Hybrid parallelization of a seeded region growing segmentation of brain images for a GPU cluster

Anna Maria Lührs¹, Dr. Markus Axer², Oliver Bücker³, Prof. Dr. Johannes Grotendorst³

¹ Member of the Helmholtz Association - Bernstein Facility for Simulation and Database Technology, Jülich Supercomputing Centre, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Forschungszentrum Jülich, 52425 Jülich, Germany
² Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, 52425 Jülich, Germany
³ Mathematics and Education, Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany

Acknowledgment: Partially funded by the Helmholtz Association through the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain.”

The introduction of novel technologies always carries new challenges regarding the processing of data.

- Newly developed imaging technique: Polarized Light Imaging
- Reconstructing hundreds of terabytes of image data
- Image segmentation as a preprocessing step: masking of brain and non-brain regions
- Parallelization of the segmentation for a GPU cluster

Polarized Light Imaging
- Development at the Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich
- Aim: extracting the course of single nerve fibers
- Sections of postmortem human brain tissue, each 70 µm thick
- Imaging of the sections under linearly polarized light with varying polarization

Automated Choice of Seeds
- Brain tissue on a bright background
- Including artifacts and image noise
- Joint intensity histogram of all tiles
- Threshold between brain and background intensities defined by user → single point of interaction per brain
- Measure m_{cand} for every intensity interval

\[m_{\text{cand}}(x,y) = \max \left(\frac{g(x,y) - q_0}{q_1 - q_0}, q_0 \right) \]

- Linear smoothing of m_{cand} to minimize the influence of image noise

\[m_{\text{final}}(x,y) = \sum_{i=-m}^{m} \sum_{k=-n}^{n} w(i,k) \cdot m_{\text{cand}}(x+i,y+k) \]

- Removing dirt particles in the background marked as seeds

Multi-Core Parallelization
- Neighboring tiles: overlapping of ~ 30% → independent processing
- Tiles equally distributed between the processes

GPU Parallelization
- Automated choice of seeds consists of data parallel steps
- GPUs take advantage of data parallelism → CUDA
- One-to-one assignment of pixels to CUDA threads

Additional GPU accelerates the segmentation by a factor of 20

<table>
<thead>
<tr>
<th>#CPUs</th>
<th>#GPUs</th>
<th>Runtime/Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>295 days</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15 days</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>4.6 days</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
<td>5.6 hours</td>
</tr>
</tbody>
</table>

Contact: a.luehrs@fz-juelich.de