Performance Study of an Amorphous-Silicon Flat Panel Detector for Fast Neutron Imaging of Nuclear Waste

M. Schumann1, R. Engels2, G. Kemmerling2, E. Mauerofer1, M. Willenbockel2

1Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
2Central Institute for Engineering, Electronics and Analytics – Electronic Systems, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Introduction

For non destructive characterization of nuclear waste detailed information about massive and dense structural components are needed from radiography to improve analytical results.

Setup

Detector Design
- Commercial X-Ray detector (PerkinElmer)
- Active area: 40 x 40 cm²
- Segmentation: 1024 x 1024 pixels

Scintillator
- General purpose plastic scintillator
- EJ-260 Eljen Technology
- Thickness: 3 mm

Neutron generator
- Commercial generator Gemini16GT (Soderm)
- D-T fusion for 14 MeV neutrons
- Flux determination with monitoring foils (Al, Au)
- Distance source to foils: 30 cm
- Activity measurement with HPGe detector
- Fast neutron source strength:

$$Q_{n\text{eff}} = 15.7 \pm 2.6 \cdot 10^{10} \text{n/s}$$

Tab. 1: Analyzed reactions with corresponding activities, neutron fluxes and source strengths.

Experiment
- Neutron generator within 10-20 cm PE shield
- Distance source to detector: 42 cm
- Samples on ill table

Detection System
- a) Radiograph of PE (red) and PE (black) sample.
- b) Correlation between measured and calculated signal attenuation.

Image Analysis

Setup
- Pb brick and PE cylinder
- Distance source detector: 42 cm
- Average of 450 frames, each 24 s

Smooth
- Profiles of area with and without objects
- Set outlines to the average of the surrounded pixels

Profile Correction
- Set area without objects as background

Signal Analysis
- Fit Gaussian distribution to histogram from region of interest
- Gaussian distribution

Results

Calibration
- Radiographs of well known test samples
 - Size: 5 x 8 x 10 cm³
 - Al, Cu, Fe, Pb, W, concrete, PE
 - PE as reference
 - Combination of two samples
 - Analysis as shown before

Profile correction
- Data correction and analysis of test samples
- Gaussian fit

Summary
- First radiography with test samples successful, despite low detection efficiency and neutron intensity
- Discrimination between light and heavy objects
- Correlation between detector signal and absorption properties

Test samples
- (Al, Graphite, Fe, Pb, W, concrete, PE)

Outlook

New Scintillator
- Stack of scintillating fibres for increased neutron conversion efficiency
- Type: SCiF(3H)11500MJ from Kuraray
- Thickness: 10 mm, diameter: 1 mm

Wavelength Shifting Fibres Detector
- Prototype detector
- Plastic with ZnS as scintillator
- X-ray cross 40 W fibres
- Fibre readout with PMT
- TDC coincidences for position reconstruction
- Active area: 4 x 4 cm² (16 x 16 fibres)

This work is part of a cooperation framework with RWTH Aachen University and SIEMENS AG, funded by Federal Ministry of Education and Research (02S9022B).