Live Demonstration: An Associative Capacitive Network Based on Nanoscale Complementary Resistive Switches

L. Nielen¹,², S. Tappertzhofen¹,², E. Linn¹,², Member, IEEE, O. Kavehei³, S. Skafidas³,⁴, I. Valov²,⁵, and R. Waser¹,²,⁵, Member, IEEE

¹Institut für Werkstoffe der Elektrotechnik II, RWTH Aachen University, Germany
²JARA-Fundamentals of Future Information Technology, 52425 Jülich, Germany
³Centre for Neural Engineering, The University of Melbourne, VIC 3010, Australia
⁴National ICT Australia (NICTA), Victoria Research Laboratory, Melbourne, VIC 3010, Australia
⁵Peter Grünberg Institut 7, Forschungszentrum Jülich GmbH, Jülich, Germany
E-mail: nielen@iwe.rwth-aachen.de; Fax: +49 241 80-22300; Tel: +49 241 80-27821

Abstract—Integration density is a major drawback of today’s associative memories required for intelligent data processing for such as pattern recognition or classification. Ultra dense complementary resistive switch-based architectures are thought to overcome this issue, offering a footprint of 4F². Here we demonstrate the feasibility of an 8 by 16 associative capacitive network.

Keywords—associative network, complementary resistive switch, memristive device, resistive memory

I. INTRODUCTION

Complementary resistive switches (CRS) are emerging two terminal memristive devices offering inherent sneak path prevention and low power consumption [1]. CRS devices are suited for ultra-dense 4F² non-volatile memory applications. By engineering different capacitance values to each part cells, a non-destructive capacitive read-out is feasible [2], which can be exploited for implementation of associative capacitive networks (ACN) [3]. ACNs are capable of performing fully parallel recognition tasks, evaluating the Hamming distances between stored and input patterns (Fig. 1).

In [3] we have introduced the basic concept which we want to demonstrate live. The topic matches the ISCAS track selection ‘Neural Systems and Applications’ and the CAS-FEST topic on ‘Memristive devices, circuits, systems and applications’.

II. DEMONSTRATION SETUP AND VISITOR EXPERIENCE

Fig. 2a shows the ACN chip which is bonded to a 28-pin chip carrier. An 8 by 16 associative array is depicted (Fig. 2b).

The basic measurement unit (MU) is depicted in Fig. 13. A pulse generator gives the input signal to the MU, generating the search pattern and addressing the ACN chip. The ACN match line signals are evaluated by the MU which can be displayed by an oscilloscope. Further details for of the required hardware blocks can be found in [3].

REFERENCES