Parallel Linear Solver

Most of the computation time is consumed by solving the sparse linear systems
arising in the Newton method. For this we use the biconjugate gradient sta-
bilized method [7] preconditioned by a massively parallel algebraic multigrid
solver based on aggregation [1].

We decompose the unknowns between the processes such that each unknown
is owned by exactly one process. Each process stores whole rows of the matrix
corresponding to unknowns owned by the process. Additionally each process
has to store all unknowns j with aij 6= 0 for an unknown i it owns. All rows
corresponding to rows not owned are set to ajj = 1 and aij = 0 for j 6= i. Note
that for the matrix-vector product we are able to compute the unknowns owned
by a process with a local matrix-vector product. For a more detailed description
see [2].

21

During the setup phase each process computes the aggregates for the un-
knowns it owns. After communicating this information it sets up the prolon-
gation and coarse level matrix locally. Once the number of unknowns is below
a given threshold we agglomerate the data onto fewer processes for a better
ratio between communication and computation time. As a side effect we thus
facilitate aggregation across process boundaries. The new data decomposition
is computed by ParMETIS [5] using the graph of the communication pattern for
the matrix-vector product. Unfortunately the parallel algorithm of ParMETIS
cannot handle our graph on the full machine. Therefore we have to use the
recursive bisection graph partitioning algorithm sequentially on one process.
This procedure is repeated on coarser levels until the whole linear system of the
coarsest level is stored on one process and is directly solved using SuperLU [3].
As a smoother we use hybrid Gauss-Seidel [9].

Test Cases

We formulated two test cases for a groundwater flow problem and for a (time de-
pendent) unsaturated flow problem, respectively. For the test cases the material
parameters were either

• homogeneous (thus for the groundwater flow problem the Laplace equation
was solved), scenario homog

• heterogeneous with a heterogeneity which was the same on each node,
scenario block

• heterogeneous with a structure which was much larger, scenario large

The heterogeneity was created as an equally weighted sum of two log-normal au-
tocorrelated Gaussian random fields with different correlation length (100 voxel
horizontally and 20 voxel vertically for the coarse scale and 2 voxel for the fine
scale). The random numbers were generated with the Quantim image process-
ing library[8] and had a mean of 0 and a variance of 1.5 for the groundwater
test case and 1.0 for the unsaturated test case.

The hydraulic parameters were scaled with the exponential of these values
according to the principle of Miller similarity[6]. A van Genuchten/Mualem
model was used for the basic curve with the parameters of a medium sand:

Parameter θs θr Ks n α τ
Value 0.34 0.0 40.0 cm/h 2.0 5.0 0.5

For the groundwater test case Dirichlet boundary conditions were used at the
west and east boundary imposing an average pressure gradient of 1 m/m. The
potential at the lower edge of the east boundary was set to the size of the domain
(thus the whole domain was water saturated). No-flow boundary conditions were
used at all other boundaries. Initial condition was a full-saturation at hydraulic
equilibrium. The size of one grid element was 0.1 m in all directions. We tested
weak scalability in each step doubling the size of the domain using 803 grid cells
per process resulting in 147 billion unknowns on 287’496 processes.

For the unsaturated test case no-flow boundary conditions were used at all
side boundaries, a constant potential of zero was given at the bottom and a
constant flux of 2 mm/h was applied at the top. Initial condition was hydraulic

22

 0

 100

 200

 300

 400

 500

 600

 700

 1 10 100 1000 10000 100000 1e+06

C
o

m
p

u
ta

ti
o

n
 T

im
e

 [
s
]

Processors [-]

Total Computation Time Groundwater Testcases (without IO)

homog block large

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 10 100 1000 10000 100000 1e+06

C
o

m
p

u
ta

ti
o

n
 T

im
e

 [
s
]

Processors [-]

Total Computation Time Richards Testcases (without IO)

homog block large

Figure 1: Total computation time without I/O for the different groundwater
(left) and unsaturated (right) test scenarios.

equilibrium with a potential of 0 cm at the bottom. The size of a grid element
was 0.01×0.01×0.01 m. One time step of one hour was simulated. In the weak
scalability test we used 64 × 64 × 128 grid cells per process. The domain was
only increased in the horizontal direction. Up to 294’849 processes were used.

Results

Besides performing simulations for the test cases we were able to speed up the
data output (by a factor of two) and to get rid of a long delay at the start of the
program resulting from dynamical linking of the system libraries. With static
linking the delay vanished completely.

The linear solver with an algebraic multigrid preconditioner has an expected
complexity of O(N logN), where N is the number of unknowns. The compu-
tation time (Figure 1) shows for the groundwater test case the expected linear
rise in a logarithmic plot of total computation time against the number of un-
knowns/processes. For the large scenario there is a non-linear increase in the
number of iterations needed at the beginning until the full structure (which was
periodic with a length of 10243) is resolved. Afterwards the computation time
rises again linear, but with a higher slope.

For the unsaturated test case the total computation time is even constant for
all scenarios as soon as the structure is fully resolved. This is a consequence of
the strict diagonal dominance of the matrix due to the additional time derivative
term.

In an analysis of the computation time per step of defect calculation, matrix
assembly, generation of the coarse grid hierarchy of the algebraic multigrid solver
(coarsening) and application of the linear solver, respectively, most components
of the code scale perfectly with a parallel efficiency close to one (Figure 2).
There is a decrease in the efficiency of the linear solver per step for the unsat-
urated laplace scenario. However, the iteration time for the laplace case is at
the beginning smaller than for all other scenarios. With increasing number of
processes/unknowns the iteration time approaches the time needed in the other
scenarios.

23

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

E
ff

ic
ie

n
c
y
 [

-]

Processors [-]

Efficiency Components Groundwater Testcases

defect homog
defect block
defect large

matrix homog
matrix block
matrix large

coarsening homog
coarsening block
coarsening large

solver homog
solver block
solver large

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

E
ff

ic
ie

n
c
y
 [

-]

Processors [-]

Efficiency Components Richards Testcases

defect homog
defect block
defect large

matrix homog
matrix block
matrix large

coarsening homog
coarsening block
coarsening large

solver homog
solver block
solver large

Figure 2: Efficiency per step of the different components of the code for the
groundwater (left) and unsaturated (right) test scenarios.

For the groundwater test case the remaining unknowns are redistributed to
fewer processes if the number of unknowns becomes too small. Finally on the
coarsest level the system was solved exactly with SuperLU on one processes. The
efficiency of this redistribution was difficult to achieve as ParMETIS could not
be run in parallel (see above) and thus a sequential complexity was introduced.
However, after an initial steep decrease it seems to scale perfectly well reaching
an efficiency of 25 per cent at 287.496 processes.

For the unsaturated test case the redistribution was not necessary. The
coarsening was performed as long as possible and the remaining linear equation
system was solved iteratively with a parallel BiCGStab solver. This resulted in
a much better efficiency of the coarsening but was only possible as the flow was
mainly vertical with little horizontal coupling and the unknowns in the vertical
direction were always completely on one process.

The reading of structures with as many points as the unknowns in the com-
putation (up to 150 billion) was performed with parallel HDF5 (only for the
block and large scenarios). For the block scenarios the structure was read se-
quentially by one process and broadcasted to the other processes, for the large
scenario each process read its own hyperslab. For the unsaturated large sce-
nario this took 1559 seconds, which is not really satisfying. The efficiency for
block scenarios was better (Figure 3). For the groundwater large scenario a pre-
partitioned structure data in the SIONlib [4] format was used which reduced
the time for structure input to 93 seconds.

Output was also written with the SIONlib library. The output time in-
creased strongly with the number of processes. However, this was also due to
the limited bandwidth of the I/O subsystem. For the unsaturated large scenario
with 294’849 cores for the output of the potential 2.3 Terrabyte were written in
123 seconds, which corresponds to 19 GB/s which is close to the system limit.
For the groundwater large scenario with 287’496 cores 8.8 Terrabyte of data
was written (additionally including the flux field, the RT0-coefficients of the
flux field and the volumetric water content) in 568 seconds (corresponding to
15 GB/s).

24

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06

IO
 T

im
e

 [
s
]

Processors [-]

IO Time Groundwater Testcases

hdf5 input block
sion input large

sion output large

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

IO
 T

im
e

 [
s
]

Processors [-]

IO Time Richards Testcases

hdf5 input block
hdf5 input large

sion output homog

sion output block
sion output large

Figure 3: Time for input of structures with and the output of the results for the
groundwater (left) and unsaturated (right) testcases. Please note the double-
logarithmic scaling.

Crucial for the good scalability of our model and solver are

• a domain decomposition resulting in a communication pattern, which re-
quires mostly local communications with few neighbour processes

• accumulation of communication so that only few large messages are sent
instead of many small ones

• the good scalability of the algebraic multigrid solver with the number of
unknowns

• the use of IO libraries really exploiting the features of the parallel file
system (GPFS)

A minor bottle neck remains the sequential computation of the new data
decomposition with ParMETIS as the parallel version needs too much memory.

Acknowledgements

We thank the Jülich Supercomputing Center for the possibility to take part in
the workshop. This enabled us to test our code on more processors than ever
and to discover and fix some scalability bottle necks.

References

[1] M. Blatt. A Parallel Algebraic Multigrid Method for Elliptic Problems with
Highly Discontinuous Coefficients. PhD thesis, Ruprecht–Karls–Universität
Heidelberg, 2010. http://www.ub.uni-heidelberg.de/archiv/10856/.

[2] M. Blatt and P. Bastian. On the generic parallelisation of iterative solvers
for the finite element method. Int. J. Comput. Sci. Engrg., 4(1):56–69,
2008.

25

[3] J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel
supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix
Anal. Appl., 20:915–952, July 1999.

[4] W. Frings. Sionlib: Scalable I/O library for parallel access to task-local
files. http://www2.fz-juelich.de/jsc/sionlib.

[5] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph parti-
tioning and sparse matrix ordering. J. Parallel Distrib. Comput., 48(1):71–
95, 1998.

[6] E. E. Miller and R. D. Miller. Physical theory for capillary flow phenomena.
J. Appl. Phys., 27:324–332, 1956.

[7] H. A. van der Vorst. BI-CGSTAB: a fast and smoothly converging variant
of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput., 13:631–644, March 1992.

[8] H.-J. Vogel. Quantim4, C/C++ library for scientific image processing.
http://www.quantim.ufz.de.

[9] U. M. Yang. On the use of relaxation parameters in hybrid smoothers.
Numer. Linear Algebra Appl., 11(2–3):155–172, 2004.

26

Scaling of Eigenvalue Solver Dominated

Simulations

Rainer Johanni, Andreas Marek and Hermann Lederer

Rechenzentrum der Max-Planck Gesellschaft, Garching

Volker Blum

Fritz-Haber Institut, Berlin

Description of the Code

FHI-aims, developed at the Fritz-Haber Institute, is an ”ab initio molecular
simulations package” (see http://www.fhi-berlin.mpg.de/aims/) which has
been designed to compute physical and chemical properties of molecules and
condensed matter from quantum-mechanical first principles. With numerically
tabulated atom-centered orbitals as the quantum mechanical basis set it employs
the density functional theory to calculate the electronic structure of the atoms.
This ansatz allows for calculating with moderate computational costs an accu-
rate all-electron/full-potential model without introducing approximations and
simplifications as e.g. pseudopotentials, see [1].

The calculation of molecules as well as periodic geometries (like metallic sur-
faces) with FHI-aims requires the computation of eigenvalues and eigenvectors.
For very large problems (e.g. of matrices of the size 67000 for a slab of 1000
platinum atoms) this can become computationally dominant, and also a parallel
scalability limitation of the FHI-aims package.

Driven by this bottleneck of FHI-aims a new eigensolver was developed
within the ELPA project (see [2] and http://elpa.rzg.mpg.de), which is de-
signed to achieve good scaling on several thousands cores. For details the reader
is referred to [2].

During the Bluegene/P scaling workshop we intended on the one hand to
evaluate the principal scaling capabilities of the isolated ELPA eigenvalue solver
for large sparse matrices as they are used in the simulations of biological and
technical networks. On the other hand we wanted to investigate the scalability
of the complete FHI-aims application with the ELPA eigenvalue solver incorpo-
rated on real scientific problems from material and life sciences.

Results

In the following we will describe the measurements done during the Bluegene/P
Scaling Workshop and the conclusions we draw from these experiments.

27

32k 64k 128k 295k
#cores

100

1000

tim
e

[s
]

band
kernel
total

Figure 1: The strong scaling of the isolated eigenvalue solver for a matrix of
size 260k. Shown are the total solver time (red), the time of the kernel (black),
and the time for transformation of a band matrix to tri-diagonal form (green).
The dashed lines give the theoretical perfect linear scaling. Note that the kernel
part scales perfectly. As a guideline the blue dashed-dotted line shows the limit
for a scaling of t ∝ 1/(1.6)n.

Eigenvalue solver in biological and technical networks

As already mentioned, we planned to investigate the principal scaling capabili-
ties of the newly developed eigenvalue solver. For this purpose we did not use
matrices as they are used in FHI-aims, but instead we used matrices from graph
theory: For the simulation of biological and technical networks based on graph
theory sparse matrices of size 1 million and larger will play a role. To be able
to measure strong scaling with at least four data points, the matrix size was
reduced to 260000, in order to fit into the memory of the Bluegene/P. This
fixed problem size was measured with 32k, 64k, 128k, 256k, and 294k cores (full
machine) and we obtained up to 0.3 Petaflop/s on the full Bluegene/P system.

Figure 1 displays the scaling of essential parts of the solver. The kernel
scales excellent up to the full machine, while the transformation from banded to
tri-diagonal form of the matrix does not improve, since the scalability limit for
this step is given by matrix size (here 260k) divided by the matrix bandwidth
(here 64) which is in this case 4000 cores. As a result the total solver scalability
is limited to tn+1 = tn/1.6.

Scalability of FHI-aims

Scalability of the full FHI-aims application was tested with real science cases
from biology and solid state physics: a polyalanine molecule with 200 atoms
(referred as Ala200) and a platinum surface with 1442 atoms in seven layers
(referred as Pt1442).

Both science cases need relatively little main memory and can thus already be
calculated on 1000cores (case Ala200) or 8000 cores (case Pt1442), respectively.

Small core numbers (up to 16k cores) were measured at the Bluegene/P of
RZG, Garching. The data points from 32k cores on during the workshop at FZJ.
All runs were done in ”virtual node mode”, since FHI-aims does not support
hybrid parallelization.

28

2k 8k 32k 128k 295k
#cores

10

100

1000
tim

e
[s

]

ELPA
FHI-AIMS (ELPA+transformation)
FHI-AIMS (grid)
FHI-AIMS (total)

8k 32k 128k 295k
#cores

100

1000

tim
e

[s
]

ELPA
FHI-AIMS (ELPA+transformation)
FHI-AIMS (grid)
FHI-AIMS (total)

a b

Figure 2: The scaling behaviour of the FHI-aims code for the total time (black),
the grid-based part (green), and the eigenvalue solver with the Cholesky trans-
formation (blue) for the computation of different setups (left and right panel).
The scaling behaviour of the ELPA solver (red lines) is also shown. a: The case
of the Ala200 setup. b: The case of the Pt1442 setup.

The participation in the workshop allowed us to identify some bottlenecks
in the initialization of the FHI-aims code which needed O(ncpus2) work and
showed up only when the number of employed cores exceeded more than 16000.
These bottlenecks could be corrected during the workshop and then we were
able to run all setups to the full machine size of 72 racks (i.e. 294912 cores),
although the runs on 72 racks cannot be taken seriously because of machine
problems. For the Ala200 as well the Pt1442 setup we could also obtain results
for the intermediate core numbers (16k, 32k, 64k, 128k). Unfortunately we were
able to obtain results on 256k cores for the Ala200 case only but not for the
Pt1442 setup due to an unexpected lack of machine availability.

The total cycle time of FHI-aims scales fairly well from 1k to 16k cores for
Ala200 and up to 128k cores for Pt1442. The eigenvalue solver behaves similarly,
its potential for larger matrices has already been demonstrated in Section . The
data points for 72 racks should be disregarded since these results can only be
explained with machine problems. For the Ala200 case execution time still
reduces from 128k to 256k cores, what we also have to assume for the Pt1442
case with much larger problem size.

Based on the timing results achieved during the workshop, the analysis of
the other parts of FHI-aims has started and the optimization potential is being
evaluated. This new level of the performance data of the FHI-aims code would
not have been possible without the participation at the workshop.

Conclusions

The scaling workshop has enabled us to demonstrate the scalability potential of
the newly developed ELPA eigenvalue solver both with the electron structure
code FHI-aims with biological and solid state science cases, as well as for very
large matrices needed for the simulation of biological and technical networks.

29

Acknowledgments

We thank the Jülich Supercomputing Center and IBM for hosting this project
during the Scaling Workshop and for their competent support. The ELPA
solver tested during the workshop was developed by support of the BMBF grant
01IH08007.

References

[1] Blum V., Gehrke R., Hanke F., Havu P., Havu V., Ren X., Reuter K. &
Scheffler, M.: “Ab initio molecular simulations with numeric atom-centered
orbitals”, Computer Physics Communications 180, page 2175-2196, (2009)

[2] Auckenthaler T., Blum V., Bungartz H.-J., Huckle T., Johanni R.,
Krämer L., Lang B., Lederer H. & Willems P. R.: “Parallel solution
of partial symmetric eigenvalue problems from electronic structure cal-
culations”, (preprint available at http://www.fhi-berlin.mpg.de/th/

publications/)

30

Parallel Simulations of Quantum and Frustration

Effects in Molecular-based Nanomagnets

MichaÃl Antkowiak, ÃLukasz Kucharski, Piotr KozÃlowski,

Grzegorz Kamieniarz

Adam Mickiewicz University, Poznań, Poland

Ryszard Matysiak

University of Zielona Góra, Poland

Description of the Code

Our code has been designed to calculate thermodynamic properties of spin rings
and chains, which can be modeled by an anisotropic quantum Heisenberg model.
In particular we use this code to simulate molecular nanomagnets. The ther-
modynamic quantities are calculated by means of Quantum Transfer Matrix
(QTM) method. Then the Transfer Matrix (TM) method is used to deal with
the resulting classical system [1, 2].

We use such a version of QTM, which does not require diagonalisation of
large matrices. The computation finally reduces to calculation of a number of
traces calculated by subsequent matrix vector multiplications. The problem is
expressed in such way that the parallelization is trivial. Each diagonal element
of the final matrix can be calculated separately. The communication takes place
only at the beginning and the end of the process. The only limiting factors to the
efficiency are maintaining even distribution of the work among the computing
cores and the size of the problem itself.

Size of the problem is the number N of elements to calculate and is defined
directly by the size of the matrix. It is determined by the number and the
type of atoms the simulated molecule consists of. The two application we have
tested calculated problems of sizes N = 411 for Application 1 and N = 126 for
Application 2. Of course such large matrices would not fit into memory limits
for Blue Gene/P systems. The memory footprint was reduced to acceptable
values by exploiting the sparseness of the matrices. In fact only a few vectors
of size N are needed to remember. Furthermore, using the same mechanisms
the computational complexity for calculating a single element was also reduced
from matrix-vector multiplications to vector-vector operations.

Results

We have performed a number of successful large scale runs and proven our initial
predictions that they will scale very well. Application 1 was tested thoroughly.
Runs were performed from 8 racks up to the full machine (details in Table 1).
One element of the matrix was calculated for a fixed time and the more cores

31

computed whole task, the less each had to calculate on its own. Given this
it is possible to theoretically predict speed up and efficiency as a function of
computing tasks. This was done for Application 1 and presented in Figure 1.
This application maintained perfect linear strong scalability when the work
distribution was optimal.

0 8 16 24 32 40 48 56 64 72
racks (1 rack = 4096 cores)

0

8

16

24

32

40

48

56

64

72

sp
ee

du
p

Application 2
Application 1
App 1 - prediction

0 256 512 768 1024
0

256

512

768

1024

0 8 16 24 32 40 48 56 64 72
racks (1 rack = 4096 cores)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ef
fi

ci
en

cy

Application 2
Application 1
App 1 - prediction

0 128 256 384 512 640 768 896 1024
0

0,2

0,4

0,6

0,8

1

Figure 1: Strong scaling plots for both applications. Theoretical prediction
made for Application 1 match the actual data very well. The insets picture the
expected values calculated up to 1024 racks (4 194 304 cores).

Since Application 2 is a younger piece of work, encouraged by the success of
Application 1 we had tried to compile Application 2 with performance measure-
ment mechanisms to obtain FLOPS data. The idea backfired due to technical
problems with running dynamically linked applications experienced on JUE-
GENE. The program failed 3 out of 5 runs. However, we managed to perform
two runs on 8 racks and the full machine. With the 8 racks as a reference point
the full machine run had efficiency of 86% cutting the total run time from 804s
to 104s. Both points are presented on the Figure 1. Because both applications
are based on the same mathematical framework we expected the same scaling

32

Racks Cores Elements/core Time [s]
8 32768 128 7428
16 65536 64 3713
32 131072 32 1857
64 262144 16 929
72 294912 14-15 870

Table 1: Total running time of Application 1 for different number of racks/cores.
In case of 72 racks the number of elements calculated by a single core could not
be distributed equally.

results qualitatively. The unexpectedly low result comes from the fact that we
did not pay enough attention to the even distribution of the work among the
cores. The largest amount of cores that divides 126 available on JUGENE is
248 832 which is exactly 60.75 racks.

Conclusions

We have proven that our codes can be scaled up to whole JUGENE. We can
maintain from very good to perfect strong scalability.

The theoretical predictions matched the actual running time for all calcu-
lated cases.

For the purpose of testing only the scalability we have simplified the physical
problem. To obtain real physical values the total running time would increase
up to hours. Clearly we could use several times more computing nodes.

Acknowledgments

A partial support from the MNiSW grant Nr 579138 is acknowledged.

References

[1] G. Kamieniarz et al., Inorganica Chimica Acta 361, 3690-3696 (2008)

[2] P. KozÃlowski et al., Polyhedron 28, 1852 (2009)

33

