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[1] Recent satellite observations and dynamical studies have demonstrated the existence of
filamentary structures in chemical tracer fields in the stratosphere. It is also evident that
such features are often below the spatial resolution of the highest-resolution Eulerianmodels
that have been used up to the present time. These observations have motivated the
development of a novel Chemical Lagranigan Model of the Stratosphere (CLaMS) that is
based on a Lagrangian transport of tracers. The description of CLaMS is divided into two
parts: Part 1 (this paper) concentrates on the Lagrangian dynamics, i.e., on the calculation of
trajectories and on a completely new mixing algorithm based on a dynamically adaptive
grid, while part 2 describes the chemical integration and initialization procedure. Themixing
of different air masses in CLaMS is driven by the large-scale horizontal flow deformation
and takes into account the mass exchange between the nearest neighbors determined by
Delaunay triangulation. Here we formulate an isentropic, i.e., two-dimensional version of
the model and verify the mixing algorithm using tracer distributions measured during the
space shuttle CRISTA-1 experiment where highly resolved stratospheric structures were
observed in early November 1994. A comparison of the measured Southern Hemispheric
N2O distribution with CLaMS results allows the intensity of simulated mixing to be
optimized. The long-term robustness of the transport scheme is investigated in a case study
of the 1996–1997 Northern Hemisphere polar vortex. This study further provides a
dynamical framework for investigations of chemical arctic ozone destruction discussed in
part 2. INDEX TERMS: 0341 Atmospheric Composition and Structure: Middle atmosphere—constituent

transport and chemistry (3334); 3334 Meteorology and Atmospheric Dynamics: Middle atmosphere dynamics

(0341, 0342); KEYWORDS: atmosphere, stratosphere, CLaMS, Lagrangian, tracers

1. Introduction

[2] This paper describes a novel Chemical Lagrangian
Model of the Stratosphere (CLaMS) based on a Lagrangian
tracer transport. This development has been motivated by
recent satellite observations [Riese et al., 1999], in situ
measurements [Tuck et al., 1989], and dynamical studies
based on such experiments [e.g., Waugh et al., 1997;
Balluch and Haynes, 1997] that have demonstrated the
existence of filamentary structures on a broad range of
spatial scales in stratospheric chemical tracer fields. The
nonlinearity of most chemical reactions implies that their
magnitude will depend on the degree of segregation inher-

ent in filamentary structures. Chemical transport models that
do not resolve filamentary structures explicitly or realisti-
cally represent their dissipation/mix-down will not simulate
nonlinear chemical reactions accurately but may either
overestimate or underestimate reaction rates [Edouard et
al., 1996; Searle et al., 1998a, 1998b; Tan et al., 1998].
[3] With a Lagrangian approach, one considers an ensem-

ble of air parcels (APs) following the fluid and, conse-
quently, forming a time-dependent irregular grid moving
with the fluid elements; by contrast, with a Eulerian
approach, one considers a fixed spatial grid through which
fluid elements move. An advantage of the Lagrangian
approach is the ability to resolve small-scale features, often
observed in stratospheric flows as elongated filaments.
Filaments form because of the stretching/differential advec-
tion of fluid elements in sheared flows with tracer gradients
[e.g., Orsolini et al., 1998]. They are often below the
resolution of the highest-resolution Eulerian models thus
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far employed. The reverse-domain-filling technique (RDF)
[Sutton et al., 1994] and the contour-advection-with-surgery
technique (CAS) [Norton, 1994] have shown some skill in
reconstructing tracer structures that are not resolved by
conventional meteorological analysis or coarse-resolution
models [Plumb et al., 1994; Waugh and Plumb, 1994;
Appenzeller et al., 1996].
[4] One of the shortcomings of a pure Lagrangian trans-

port is the lack of any explicit or implicit mixing between the
APs. Thus small (unmixed) structures arise in RDF studies
that are not observed even in high-resolution airborne
measurements. The ‘‘surgery’’ of the CAS technique over-
comes the buildup of small-scale structures by truncating the
simulated length scales [Dritschel, 1989]. However, neither
this first CAS study nor the subsequent applications of CAS
have explicitly considered the significance of the surgery as
a dissipative process. Additionally, with the RDF technique,
unrealistic clustering or dispersion of the advected APs is
found after sufficiently large integration times.
[5] The first attempts to simulate stratospheric chemistry

along multiple trajectories derived from stratospheric wind
analysis were reported by Austin et al. [1989]. As computer
power has increased with time, it has become possible to
simulate stratospheric photochemistry along progressively
greater numbers of trajectories [Lutman et al., 1994, 1997].
These techniques avoid the numerical diffusion across the
grid box boundaries that inevitably arise with Eulerian
schemes [Rood, 1987; Tan et al., 1998] but fail to introduce
any representation of mixing. More recently, there have been
attempts to include mixing and chemistry with multitrajec-
tory simulations. Collins et al. [1997] have implemented a
hybrid Lagrangian-Eulerian transport scheme that has a

parameterization of mixing, as all APs that are advected into
a given grid box are mixed together. Naturally, this gridding
step introduces numerical diffusion into all grid boxes where
more than one AP occurs. Pierce et al. [1999] have imple-
mented a stratospheric Lagrangian transport scheme with a
mixing parameterization based on the local flow properties
[Fairlie et al., 1999]. Although Fairlie et al. [1999] provide
an objective methodology for mixing APs, undesirable
properties near the polar vortex boundaries arise that require
an additional assumption that limits AP movement across the
polar vortex boundaries. Here we describe the CLaMS
Lagrangian transport scheme that avoids the limitations
and pitfalls outlined above and that allows the simulation
of stratospheric chemistry. On short timescales the APs
move on isentropic surfaces, as diabatic processes may be
neglected. For longer-term simulations, cross-isentropic
transport must be considered [e.g., Morris et al., 1995].
[6] CLaMS comprises three main modules and several

submodules (see Figure 1). The main modules are the
trajectory module and the mixing module, both described
in detail in this paper, and the chemistry module that
calculates the change of chemical composition of the APs
due to gas phase and heterogeneous chemistry, described by
McKenna et al. [2002], hereinafter referred to as part 2.
Additionally, three preprocessors are employed that process
the dynamic input data originating from meteorological data
sets, calculate diabatic ascent and descent rates, and initi-
alize the positions of the APs and their chemical composi-
tion (also described in part 2). We test the mixing algorithm
in an isentropic formulation, using tracer distributions
obtained from the CRISTA-1 satellite instrument [Offer-
mann et al., 1999] and check the robustness of the transport

Figure 1. Chemical Lagrangian Model of the Stratosphere (CLaMS) model scheme.
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in a long-term study of the 1996–1997 Northern Hemi-
sphere polar vortex. This study provides a dynamical
framework for the investigation of winter 1996–1997
Arctic ozone loss discussed in part 2.

2. Lagrangian Transport

2.1. Motivation

[7] Consider an idealized stratosphere with pure isen-
tropic flow and planetary and synoptic-scale disturbances
on a zonal flow. Furthermore, consider an idealized passive
tracer that has a strong meridional gradient but is zonally
symmetric. The action of the large-scale zonal flow will be
to move this distribution without disturbing the meridional
gradient. However, planetary and synoptic-scale disturban-
ces will typically deform the zonally symmetric distribution
[McIntyre and Palmer, 1983] and thereby create character-
istic elongated streamers/filaments [Orsolini, 1995] or cat’s
eyes [Ngan and Shepherd, 1999a, 1999b].
[8] Owing to the stable stratification of the stratosphere,

vertical turbulence is weak [e.g., Woodman and Rastogi,
1984], while the large-scale horizontal flow consists of an
irregular distribution of cyclonic and anticyclonic regions
that will give rise to the chaotic advection of tracers
[Lorenz, 1963]. Thus filaments tend to form two-dimen-
sional (2-D) fractal structures that dissipate by horizontal
scale collapse.
[9] This filamentation and scale collapse whereby fila-

ments become progressively longer and thinner will con-
tinue until either molecular diffusion or localized and
intermittent patches of small-scale turbulence destroy any
residual compositional structure. However, atmospheric
flow is not uniformly dissipative, so that scale collapse
only occurs intermittently in regions with variable shear
rates.
[10] Motivated by these properties of the stratospheric

flow, we describe in sections 2.2 and 2.3 an isentropic
Lagrangian transport scheme with the following properties:
(1) the ability to represent the scale collapse associated
with 2-D turbulent flow and (2) mixing rates that depend
on the evolving flow pattern and are smallest (greatest)
when the deformation rate during a time step �t is smallest
(greatest).

2.2. Trajectory Advection

[11] Air motion trajectories are calculated with a scheme
provided by R. Swinbank (personal communication, 1993)
and described by Sutton et al. [1994] using a fourth-order
Runge-Kutta scheme with a 30-min time step. Wind veloc-
ities at the AP locations are linearly interpolated from the
adjacent grid points. Between 72�N and 72�S a spherical
coordinate system is used, while poleward of those latitudes
a polar stereographic coordinate system is used to avoid
numerical problems near the poles.
[12] Wind fields are normally taken from the United

Kingdom Meteorological Office (UKMO) Stratosphere-
Troposphere Data Assimilation System, although any suit-
able set of meteorological fields can be used. The UKMO
data sets have a meridional and zonal resolution of 2.5� and
3.75�, respectively. There are 22 quasilogarithmically
spaced levels between 1000 and 0.316 hPa. Analyses are
available for 1200 UT each day.

[13] The trajectory scheme is run with 2-D winds inter-
polated onto isentropic levels. As discussed in section 1, the
assumption of isentropic motion is valid only for restricted
timescales. For long-term calculations, cross-isentropic
transport must be taken into account. The ‘‘vertical’’ motion
of an AP in the isentropic system, the diabatic velocity _q, is
the material change with time of the potential temperature q
along the path of the APs. Thermal radiation and solar
absorption are the principle sources of diabatic change in
the stratosphere. To confirm the validity of the isentropic
approximations used here and in part 2, we use an improved,
numerically more efficient version [Zhong and Haigh, 1995]
of the Morcrette radiation scheme [Morcrette, 1991] origi-
nally developed for use in the European Centre for Medium-
Range Weather Forecasts (ECMWF) operational model.

2.3. A Dynamically Adaptive Grid (DAG) and
Implications for Air Parcel Mixing

[14] The positions of a quasiuniformly spaced ensemble
of APs define a quasiuniform grid (i.e., where the nearest-
neighbor separations are approximately constant). From
these grid point positions, APs are advected during a time
step �t to new positions according to the advective proce-
dure described in section 2.2. After each advection step the
grid of AP positions is deformed, and for sufficiently large
values of �t, clustering or dispersion of the initially
quasiuniform distribution of grid points occurs.
[15] To determine deformed grid regions, the nearest

neighbors (NNs) of the initially quasiuniform grid are found
by applying the Delaunay triangulation technique [e.g.,
Preparata and Shamos, 1985]. This method is based on
the convex hull algorithm [Barber et al., 1996] for which
the computational costs scale as n log n, where n is the
number of grid points.
[16] Clusters and voids (i.e., areas with sparse grid-point

coverage) are eliminated by applying a dynamically adap-
tive grid algorithm (see Figure 2) and thereby regenerating a
quasiuniform grid-point distribution. This algorithm is
applied only when one of the separation criteria described
below has been satisfied. Prior to an advection step, NN
relationships are determined by Delaunay triangulation. The
distances between any given grid point and its former NN
are calculated after each advection step. If the separation
between it and one of its former NNs exceeds a critical
distance r+

c, a new grid point is inserted midway between the
two points (e.g., grid points A and B in Figure 2). To
maintain the density of grid points below a given threshold,
the new NN relationships are determined and NN separa-
tions are calculated; all grid points with distances below the
critical distance r�

c are merged into a new grid point midway
between the grid points, and the original grid points are
removed (e.g., points A and C in Figure 2). The chemical
properties of the new AP associated with each new grid
point are initialized with the mean properties of the APs that
correspond to the grid points contributing to the calculation
of the position of the new grid point.
[17] To link r±

c to the flow deformation during the time
step �t, we introduce the finite-time Lyapunov exponent l,
(hereinafter referred to as Lyapunov exponent l). Consider
a grid point surrounded by a small circle of radius r0. After a
time �t and for sufficiently small values of r0, the circle is
deformed into an ellipse with minor and major axes r� and
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r+ (see Figure 3). By definition, the mean logarithmic
expansion rate of the principal axes is the Lyapunov
exponent [Geist et al., 1990]. Thus

l� ¼ � 1

�t
ln
r�

r0
: ð1Þ

For incompressible flow, the area of the ellipse is conserved,
and r�r+ = r0

2. Thus the relation l+ = l� holds and,
consequently, both the elongation and the contraction rates

of the ellipse can be expressed in terms of a single
Lyapunov exponent, i.e.,

r�=r0 ¼ expð�l�tÞ: ð2Þ

Using (2), we extend the adaptive grid procedure and link it
to the integral deformation in the flow during the time step
�t by relating the individual critical distances r�

c and r+
c to a

single critical Lyapunov exponent lc, through

rc� ¼ r0 expð��c�tÞ: ð3Þ

Figure 2. Dynamically adaptive grid algorithm applied on a 2-D quasiuniform distribution of grid
points. (top) Initial quasiuniform distribution of grid points denoted by circles. Hatched area defines the
Voronoi polygon of a given grid point; that is, all locations within this polygon area are closer to the
given grid point than to any other grid point. Grid points that share a polygon side with the hatched
polygon are nearest neighbors (NN) of the given grid point. Using Delaunay triangulation, NN of all grid
points are simultaneously determined. (bottom) A sheared flow that deforms the ensemble of grid points
during an advection step �t. Thus, for example, the relative distances of the given grid point A to its NN
change due to the flow-induced deformation; some grid points like B move further away while some like
C move closer. If the distance AB exceeds a critical maximum separation r+

c , then a new grid point D is
inserted midway between A and B (insertion); conversely, if the distance AC falls below a critical
minimum separation r�

c , then grid points A and C are removed and a new grid point is introduced
midway between the positions of A and C (merging). Insertion increases the number of grid points by
unity, while merging reduces the number of grid points by unity. This procedure will tend to restore grid
quasiuniformity.
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Given a quasiuniform grid distribution, after one time step,
certain regions of the grid will be deformed. The adaptation
procedure defined above is applied to this deformed grid
where r�

c and r+
c now been defined through (3) from a single

critical Lyapunov exponent lc. Note that after determining
r�
c and r+

c once at the beginning of any given calculation, no
further use is made of the critical Lyapunov exponent;
adaptation is only invoked when the separation criteria
defined by r±

c have been met. Thus the adaptation procedure
is controlled in the l space by choosing a critical Lyapunov
exponent lc and is carried out in the r space using the
corresponding critical radii r±

c . By avoiding the calculation
of Lyapunov exponents for each grid point, one makes a
substantial computational saving.
[18] For special idealized flow configurations, one can

link the Lyapunov exponent describing the integral defor-
mation over a time step�t with the instantaneous (Eulerian)
flow properties as the horizontal strain sh or shear rate st.
This may be instructive because sh or st are widely used in
order to describe the (local) deformation properties of the
arbitrary 2-D flow, especially those of the meteorological
winds.
[19] In Appendix A we show that in a uniformly sheared

2-D flow with a shear rate sh, the major/minor axes r± of the
deformation ellipse are given by

r2�=r
2
0 ¼ 1� sh�t tan�=þ1f tan 2f ¼ 2=sh�t; ð4Þ

while, for a pure 2-D strain flow with the velocity field
given by u = sty/2 and v = stx/2, the major/minor axes r± of
the deformation ellipse are given by

r2�=r
2
0 ¼ expð�st�tÞ: ð5Þ

Shear sh and strain st deform a unit circle in the same way
(up to a solid body rotation) if exp(st�t) = 1 + sh�t tan�1 f.
[20] The Lyapunov exponent l and the local straining

rate st are simply related by l = st/2. In the limits of st�t� 1
and sh�t � 1 strain and shear, sh = st. Furthermore, in a
uniformly sheared 2-D flow with sufficiently high shear
rates sh, r+ and r� point along and across the wind direction,
respectively (for details see Appendix A). In section 2.4 we
show in a case study how the adaptation procedure is driven
by the integral deformation of the flow quantified by l and
how this integral property can be approximated by the
instantaneous shear rate.

[21] Thus, when considering the process as an adaptive
gridding procedure, the interpolation of the irregular grid
points that correspond to the APs inevitably leads to mixing
that can be seen as analogous to the ‘‘numerical diffusion’’
in Eulerian transport schemes. However, in the dynamically
adaptive grid (DAG) procedure, mixing only occurs in
regions where the flow properties imply high integral
deformation rates with l > lc. Typically, the magnitude of
grid-point diffusion arising from interpolation between grid
points separated by a distance r and for a time step �t may
be approximated by r2/4�t. Thus the magnitude of the
equivalent diffusive mixing may be related to the adaptive
grid parameters through

D� lð Þ � r2�
4�t

¼ r20
4�t

exp �2l�tð Þ; ð6Þ

where D+ and D� estimate the magnitude of diffusion
equivalent to the mixing resulting from inserting (r > rc

+) and
merging (r < rc

�) of APs, respectively. For arbitrary points
on the deformation ellipse, the equivalent diffusion varies
between D� and D+. In flows dominated by the horizontal
shear with l�t sufficiently large, D+ and D� correspond to
diffusion coefficients along and across the local wind
direction, respectively. In Appendix B the magnitude of the
equivalent diffusivity estimated from (6) is discussed both
in l space and in r space. In addition, we check the validity
of (6) using analytical solutions.
[22] The positive definiteness of this transport scheme is

ensured by the linear interpolations used to initialize new
AP mixing ratios. (By contrast, most Eulerian transport
schemes require additional measures to avoid negative
concentrations.) The total mass m of a passive tracer for a
given model simulation is defined as

m ¼
Xn
i¼1

ciVi; ð7Þ

where ci is the concentration and Vi is the volume of the ith
AP. In the 2-D simulations the Vi are equivalent to the areas
Ai of the Voronoi polygons (Figure 2) corresponding to the
ith AP. The magnitude of fluctuations of m (here calculated
for CH4 distribution) that depends on the model resolution
does not exceed 0.8% for the low-resolution studies (r0 =
200 km) and is <0.3% for the high-resolution simulations
(r0 = 60 km) after 45 days of integration.

Figure 3. Deformation of a small circle with radius r0 in a 2-D flow. For sufficiently small values of r0
and time step �t the resulting deformation can be approximated by an ellipse with minor and major axes
r� and r+.
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[23] Thus we have a scheme that formally satisfies the
criteria set out in the initial motivation.
1. The separation criterion (equation (3)) permits struc-

ture on a scale of order exp(�lc�t) smaller than the initial
grid resolution r0 to be resolved. Thus the scheme allows
scale collapse to be simulated down to 	20 km when the
initial resolution r0 is on the order of 60 km.
2. The Lyapunov exponents l vary according to the

deformation of an adjacent group of particles in the flow.
Thus mixing based on the critical Lyapunov exponent lc
will be dependent on the integral deformation in the flow.
3. When the separation criterion rc

+ and rc
� are satisfied,

mixing occurs. The relationship between l and equivalent
diffusivity indicates that mixing will be most intense in
regions where deformation is greatest.
[24] Having demonstrated that the mixing algorithm

referenced above satisfies the criteria outlined in the moti-
vation, we go on to show in sections 2.4 and 2.5 that the
algorithm also gives reasonable qualitative and quantitative
results when compared with observations.

2.4. Mixing at the Edge of the Polar Vortex

[25] In order to illustrate the theoretical concepts discussed
in section 2.3, we consider a particular case of the horizontal
transport near the edge of the North Polar stratospheric
vortex. The initial positions of an ensemble of roughly
50,000 APs at q = 475 K were defined so that their mean
separation r0 was roughly 60 km. Using UKMO wind fields
for 15 March 1997, 1200 UTC, the local shear rate sh defined
as the isentropic cross-wind gradient was calculated (Figure
4, top). Figure 4 (bottom) shows the Lyapunov exponent l
calculation for each grid point after one advection step �t =
24 hours. The Lyapunov exponent l is estimated from the
largest relative change of the distance between a given grid
point and its NN. Note that the horizontal shear gives an
instantaneous measure of the local deformations, in this case,
prior to advection, while the Lyapunov exponent represents
the integral deformation over the advection step. The vortex
edge is identified by the strongest potential vorticity (PV)
gradient with respect to equivalent latitude at the initial time
[Nash et al., 1996] (Figure 4, solid line).
[26] The vortex edge coincides well with the jet max-

imum, i.e., the minimum of the horizontal shear sh. It also
corresponds reasonably well to the minimum in the Lyapu-
nov exponent l. However, the correspondence of the vortex
edge with the minimum in l is not as clear cut as the
correspondence with the minimum shear because the Lya-
punov exponent is an integral quantity over the advection
time step and so will reflect movements of the vortex edge
over that time step. Studying Lagrangian evolution of
material lines, Pierce et al. [1994] suggested that this zone
may act as an effective kinematic barrier to large-scale
mixing [Randel et al., 1993; Waugh et al., 1997].
[27] The results for one adaptive advection step with�t =

24 hours and lc = 0.92 days�1 are shown in Figure 5 (here
lc is chosen to give reasonable results; the optimization of
lc will be discussed in section 2.5). In Figure 5 (top) the
new points that are inserted into the grid during the
adaptation procedure after one time step are shown. Their
color denotes the value of the corresponding Lyapunov
exponent. The numerical diffusion D+ calculated from (6)
is shown in Figure 5 (bottom).

[28] Comparing Figure 4 (bottom) with Figure 5 shows
that (numerical) mixing is driven by the integral deforma-
tion rate measured in terms of the Lyapunov exponent l and
occurs in flow regions with l > lc. Furthermore, because of
the small values of the Lyapunov exponent at the vortex
edge our dynamical adaptive gridding preserves the vortex
edge mixing barrier. Thus, in contrast to the approach of
Fairlie et al. [1999], a mixing barrier emerges as a natural
consequence of linking mixing to integral deformation rate
and requires no additional constraints.
[29] The strongest mixing occurs on the outer flanks of

the jet stream and coincides with the largest Lyapunov
exponents and shear rates (Figure 4). Inside the polar vortex
a significant component of the shear is due to solid body
rotation with respect to the pole. Thus, in such situations a
mixing parameterization based directly on shear would
introduce spurious mixing. Under the same circumstances
our Lyapunov exponent based mixing parameterization has
significantly smaller mixing rates (Figure 5, bottom).
Nevertheless, the horizontal shear rate sh shown in Figure

Figure 4. (top) Local shear rate derived from United
Kingdom Meteorological Office (UKMO) horizontal winds
(arrows) on 15 March 1997, 1200 UTC, at q = 475 K. Solid
line denotes the edge of the polar vortex (see text for
explanation). (bottom) Lyapunov exponent l of each grid
point, estimated from the deformation of the NN during the
preceding advection step �t = 24 hours.
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4, if compared, for example, with the strain rate st (not
shown here), gives the best local (Eulerian) approximation
of the integral deformation rate quantified in terms of l.
[30] The idea that horizontal flow deformation may

promote mixing is not new. Aref [1986] has postulated that
large local deformation rates that are driven by stirring in
the large-scale flow promote mixing across air-mass boun-
daries by increasing the air-mass interfacial area. This effect
has been quantified using the idea of an effective diffusivity
[Nakamura, 1996]. Haynes and Shuckburgh [2000] have
shown that transport barriers such as the vortex edge or the
subtropical jet are regions with small effective diffusivity.
[31] Summarizing, the dynamical adaptive gridding pre-

serves not only the quasiuniform grid but, additionally,
leads to an inhomogeneous (both in time and space) and
anisotropic (i.e., dependent on the wind direction) mixing
between APs. Given a grid resolution r0 and a time step �t,
the mixing intensity is controlled by the critical Lyapunov

exponent lc. In section 2.5 we show how the value of the
Lyapunov exponent may be constrained by observations.

2.5. A Vortex Breakup Case Study: Implications for
Mixing

[32] Most current satellite observations lack the high
spatial resolution required to observe all but the largest
filamentary structures in the atmosphere. An exception to
this is the Cryogenic Infrared Spectrometers and Telescopes
for the Atmosphere (CRISTA) instrument with 200-km
horizontal and 2.5-km vertical resolution. CRISTAwas first
flown 3–14 November 1994, on the NASA space shuttle
STS 66 [Offermann et al., 1999] (version 3), so that it had a
good chance to observe the southern vortex breakup. During
this period the South Polar vortex had indeed begun to
decay, with vortex fragments evident between 	700 and
	1300 K [Manney et al., 1996]. An example of asynoptic
observations of N2O transformed to a central synoptic time is
shown in Figure 6. The gradient of N2O at the vortex edge
over the southern Pacific and two areas of low N2O mixing
ratios between 20�S and 40�S (denoted as A and B in Figure
6) are evident on the 700-K potential temperature surface.
These phenomena were consistently observed between 4 and
10 November (for the full study of this episode see P.
Konopka et al. (Mixing intensity at the edge of the Southern
Polar vortex deduced from CRISTA-1 experiment, submit-
ted to Journal of Atmospheric Sciences, 2002).
[33] We simulated with CLaMS the isentropic transport

of N2O at 700 K and compared the results with CRISTA
observations. Starting from an initial distribution on 20
October 1994 (Figure 7), two simulations were performed:
a high-resolution simulation with �50,000 grid points, i.e.,
r0 � 60 km, and a low-resolution simulation with �7000
grid points, i.e., r0 � 200 km, uniformly distributed over the
Southern Hemisphere. To determine the initial distribution,Figure 5. (top) New grid points (insertion and merging)

resulting from the adaptation algorithm carried out for lc =
0.92 colored according to the corresponding Lyapunov
exponents. Note that some new grid points have l < lc. The
existence of these points is a consequence of the deviation
of the grid from a perfect uniformity at the beginning of the
advection step (see Appendix B). (bottom) Equivalent
diffusive mixing D+ calculated from (6).
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B

Figure 6. Synoptic map of N2O mixing ratios measured
during Cryogenic Infrared Spectrometers and Telescopes for
the Atmosphere (CRISTA) flight on 10 November 1994,
1200 UCT, at q = 700 K. Here the asynoptic profiles of N2O
(observed in a 24-hour window starting on 10 November
1200 UCT) were linearly interpolated to q = 700 K and
assimilated to a synoptic time using isentropic trajectories
driven by UKMO winds (see part 2).
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a PV-N2O correlation valid for 700 K was derived using
observations between 4 and 6 November 1996 and the
corresponding UKMO PV values. The evolution of N2O
mixing ratios during the simulation is characterized by
filaments that are peeled off and wrapped around the vortex.
The advection time step was chosen to be 12 hours and the
critical Lyapunov exponent lc was chosen so that the
simulated N2O distributions are similar to the CRISTA
observations.
[34] For the low-resolution simulation, three cases are

shown in Figure 8 with zero (top panel), moderate (middle
panel), and excessive mixing (bottom panel). Note that with a
smaller value for lc, the separation criteria are more fre-
quently satisfied and so mixing becomes more widespread.
Thus, although the equivalent diffusivity along the flow D+

decreases, the more important transverse equivalent diffu-
sivityD�, representing cross-gradient mixing, becomes more
significant.
[35] Figure 9 shows results for lc = 1.2 days�1 and r0 =

60 km. A value of lc = 1.2 days�1 implies that scale
collapse and stretching by roughly a factor of 1.8 over 12
hours are permitted before the mixing procedure will be
activated. Thus a fluid element with an intrinsic 2-D
isentropic scale of 60 km would be stretched down to a
110-km long and 33-km wide filament before mixing sets
in. These simulations with higher spatial resolution show
significantly less mixing for the same value of lc than the
corresponding low spatial resolution simulations due to the
dependence of the separation criterion on r0 (see (6)).
[36] An alternative isentropic transport simulation has

been performed using Eulerian transport scheme designed
to minimize numerical diffusion [Prather, 1986]. This
version of the ‘‘Prather’’ scheme has been described by
Orsolini [1995]. The results of a simulation carried out for
the same time period and based on the same UKMO winds
are shown in Figure 9 (bottom panel). The spatial resolution
was chosen to be comparable to the CLaMS high-resolution
case (1.125� in meridional and zonal direction). In the
alternative Eulerian simulation the main vortex is clearly

evident and, as with the CLaMS scheme, has the strongest
N2O gradients roughly where they have been observed by
CRISTA. This version of the Prather scheme also clearly
generates and preserves filaments down to a scale compa-
rable to the underlying Eulerian grid. However, two main
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Figure 8. CLaMS results obtained with the low-resolution
grid-point density (r0 � 200 km) and �t = 12 hours on 10
November at q = 700 K for different values of the Lyapunov
exponent. (top) Pure advection lc = 1, i.e., no adaptation.
(middle) Moderate mixing, lc = 1.2 days�1. (bottom)
Excessive mixing, lc = 0.6 days�1.
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Figure 7. Initial N2O distribution on 20 October 1994 at
700 K for the high-resolution CLaMS configuration with
mean distance between grid points r0 � 60 km. Initializa-
tion was determined from CRISTA observations by use of
the PV-tracer correlation technique (see part 2).
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deficiencies can be noted when compared to CRISTA
observations: filamentation is more extensive, and the
gradient of N2O over the southern Pacific Ocean is less
pronounced. Alternative versions of the Prather scheme
exist that reduce some of these problems (M. J. Prather,
private communication, 2000).
[37] By contrast, the high-resolution CLaMS simulations

preserve the gradients in N2O in a much more realistic
manner, and although some filaments are present that are
not evident in the CRISTA observation, their presence is
much less pronounced. Furthermore, the two low-N2O
features A and B seen in the CRISTA observations that
are advected around the vortex and finally into the southern
Atlantic are well simulated and are not dissipated. Thus the
critical Lyapunov exponent is optimized such that the
features A and B are preserved and reasonably well simu-
lated. However, with the chosen value of lc, some filaments
are not dissipated, but persist in contrast to the observed
N2O distributions.
[38] The difference between the ClaMS simulated fila-

ments and the features observed with CRISTA may be due to

one factor or a combination of several factors: errors in the
initialization, errors in the UKMO winds, and/or CRISTA
resolving vertical scales of the order of 2.5 km, therefore
leaving features of smaller vertical extent unresolved. How-
ever, as we have seen, small-scale features with sufficient
vertical extent are clearly detected by CRISTA: the vertical
range of the structures A and B amounts to 	6 km.
[39] In the CRISTA data the vertical scales are dominated

by the vertical resolution (2.5 km). Consequently, it is only
possible to optimize the Lyapunov exponent relative to the
apparent atmospheric state, i.e., that observed by CRISTA.
Thus the equivalent diffusivities that can be calculated from
(6) may be considered as apparent diffusivities that over-
estimate the real atmospheric mixing owing to the ‘‘optical
mixing’’ arising from the limited vertical resolution �z of
the CRISTA observations whereby features with a vertical
extent below �z would be smeared out.

3. Northern Winter/Spring Transition Simulation
for 1997

[40] The 1997 Northern Hemisphere spring polar vortex
was strong, cold, and circumpolar, in particular during the
period from February into late April [Coy et al., 1997].
Record low total ozone amounts were reported for this
period [Newman et al., 1997; Pierce et al., 1997] that arose
due to a combination of dynamical and chemical effects
[e.g., Müller et al., 1997; Lefèvre et al., 1998]. For this
period, to test CLaMS transport, we carried out long-lived
tracer simulations for CH4. In part 2, simulations of ozone
loss for the same period will be described. We initialized
CLaMS on 23 February 1997 on the 475 K isentropic
surface and considered a time period of 44 days ending
on 8 April. As in section 2.5, the same high- and low-
resolution simulations will be considered.
[41] Using Halogen Occultation Experiment (HALOE)

observations and a PV-tracer correlation technique (see part
2), an initial CH4 mixing ratio distribution is determined. Net
diabatic heating rate calculations at 475 K indicate that up
until the beginning of March the air within the vortex
descends with a rate of the order of 1 K day�1.
[42] Thereafter, as the sun returns to high latitudes and

polar bears awaken, calculations indicate that vortex air is
below its equilibrium radiative temperature and furthermore
that ascent rates of the order of 0.5 K day�1 will occur due to
this solar heating. Calculations also indicate that relatively
warm air masses originating from midlatitudes and tropical
regions descend with a rate of the order of 1.0 K day�1

before being mixed into the outer vortex edge. Figure 10
shows the vertical position of 	50,000 APs on 15 March
calculated in terms of diabatic trajectories. Large contrasts in
vertical displacements of the APs at the vortex edge are
evident, in accordance with Schoeberl et al. [1992]. The
calculated net vertical displacements during the case study
period do not exceed 30 K (�1.5 km) for latitudes between
45�N and 90�N. As this vertical range is smaller than the
vertical resolution (�2.5 km) of the HALOE CH4 observa-
tions used for initialization, it is reasonably well justified to
invoke an isentropic approximation.
[43] Again, we compare the results for the isentropic

CLaMS transport with the equivalent Eulerian simulation
obtained with the Prather scheme (Figure 11). In contrast to

A
B

0.

20.

40.

60.

80.

100.

120.

140.

160.

180.

200.

220.

N2O [ppb]

Figure 9. Lagrangian (CLaMS) versus Eulerian transport
of N2O compared on 10 November 1994 at q = 700. (top)
CLaMS transport obtained with the high-resolution config-
uration r0 � 60 km, �t = 12 hours, and lc = 1.2 days�1,
slightly underestimating mixing. (bottom) Result of isen-
tropic Eulerian transport employing the Prather scheme
[Prather, 1986] with a comparable horizontal resolution.
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the CRISTA period, the spring period of 1997 was charac-
terized by high vortex stability [Coy et al., 1997] without
pronounced filamentation. For this episode the results for all
three simulations are more similar (Figure 12) than the
previous CRISTA period simulations (Figure 9). The most
pronounced differences relate to the vortex edge. The
Prather scheme indicates a very sharp edge that coincides
well with the vortex edge as diagnosed with the PV-gradient
method, while both CLaMS simulations have a more
gradual transition from outer to inner vortex methane
values. Additionally, the high-resolution ClaMS simulation
shows the penetration of outer vortex air deep into the
vortex core. Thus clear differences exist between these two
simulations that could be discriminated between experimen-
tally. At this stage, no suitable analysis has been conducted
that would distinguish between the results of the Lagrangian
and Eulerian methodologies.
[44] To investigate the different behavior of the trans-

ported tracers during the CRISTA fall 1994 and spring 1997
period, we consider the statistics of the horizontal shear sh
derived from the horizontal UKMO winds for both studies.
In Figure 12 the frequency distribution P for horizontal shear
values sh greater than a given value is shown. The results
indicate that horizontal shear rates exceeding sh = 2lc = 2.4
days�1 occur over >20% of the Southern Hemisphere during
the CRISTA period, whereas horizontal shear rates exceed-
ing sh = 2lc = 2.4 days�1 occur over <5% of the Northern
Hemisphere. Thus the Northern Hemisphere spring period
1997 is dominated by advection rather than mixing. Under-
standably then, the Prather and CLaMS transport schemes in
Figure 11 show only small differences, with slightly more
mixing at the vortex edge evident in the Lagrangian study.

4. Summary and Conclusions

[45] We have described a novel tracer transport scheme of
a new stratospheric chemistry transport model (CLaMS)
that relies on a Lagrangian rather than on a Eulerian
formulation of the advection equation.

[46] We have shown that for a given simulation defined
by the horizontal resolution r0 and the length of the
advection step �t, a single critical parameter, the Lyapunov
exponent lc, can be introduced that may be used as a
criterion for the intensity of mixing in the model. This
criterion leads to the definition of a heterogeneous and
anisotropic equivalent diffusivity as a diagnostic tool to

455.

459.

463.

467.

471.

475.

479.

483.

487.

491.

θ [K]

Figure 10. Potential temperature of air parcels on 15
March initialized on 23 February 1997 at 475 K, advected
by UKMO winds and taking account of diabatic descent. At
the vortex edge (solid line), large contrasts in vertical
displacements of the air parcels are evident.
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Figure 11. Lagrangian versus Eulerian isentropic transport
of CH4 for a time period of 44 days starting on 23 February
and ending on 8 April 1997. (top) CLaMS with low-
resolution configuration. (middle) CLaMS with high-
resolution configuration. (bottom) Prather scheme with
spatial resolution as in middle panel.
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quantify the intensity of mixing. The equivalent diffusivity,
so calculated, indicates that mixing is limited across the
model polar vortex edge. Nakamura [1996] came to a
similar conclusion by considering the elongation rates of
PV isopleths.
[47] The 2-D isentropic scheme presented here describes

how an ensemble of APs is transported by model winds and
regridded using a dynamically adaptive grid algorithm.
Deformation of regions of the grid occurs and dynamical
adaptive gridding is applied when the critical Lyapunov

exponent has been exceeded. Consequently, the correspond-
ing mixing is driven by the integral deformation of the
large-scale flow over a time step �t.
[48] The dichotomy between the numerical grid-point

description and physical AP description of the dynamical
adaptive grid procedure is illustrated in Figure 13. Inter-
preted as a flow-following grid, one may consider the
adaptation procedure as introducing numerical diffusion,
while considered as an ensemble of APs, the adaptation
represents a mixing procedure. Because of coupling between

Figure 12. Shear frequency distribution calculated for the time period between 20 October and 10
November 1994 at 700 K in the Southern Hemisphere and between 23 February and 8 April 1997 at
475 K in the Northern Hemisphere. Shear value corresponding to the critical value lc = 1.2 days�1 is
indicated by the dotted line at 2lc = sh = 2.4 days�1.

Figure 13. Dichotomy between the numerical grid point description and physical air parcel description.
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the integral deformation in the flow, adaptation of the grid,
and mixing, the intensity of mixing depends on the defor-
mation strength through the choice of the critical Lyapunov
exponent lc. For sufficiently large values of lc the mixing is
completely switched off; the transport reduces to a pure
advection along the trajectories. One could make a similar
philosophical distinction in a conventional grid-point advec-
tion scheme; however, the numerical diffusion, even when
sometimes implicitly coupled to the flow deformation [see,
e.g., Rood, 1987], cannot be explicitly controlled.
[49] One may consider the impacts of the forgoing

procedure on two levels, either the dynamical adaptive grid
or the APs associated with this grid. On the level of the
dynamical adaptive grid, when the grid deforms and is then
adapted, numerical diffusion is introduced at those grid
points where adaptation occurs. Alternatively, if one con-
siders the associated APs, when adaptation occurs, it leads
to instantaneous mixing between APs.
[50] A comparison of CRISTA data with model simula-

tions indicates that a value of lc = 1.2 days�1 gives
reasonable results for a mixing case study of the Antarctic
polar vortex. Significantly, studies of an undisturbed 1996–
1997 spring Arctic vortex indicate that the same value of lc
also gives reasonable results even during a situation with
less pronounced mixing. This leads to the conjecture that it
may be possible to define a range of critical Lyapunov
exponents for which an appropriate mixing parameterization
can be achieved. The implications of the transport algorithm
described here for the simulation of the stratospheric chem-
istry are discussed in part 2 of this work.

Appendix A: Lyapunov Exponent in a Uniform
Strain or Shear Flow

[51] Here we interpret the Lyapunov exponent l describ-
ing the integral deformation in the flow in terms of the
instantaneous flow properties such as local shear or strain
that are usually used in the Eulerian approach. Consider two
idealized flow configurations with the 2-D velocity fields
given by

ush :¼ shy; 0½ � ðA1Þ

ust :¼ sty=2; stx=2½ �: ðA2Þ

Equation (A1) describes a uniformly sheared flow with a
shear rate sh, and (A2) denotes a pure strain flow with a
strain rate st (see Figure A1). Solving the ordinary differ-
ential equation _r(t) = u with r = (x, y) and r(0) = r0 = (x0, y0),
the general solution for the shear and strain flow can be
written as r = A 
 r0 with the matrix A given by [Perko,
1996]

Ash ¼
1 sht

0 1

� �

Ast ¼
1

2

1 1

1 �1

� �
exp 1

2
stt

� �
0

0 exp �1
2
stt

� �
� �

1 1

1 � 1

� � ðA3Þ

for the shear and strain case, respectively. Transforming
these explicit solutions into the principal axes, it can be
shown that in both cases a circle with the radius r0 is
deformed into an ellipse with minor and major axes r� and
r+. The r� and r+ are given by (4) and (5). Thus, in a
constant strain flow the relation l = st/2 holds, and the
Lyapunov exponent scales with the strain rate.
[52] In addition, for a given shear value sh a correspond-

ing strain st can be determined with

exp st�tð Þ ¼ 1þ sh�t tan�1f; ðA4Þ

so that a circle is deformed, up to a solid body rotation,
in the same way. Furthermore, in the limit sh�t � 1 and
st�t � 1 both the shear- and strain-induced deformations
(equations (4) and (5)) tend to the same linear form so that

r2�
r20

¼ 1� sh�t ¼ 1� st�t: ðA5Þ

Appendix B: Equivalent Diffusion of the
Dynamical Adaptive Gridding

[53] Here we describe the details of the mixing intensity
introduced by the DAG procedure, both in r space and in l
space, by taking into account (6). Especially in the r space,
one can rewrite (6) as

D� rð Þ � 0 rc� < r < rcþ
D0 r=r0ð Þ2 elsewhere

�
;

ðB1Þ

Figure A1. Deformation of a unit circle in a uniform shear (left) and strain (right) flow. With sh = st and
the same value of the time step �t, a circle with the radius r0 is deformed into an ellipse (solid line) with
minor and major axes r± given by the (4) (red) and (5) (black). Here f describes the tilt angle in the shear
case. For sh given by (A4) both deformations are equal (red dashed line) up to a solid body rotation.
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with D0 = r0
2/4�t and r±

c = r0exp(±lc�t). This relation is
shown in Figure A2 (top panel), where the numerical
diffusion due to merging (left-hand side of panel) and
inserting grid points (right-hand side of panel) is plotted.
Note that the r range where no mixing occurs (Figure A2,
white region) strongly depends on the choice of the critical
Lyapunov exponent lc and time step �t.
[54] In addition, mixing in the l space can only be

understood in a statistical way. Here we write (6) as

D� lð Þ � r 2�
4�t

¼ D0
exp �2l�tð Þ l � lc

0 l < lc:

�
ðB2Þ

Thus mixing occurs if l > lc with the intensity dependent
on the distances between all the APs satisfying the mixing

criterion in the r space. To check the validity of (6) for a
suitable range of the grid and time step values, analytical
solutions for advection and diffusion of Gaussian 2-D
distributions in an idealized linearly sheared flow are used.
In particular, we consider the dispersion of a Gaussian tracer
distribution due to dynamical adaptive gridding in an
idealized linearly sheared flow. The equivalent diffusion
parameters can be estimated by comparing the simulated
tracer dispersion with corresponding analytical solutions for
dispersion of a 2-D Gaussian tracer distribution [Konopka,
1995]. The results of this procedure for lc = 1 day�1 are
shown in Figure A2, where values for D±/D0 (D0 = r0

2/4�t)
derived from comparison with analytical solutions for
different values of l are plotted as diamonds and triangles.
In addition, the idealized form of (6) is also shown in Figure
A2 (solid and dashed lines).

Figure A2. Numerical diffusion of the dynamical adaptive grid algorithm in the (top) r space and
(bottom) l space. In the r space the values of D±/D0 are calculated by use of (B1). The validity of the
parameterization (equation (6)) in the l space (solid and dashed lines in the bottom panel) is tested by the
comparison with analytically known dispersion of Gaussian 2-D distribution (diamonds and triangles).
With the exception of flow configurations with 0.7 < l < lc = 1 day�1, (B2) approximates fairly well the
numerical diffusion in a linearly sheared flow.

MCKENNA ET AL.: CHEMICAL LAGRANGIAN MODEL OF THE STRATOSPHERE, 1 ACH 15 - 13



[55] Comparison of the results obtained analytically with
(B2) shows good agreement for l � lc. Small differences
occur for flow configurations with 0.7 < l < lc, i.e., the cliff
at l = lc described by (B2) is steeper than tracer dispersion
derived from comparison with the analytical Gaussian
solutions. In the algorithm as implemented, the transition
will not be as sharp, since some APs will mix even though
the critical Lyapunov exponent has not been exceeded,
when the initial separation is different from the mean
separation distance (r < r0 or r > r0) but one of the
separation criteria (r < rc

� or r > rc
+) is satisfied.

[56] In conclusion, (6) reasonably approximates the mix-
ing intensity for horizontal grid resolutions r0 and time steps
�t varying between 50 and 500 km and 6 and 24 hours,
respectively.
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