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Logarithmic moments of relaxation time distributions
Reiner Zorna)

Forschungszentrum Ju¨lich, IFF, D-52425 Ju¨lich, Germany

~Received 22 October 2001; accepted 3 December 2001!

In this paper a novel way to quantify ‘‘nonexponential’’ relaxations is described. So far, this has
been done in two ways:~1! by fitting empirical functions with a small number of parameters,~2! by
calculation of the underlying distribution functiong(ln t) of ~exponential! relaxations using
regularization methods. The method described here is intermediate, it does not assume a specific
functional form but also does not aim at the complete distributiong(ln t) but only its logarithmic
momentŝ (ln t)k&. It is shown that these exist~in contrast to the linear moments! and can be
calculated analytically for all currently used empirical descriptions of nonexponential relaxations.
Therefore, the logarithmic moments represent a common basis for comparing literature data from
authors which prefer different empirical formulas~e.g., those of Kohlrausch and Havriliak-Negami!.
The logarithmic moments are also shown to be related in a simple way to the~linear! moments of
an underlying distribution of activation energies giving them a physical significance. ©2002
American Institute of Physics.@DOI: 10.1063/1.1446035#
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I. INTRODUCTION

It is well known—especially from glass-formin
systems—that the relaxation of certain quantities in respo
to a step function often does not follow a simple exponen
law. This is found in dielectric, mechanical, light scatterin
neutron scattering, and many other relaxation techniq
The mathematical description of such a behavior has bee
considerable interest in the literature. In this paper the res
will be formulated in terms of dielectric relaxation but it
simple to translate them into the context of the other me
ods.

For dielectric relaxation the time-dependent dielect
function e(t) can be written in a normalized way

f~ t !5
e02e~ t !

e02e`
, ~1!

wheref(t), the normalized relaxation function, in the mo
simple case is exp(2t/t). Then ~and only then! one obtains
for the complex frequency-dependent dielectric funct
e~v! Debye’s result:

e~v!2e`

e02e`
5

1

11 ivt
. ~2!

Because the exponential relaxation or equivalently
Debye description of the susceptibility often fail in the d
scription of experimental data a plethora of empirical fun
tions have been developed. The oldest attempt dating ba
Kohlrausch1 is to set

f~ t !5exp~2~ t/tK!b!, ~3!

i.e., introducing a ‘‘stretching’’ parameter 0,b<1 in the
logarithmic time. Other authors introduced modifications
the Debye expression to

a!Electronic mail: r.zorn@kfa-juelich.de
3200021-9606/2002/116(8)/3204/6/$19.00
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e~v!2e`

e02e`
5

1

~11~ ivt!a!g ~4!

with a or g or both between zero and one.2–5 Another at-
tempt is based on modification of the imaginary part of~2!—
which is often the measured quantity in dielectr
experiments—to

e9~v!5
A

~v/v1!2a1~v/v2!b , ~5!

where 0,a, b<1.5–7 For a5b51, v15v251/t, and A
51. Eq. ~5! reduces to the Debye expression.

The few parameters determining the relaxation funct
or susceptibility in the preceding descriptions can usually
determined unambiguously by least-squares fit to the exp
mental data. Nevertheless, it remains questionable whe
the parameters obtained in this way have any physical
nificance. Also there is often noa priori reason to prefer one
of the descriptions and the fits are equally well and allow
a posterioripreference too.

A much more general description of experimenta
measured relaxation functions is possible by expressing t
as a superposition of exponential relaxations

f~ t !5E
2`

1`

d ln tg~ ln t!exp~2t/t!, ~6!

whereg(ln t) is a distribution function which is always pos
tive and whose integral is normalized to one. From proba
ity theory it is known that it is possible to obtain a distrib
tion g(ln t) from f(t) according to Eq.~6! if and only if
f(t) is completely monotone.8 This means that the deriva
tives f (n)(t)5dnf/dtn must have alternating signs over th
whole ranget50,...,̀ : (21)nf (n)(t)>0. In practice it turns
out to be a rather weak condition which is fulfilled for near
all experimentally obtained relaxation functions.
4 © 2002 American Institute of Physics
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Equivalently, the susceptibility can then be written as
superposition of Debye expressions

e~v!2e`

e02e`
5E

2`

1`

d ln tg~ ln t!
1

11 ivt
. ~7!

The inversion of Eq.~6! from experimentalf(t) data or
~7! from measurede9~v! or e8~v! is a difficult task. It is a
so-called ‘‘ill-defined’’ problem which can numerically onl
be solved by regularization methods and not by least-squ
algorithms. While these methods have been used in l
scattering for quite some time~CONTIN algorithm9! they
have been introduced to dielectric spectroscopy o
recently.10

Of course it is also possible to assume simple distri
tion functionsg(ln t) with a small number of parameter
Then it is again possible to use least-squares methods
arguments concerning the arbitrariness of the choice of
function can be put forward again.

In this paper a description of nonexponential relaxatio
will be proposed which is intermediate between those
scribed above~that by a small number of exponent param
eters and that by a whole distribution function!: a description
by logarithmic moments of the distribution function.

The choice of this description is motivated by the qua
tative criteria often mentioned only verbally without giving
quantitative expression in the literature: thecharacteristic
time of the relaxation, thewidth ~or stretching! of the relax-
ation, and itsasymmetry. The aim of this paper is to defin
these three properties of a relaxation as numerical quant
which can be obtained for all above-mentioned concepts
mathematically not too complicated way.

Already the problem of defining the characteristic tim
makes clear that logarithmic moments are well-suited for
task. Probably most often the inverse of the maximum in
dielectric loss is used as a characteristic time of a non-De
relaxation. Especially for broad distributions this value c
be difficult to obtain and depend strongly on which empiric
function is used to describe the data.

Therefore, some authors use the average relaxation
^t&. While this value is well-defined and simply calculab
e.g., for the Kohlrausch expression~3! it is undefined as soon
as there is a fractal behavior of the low frequency loss p
e.g., for expression~4! with g,1. The average relaxatio
rate^t21& is—even worse—undefined for nearly all the em
pirical functions in practical use because they all show
fractal behavior for high frequencies.

A way to avoid these divergences due to the frac
wings of the distribution function is the use of the avera
logarithmic relaxation time

^ ln t&5E
2`

1`

d ln t ln t ~8!

as the characteristic time of a non-Debye relaxation.
Then it is straightforward to define the shape proper

of the relaxation time distribution by the higher moments
ln t, the relaxation width as the variance of distribution
logarithmic relaxation times

s ln t
2 5^~ ln t!2&2^ ln t&2 ~9!
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and the asymmetry as the skewness of distribution of lo
rithmic relaxation times

g1 ln t5m3 ln t /s ln t
3 , ~10!

where

m3 ln t5^~ ln t!3&23^~ ln t!2&^ ln t&12^ ln t&3 ~11!

is the third centralized moment of the distribution of log
rithmic relaxation times.

Of course this formalism could be extended to high
moments allowing a more accurate description of the rel
ation shape. But the fact that most of the empirical formu
contain only one or two shape parameters indicates th
characterization by three moments is sufficient.

II. CALCULATION OF LOGARITHMIC MOMENTS

In the following it is demonstrated that the calculation
the quantities defined by Eqs.~8!–~11! is indeed practicable
for any way of defining a nonexponential relaxation.

In the simplest case the definition of a nonexponen
relaxation is done directly by the distribution function11–14

g(ln t). In this case Eqs.~8!–~11! can be applied directly.
Results are shown in the first five rows of Table I.

Somewhat more complicated is the case when the c
plex dielectric functione~v! is given2–4 ~rows 6–8 of Table
I!. In this case the distribution function of relaxation tim
can be obtained in closed form15

g~ ln t!5
1

2p~e02e`!
lim

v→0
~I~e~2v1 i /t!!

2I~e~v1 i /t!!!, ~12!

and from g(ln t) in turn the logarithmic moments can b
calculated. But often the calculation via the loss parte9~v!
described in the following is easier.

The loss part is obtained from the distribution functio
as the imaginary part of~7! which can be written as

e9~v!

e02e`
5E

2`

1`

d ln tg~ ln t!
sech~ ln v1 ln t!

2
. ~13!

From this formulation it becomes clear thate9~v! is the con-
volution of sech~ln v!/2 with the distribution function
g(ln t). With this idea it is simple to calculate the momen
of ln t from those of lnv using the moment rules for convo
lution:

^ ln t&52@ ln v#, ~14!

s ln t
2 5@~ ln v!2#2@ ln v#22p2/4, ~15!

m3 ln t52@~ ln v!3#13@~ ln v!2#@ ln v#22@ ln v#3. ~16!

Here the brackets@(ln v)n# denote thenth logarithmic mo-
ment of v with e9~v! taken as a distribution function
namely,

@~ ln v!n#5
2

p~e02e`!
E

2`

1`

d ln ve9~v!~ ln v!n. ~17!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Common empirical expressions for nonexponential/non-Debye relaxations and the logarithmic moments of their distribution functions. Nation:
Eu50.5772...; Euler constant,z~3!51.202...; Riemann’s zeta function,c(x): digamma function;c8(x): trigamma function;c9(x): tetragamma function.

# Name Definition ^ln t& s ln t
2 m3 ln t

1 Log-normal
g~ln t!5

1

A2ps
expS2 ~ln~t/t0!!

2

2s2 D ln t0 s2 0

2 Kirkwood–Fuoss
g~t!5

t0

~t1t0!
2

ln t0 p2

3

0

3 Fröhlich

g~ ln t! 5 H 1

ln~t1 /t2!
, t2,t,t1

0, else

ln t11ln t2

2

~ln t12ln t2!
2

12

0

4 Matsumoto–Higasi

g~ ln t!5H p

t1
p2t2

p tp, t2,t,t1

0, else

t1
p ln t12t2

p ln t2

t1
p2t2

p 2
1

p

1

p22S ln r

rp/22r 2p/2D 2 ~r 2p1r p!~ ln r!3

~rp21!3 2
2

p3

with r 5t1 /t2

5 Rajagopal–Ngai
g~ln t!5A expS2~12b!Sb t

tRN
D b/~12b!D ln tRN1S 12

1

b D ~ ln~12b!

1Eu12 ln 2!2ln 2

with A5
b

Ap~12b!
S b

t

tRN
D 2b/~12b! p2

2 S 1

b
21D 2

14z~3!S 12
1

b D 3

6 Cole–Cole e~v!2e`

e02e`
5

1

11~ ivtCC!a

ln tCC S 1

a221D p2

3

0

7 Cole–Davidson e~v!2e`

e02e`
5

1

~11ivtCD!g

ln tCD1c~g!1Eu
c8~g!2

p2

6

c9~g!12z~3!

8 Havriliak–Negami e~v!2e`

e02e`
5

1

~11~ ivtHN!a!g ln tHN1
c~g!1Eu

a

c8~g!

a2 1
p2

6a22
p2

3

c9~g!12z~3!

a3

9 Fuoss–Kirkwood
e9~v!5

aDe

~vtFK!2a1~vtFK!a

ln tFK S 1

a221D p2

4

0

10 Jonscher
e9~v!5

A

~v/v1!
2a1~v/v2!

b

p

a1b
cotS ap

a1bD2 a ln v11b ln v2

a1b

p2

sin2S ap

a1bD~a1b!2

2
p2

4
2p3 cosS ap

a1bD
sin3S ap

a1bD~a1b!3

with A5
De

2
~a1b!S v1

v2
D ab/~a1b!

sinS ap

a1bD
11 Kohlrausch f(t)5exp(2(t/tK)b) S12

1

bDEu1 ln tK S 1

b221D p2

6
2z~3!S12

1

b3D
nt
c-

u

re the
is
of
Rows 9 and 10 of Table I show the logarithmic mome
calculated in this way for definitions of the dielectric fun
tion where only the loss part is given.6,7

In a similar way the logarithmic moments can be calc
lated if the relaxation is defined by a functionf(t) in time
domain. The negative derivative of~6! with respect to lnt
can be written as

2
df

d ln t
5E

2`

1`

d ln tg~ ln t!exp~ ln t2 ln t

2exp~ ln t2 ln t!!. ~18!

This is a convolution of exp(x2exp(x)) with the distribution
function g(ln t). The resulting relations for the moments a

^ ln t&5Eu1@ ln t#, ~19!

s ln t
2 5@~ ln t !2#2@ ln t#22p2/6, ~20!
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
s

-

m3 ln t5@~ ln t !3#23@~ ln t !2#@ ln t#12@ ln t#312z~3!
~21!

with the Euler constant Eu50.5772... andz~3!51.202...,
Riemann’s zeta function with the argument 3.@(ln t)n# is de-
fined for the time coordinate in a similar way as by~17! for
frequencies

@~ ln t !n#5E
2`

1`

d ln tS 2
df

d ln t D ~ ln t !n. ~22!

Using this method the logarithmic moments ofg(ln t) can be
calculated for the Kohlrausch function1 ~row 11 of Table I!.
For b51/2 the logarithmic moments are the same as for
Rajagopal–Ngai distribution. This is because the latter
constructed to be the exact distribution of relaxation times
the Kohlrausch function in the special caseb51/2 and a
reasonable approximation for other values ofb.14
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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For the most commonly used empirical relaxation fun
tions with one adjustable parameter, the Kohlrausch, Co
Davidson, and Cole–Cole expressions, Fig. 1 shows the
and second logarithmic moments. As expected the loga
mic width of the corresponding relaxation time distributio
increases with decreasing parameterb, a, or g. If the param-
eters have the value one all three functions reduce to
Debye/exponential case; thus the width of the distribut
vanishes. If the parameters approach zero the width dive
as s ln t;b21, a21, g21. For the asymmetric ones amon
these functions the absolute value of the skewness incre
with increasing parameterb or g; they even diverge as
ug1 ln tu;(12b)21/2, (12g)21/2. This is a counterintuitive
consequence of normalizing the third moment by the cu
width in definition ~10!.

FIG. 1. Width s ln t and skewnessg1 ln t of the most common ‘‘one-
parameter’’ functions: Kohlrausch~continuous curve!, Cole–Davidson
~dashed curve!, and Cole–Cole~dashed–dotted curve!.

FIG. 2. Widths ln t and~alternatively defined!! skewnessm3 ln t /sln t
2 of the

Havriliak–Negami function: The continuous curves represent cons
a50.3,...,1 in steps of 0.1, the bold curve belongs to the Cole–David
limit, a51. The dotted curves represent constantg50.3,...,1 in steps of 0.1,
the bold curve belongs to the Cole–Cole limit,g51. The dashed curve
shows for comparison the same values for the Kohlrausch function
b50.3,...,1.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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Figure 2 shows a graphical representation of the res
for the two-parameter Havriliak-Negami function. As a
scissa an alternative definition of the skewness,

m3 ln t /s ln t
2 , ~23!

has been chosen to avoid the divergence of definition~10! in
the limit a→1. It can be seen that the Havriliak–Negam
function is able to represent any width of the relaxation b
only negative skewness~as has been pointed out by Havri
iak and Havriliak16 this deficiency can be resolved by allow
ing g.1 with the weaker restrictionag,1 but only a few
authors actually use this generalization! in a certain range
delimited by the Cole–Davidson case labeled bya51 in the
plot.

From Fig. 2 and the equivalent plots for the Jonscher a
Matsumoto–Higasi functions it seems that the combinat
‘‘large skewness, small width’’ cannot be attained. But this
not a mathematical property because distributions with
combination of the first three moments can be constructe
is rather a general experimental outcome than ana priori
limitation that such highly skewed distributions do not occ
in reality.

III. INTERRELATIONS OF EMPIRICAL FUNCTIONS

It is clear that all the empirical functions listed in Tab
I are distinct. They only coincide if one is a special case
another, e.g., the Cole–Davidson function and
Havriliak–Negami function. Especially, the Kohlrausc
function has no equivalent in the frequency domain. Its F
rier transform is only known for special cases whereb is a
rational number,17 e.g., forb51/2:

e~v!2e`

e02e`
5A p

4ivtK
expS 1

4ivtK
DerfcSA 1

4ivtK
D .

~24!

This expression clearly cannot be represented exactly by
of the empirical functions in frequency domain.

Therefore, considerable effort has been made in the
erature to establish approximate relationships between
Kohlrausch function and frequency domain expressio
Starting from the asymptotic properties of the Kohlraus
function that e9~v!;v for low frequencies ande9(v)
;v2b for high frequencies the Cole–Davidson functio
with g5b seems to be the appropriate choice. But Fig. 3~b!
shows that the high- and low-frequency wings have differ
levels and will not coincide despite having the same slop

Therefore, it may be a better compromise for represe
ing actual data to choose a mediatory valueg,b. Such an
attempt was first described by Lindsey and Patterson~LP!.18

On grounds of a least-squares fit they propose the relati

b5H 0.970g10.144 for 0.2<g<0.6,

0.683g10.316 for 0.6<g.
~25!

Using the logarithmic moments derived here an alter
tive correspondence can be established by imposing tha
moments up to the second should coincide. This result
the relation

nt
n

th
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b5
p

A6c8~g!
. ~26!

Figure 3~a! shows a comparison of the correspondences
can be seen that the one based on the logarithmic mom
lies in between the LP formula and the ‘‘asymptotic’’ on
Concerning the agreement the LP correspondence perfo
slightly better in the peak while the logarithmic momen
approach works better on the high frequency side. In b
cases the low frequency wing is poorly represented.

In order to overcome this deficiency one can use a tw
parameter function, namely Havriliak–Negami, as was fi
described by Alvarez, Alegrı´a, and Colmenero~AAC!.19

They use a numerical algorithm to invert~6! and thus obtain
the distribution function of the Kohlrausch relaxation. Su
sequently, they use this distribution to calculateeK9 (v) from
~7!. Finally, the Havriliak–Negami function is determine
with the parameters for whicheHN9 (v) fits best to the previ-
ously calculated function. From the tabulated values of c

FIG. 3. ~a! Correspondence between Cole–Davidson exponentg and Kohl-
rausch exponentb resulting from equating the second logarithmic mome
~continuous curve!. For comparison the ‘‘least-squares’’ correspondence
tablished by Lindsey and Patterson~Ref. 18! ~dashed curve! and the corre-
spondence from asymptotic behavior~dotted curve!. ~b! The performance of
the three approximations demonstrated by comparinge9~v! for b51/2. The
line styles for the Cole–Davidson curves are chosen as in~a!, the Fourier
transform of the Kohlrausch function~24! is plotted in bold.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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ms

th

-
t

-

r-

responding exponent parameters, the following approxim
relation to the Kohlrauschb is established for given
Havriliak–Negami parameters:

b5~ag!0.813. ~27!

For a given Kohlrauschb, the additional relation

g5120.8121~12a!0.387 ~28!

together with~27! fixes the optimala, g pair to be used. The
characteristic times are related by

log10

tHN

tK
52.6~12b!0.5exp~23b!. ~29!

The approach by logarithmic moments equating the s
ond moments yields the following relation for the Koh
rauschb with given Havriliak–Negami parameters:

b5S 1

a2 1
6c8~g!

pa2 21D 21/2

. ~30!

For given b the corresponding Havriliak–Negami param
eters can be obtained by this equation together with the
lowing equation resulting from the third moments:

2z~3!S 12
1

b3D5
c9~g!12z~3!

a3 . ~31!

Finally, the ratio of the characteristic times is given by

ln
tHN

tK
5S 12

1

b
2

1

a DEu2
c~g!

a
. ~32!

Figure 4 shows the comparison of both parameter co
spondence schemes. From Fig. 4~a! one can see that fo
Kohlrausch parametersb>0.3 both methods yield the sam
Havriliak–Negami parameters within a60.03 range. Never-
theless, the conversion tob of Havriliak–Negami parameter
which are closer to the symmetric caseg51 leads to larger
differences. Interestingly, the discrepancy here is smalles
a51, i.e., the Cole–Davidson case.

The comparison of correspondinge9~v! in Fig. 4~b! has
a similar result as for the Cole–Davidson case before. T
AAC correspondence~derived by a fit algorithm similar to
LP! performs better close to the peak with clear deviations
the wings. Equating the logarithmic moments in contr
leads to a more ‘‘distributed’’ occurrence of the difference

IV. CONCLUSIONS

The use of logarithmic moments to characterize non
ponential relaxations can be justified by several argumen

~1! Many dynamical experiments~especially light
scattering20 and dielectric spectroscopy21! can at present be
done on enormous time or frequency scales. These can
tend up to 18 decades. In such experiments data is nece
ily taken on a logarithmic abscissa. Therefore, moments
that scale capture the information obtained better than th
on a linear scale. For example, the average relaxation t
^t& may be dominated by the low frequency part of the e
periment while the average of the logarithm^ln t& has to take
the whole spectrum into account.

-
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~2! A common way to interpret relaxation time distribu
tions is to assume their origin in a distribution of ener
barriers of an activated process. Such a distributionG(E) via
the Arrhenius law

t5t0 expS E

kBTD ~33!

~with a unique prefactort0! leads to a distribution of relax
ation times

g~ ln t!5kBTG~kBT~ ln t2 ln t0!!. ~34!

In this picture the moments of the energy barrier distribut
are related to the logarithmic moments of the relaxation ti
distribution in a simple way,

^E&5kBT~^ ln t&2 ln t0!, ~35!

FIG. 4. ~a! Correspondence between Havriliak–Negami exponentsg, a and
Kohlrausch exponentb resulting from equating the logarithmic momen
~continuous curves!. The thin lines show theg, a pairs corresponding to
constantb50–1 in steps of 0.1 according to the second moment rela
~30!. The thick line represents the ‘‘optimal’’g, a pairs fulfilling also the
third moment relation~31!. The dotted curve shows for comparison th
correspondence established by Alvarez, Alegrı´a, and Colmenero~Ref. 19!.
~b! The performance of the two approximations demonstrated by compa
e9~v! for b51/2. The line styles for the Havriliak–Negami curves are ch
sen as in~a!, the Fourier transform of the Kohlrausch function~24! is plotted
in bold.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
n
e

sE5kBTs ln t , ~36!

g1E5g1 ln t . ~37!

Here,sE
2 andg1E are defined analogously by replacing lnt

by E in Eqs.~9!–~11!. Apart from opening the possibility to
calculate the moments ofG(E) without assuming a func-
tional form and fitting complicated convolution expressio
this can be seen as ana priori argument to characteriz
stretched relaxations by their logarithmic moments.

~3! The logarithmic moments can be directly calculat
from experimental data. This allows the spectral informat
to be condensed into a set of numerical values without
suming a specific functional form as in the procedure of
ting free parameters. Expressions~14!–~16! can be used for
frequency domain data, e.g., the dielectric losse9~v!. Ex-
pressions~19!–~21! are appropriate for time-domain spe
troscopy.

It has been shown that the logarithmic moments can
calculated in closed form for all empirical fit formulas whic
are currently in use. This allows the use of literature data a
in cases where ‘‘raw’’ spectra are not presented. By comp
ing the logarithmic moments results from different sourc
can be compared also if the authors prefer different
schemes~e.g., Havriliak–Negami and Jonscher!.

Finally, logarithmic moments can be used to derive a
proximate relations between time domain functions and
quency spectra where an exact Fourier transform is imp
sible ~as, e.g., for the Kohlrausch expression!. These seem to
be valid over a larger dynamical range than those derived
least-squares methods.
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