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Logarithmic moments of relaxation time distributions
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In this paper a novel way to quantify “nonexponential” relaxations is described. So far, this has
been done in two way$1) by fitting empirical functions with a small number of parameté2s by
calculation of the underlying distribution functiog(In 7) of (exponentigl relaxations using
regularization methods. The method described here is intermediate, it does not assume a specific
functional form but also does not aim at the complete distribugifin 7) but only itslogarithmic
moments((In HX). It is shown that these exigin contrast to the linear momentand can be
calculated analytically for all currently used empirical descriptions of nonexponential relaxations.
Therefore, the logarithmic moments represent a common basis for comparing literature data from
authors which prefer different empirical formul@sg., those of Kohlrausch and Havriliak-Negami

The logarithmic moments are also shown to be related in a simple way ttirtean moments of

an underlying distribution of activation energies giving them a physical significance20@
American Institute of Physics[DOI: 10.1063/1.1446035

. INTRODUCTION e(w)— €., 1
= 4

€0 € B (1+(lwm)*)”

It is well known—especially from glass-forming

systems—that the relaxation of certain quantities in response.
Y g PONSTith & or y or both between zero and ofi@ Another at-

to a step function often does not follow a simple exponentia . e . .
N . . . . . empt is based on modification of the imaginary part2#
law. This is found in dielectric, mechanical, light scattering, . . L . .
which is often the measured quantity in dielectric

neutron scattering, and many other relaxation techniques. .
The mathematical description of such a behavior has been 5° periments—to
considerable interest in the literature. In this paper the results
will be formulated in terms of dielectric relaxation but it is €'(w)=
simple to translate them into the context of the other meth-
ods.

For dielectric relaxation the time-dependent dielectric
function €(t) can be written in a normalized way

®)

(wlwy) 3+ (wlwy)®’

where 0<a, b<15' For a=b=1, w;=w,=1/7, and A
=1. Eq.(5) reduces to the Debye expression.
The few parameters determining the relaxation function
€o— €(t) or susceptibility in the preceding descriptions can usually be
d(t)= e (1) determined unambiguously by least-squares fit to the experi-
o e mental data. Nevertheless, it remains questionable whether
where ¢(t), the normalized relaxation function, in the most the parameters obtained in this way have any physical sig-
simple case is exp{t/7). Then(and only theh one obtains nificance. Also there is often reopriori reason to prefer one
for the complex frequency-dependent dielectric functionof the descriptions and the fits are equally well and allow no

e(w) Debye’s result: a posterioripreference too.
A much more general description of experimentally
e(w)— €, 1 : : : : :
_ S (2 measured relaxation functions is possible by expressing them
€0 €x ltior as a superposition of exponential relaxations

Because the exponential relaxation or equivalently the o
Debye description of the susceptibility often fail in the de- ¢(t)=f dinrg(In r)exp(—t/7), (6)
scription of experimental data a plethora of empirical func- -

ti h I . The ol t att t dati kt . o . L .
ll%ﬁra?sfﬁbiiet?) O:é\tle oped. The oldest attempt dating bac v(\?hereg(ln 7) is a distribution function which is always posi-

tive and whose integral is normalized to one. From probabil-
d(t)=exp — (t/7¢)P), (3) ity theory it is known that it is possible to obtain a distribu-
tion g(In 7) from ¢(t) according to Eq(6) if and only if

i.e., introducing a “stretching” parameter<(B<1 in the ) ’is completely monoton®This means that the deriva-
logarithmic time. Other authors introduced modifications Oftives ™ (t)=d"¢/dt" must have alternating signs over the

the Debye expression to whole range=0,...,0: (—1)"¢™(t)=0. In practice it turns
out to be a rather weak condition which is fulfilled for nearly

dElectronic mail: r.zorn@kfa-juelich.de all experimentally obtained relaxation functions.
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Equivalently, the susceptibility can then be written as aand the asymmetry as the skewness of distribution of loga-

superposition of Debye expressions rithmic relaxation times
e(w)—e., +20 1 = lad 10
L:f dIn7g(In7) : . @) Yiinr=M3In7'0n - (10
€0~ € Cw 1+iwT where
The inversion of Eq(6) from experimentatp(t) data or 13 1= {(In 7)) —3((In 7)2)(In 7)+2(In 7)? (11)

(7) from measured’(w) or € (w) is a difficult task. It is a
so-called “ill-defined” problem which can numerically only is the third centralized moment of the distribution of loga-
be solved by regularization methods and not by least-squarghmic relaxation times.

algorithms. While these methods have been used in light Of course this formalism could be extended to higher
scattering for quite some timéCONTIN algorithn?) they ~ moments allowing a more accurate description of the relax-
have been introduced to dielectric spectroscopy onlation shape. But the fact that most of the empirical formulas
recently:? contain only one or two shape parameters indicates that a

Of course it is also possible to assume simple distribucharacterization by three moments is sufficient.

tion functionsg(ln 7) with a small number of parameters.

Then it is again possible to use least-squares methods but

arguments concerning the arbitrariness of the choice of thg -~z cULATION OF LOGARITHMIC MOMENTS
function can be put forward again.

In this paper a description of nonexponential relaxations  In the following it is demonstrated that the calculation of
will be proposed which is intermediate between those dethe quantities defined by Eq&)—(11) is indeed practicable
scribed abovethat by a small number of exponent param-for any way of defining a nonexponential relaxation.
eters and that by a whole distribution functioa description In the simplest case the definition of a nonexponential
by logarithmic moments of the distribution function. relaxation is done directly by the distribution functiont*

The choice of this description is motivated by the quali-g(In 7). In this case Eqs(8)—(11) can be applied directly.
tative criteria often mentioned only verbally without giving a Results are shown in the first five rows of Table I.
guantitative expression in the literature: thbaracteristic Somewhat more complicated is the case when the com-
time of the relaxation, thevidth (or stretching of the relax-  plex dielectric functione(w) is giverf™* (rows 6—8 of Table
ation, and itsasymmetry The aim of this paper is to define |). In this case the distribution function of relaxation times
these three properties of a relaxation as numerical quantitiasan be obtained in closed fotfn
which can be obtained for all above-mentioned concepts in a
mathematically not too complicated way.

alt o g(lnt)= lim(J(e(—w+il7))
Already the problem of defining the characteristic time 2m(€0—€x), o
makes clear that logarithmic moments are well-suited for this N )
task. Probably most often the inverse of the maximum in the —J(e(w+iln)), (12)

dielectric loss is used as a characteristic time of a non-Debygng from g(In 7) in turn the logarithmic moments can be

relaxation. ESpeCially f0r broad distributions th|S Value Cancak:ulated. But Often the Ca'culation Via the IOSS pé.fto)
be difficult to obtain and depend strongly on which empiricaldescribed in the following is easier.
function is used to describe the data. The loss part is obtained from the distribution function

Therefore, some authors use the average relaxation timgs the imaginary part df7) which can be written as
(7). While this value is well-defined and simply calculable,

68 it i i " +oo secliln w+1In
e.g., for the Kohlrausch expressi@) it is undefined as soon €"(w) J din7g(In 7) fiin w+In 7) .

as there is a fractal behavior of the low frequency loss part, ey—€, J-« 2

e.g., for expressiori4) with y<1. The average relaxation ) o .
From this formulation it becomes clear thdfw) is the con-

rate( 7 1) is—even worse—undefined for nearly all the em- _ _ | OO, _
volution of seclin w)/2 with the distribution function

pirical functions in practical use because they all show & ) o o
fractal behavior for high frequencies. g(In 7). With this idea it is simple to calculate the moments

A way to avoid these divergences due to the tractaf In 7 from those of Inw using the moment rules for convo-

wings of the distribution function is the use of the average//tion:

logarithmic relaxation time (In7)=—-[Inw], (14

(13

+ o0
(In7)= f dinrin 7 ® o2 ,=[(In ©)?]~[In 012~ 724, (15
_ 3 2 3

as the characteristic time of a non-Debye relaxation. #an-=—[(nw)T+3(Nw) N e] =2 ] (16

Then it is straightforward to define the shape propertiediere the bracket(In )"] denote thenth logarithmic mo-
of the relaxation time distribution by the higher moments ofment of w with €'(w) taken as a distribution function,
In 7, the relaxation width as the variance of distribution of namely,
logarithmic relaxation times

2 +oo
O'ﬁ] ={((In 7.)2>_<|n 7_>2 9) [(Inw) ]ij'm dinwe(w)(Inw)". (17
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TABLE I. Common empirical expressions for nonexponential/non-Debye relaxations and the logarithmic moments of their distribution functivms. Not

Eu=0.5772...; Euler constan{(3)=1.202...; Riemann’s zeta functiogy(x): digamma functionz’(x): trigamma functiony/”(x): tetragamma function.
# Name Definition (In7) ot . M3,
2
1 Log-normal (|n(7'/7'0 In 7 o 0
g(In 7= \/_
2 Kirkwood—Fuoss T In 7 . 0
9(n= (m+ 7'0)2 3
3 Fréhlich L <rn In 7,+In 7, (In 7—In )2 0
g(ln 7) = { In(m1/7p) 2 12
o 0, else
4 MatSUmOtO—H|gas| p TE In Tl_Tg In T 1 1 Inr 2 (r2p+ rp)(|n r)3 2
ST <1<7 — QD5 »p = 2\ P2 P 3 3
g(ln D=4 1~ 7 -5 p p> rPe—r (r"-1) p
0, else
withr=7,/7,
5 Rajagopal—Ngai [ \BI(-B)
g(In r):Aex;{—(l—B) ﬁ—) ) In TRN+( ) In(1-p)
" 7RN B
+Eu+2In2)—In2
B ( r )zﬁ/(l—B) 772(1 1)2 1%(3)(1 1)3
with A= ———=| f— Sz -2
Nm(l=p) BTRN 2\B B
6 Cole—Cole e(w)—e., 1 In 7ec 1 2 0
€0~ € - 1+(lwreo)® (?_1)?
7 Cole—Davidson dw)—e, 1 In 7ep+ () +Eu ) 2 W (9)+2{3)
-6 (I+iwrep)? A% 6
8  Havriliak—Negami e(w)—€, 1 e WHEU Yy = ¥ (y)+2{(3)
- € (I+(iomyn)9” M 7 a? 6a? 3 o’
9  Fuoss—Kirkwood ale In ¢ 1 - 0
E”(‘”): —a @ (?71 4
(07e¢) “+ (0T) 4
10 Jonscher A T ar | alnw;+blnw, 772 am
(0)=————"F —cofl —|— — 27 cog —
(0l wy) "3+ (wlwy) a+b a+b, a+b [ am ) a+b
sirf|—|(a+b)
a+b 'n3( am b
st a+b (@+b)
Ae o abl/(a+b) amr
with A=7(a+b)(w—) sin|—- arb,
11 Kohlrausch d(t) =exp( ()P ( 1 ( 1 ) 2 ( 1)
1-—|Eu+In 5 ——1—= 3)|1-—
gl 7 e G-z

Rows 9 and 10 of Table | show the logarithmic moments

calculated in this way for definitions of the dielectric func-
tion where only the loss part is givér.

In a similar way the logarithmic moments can be calcu-
lated if the relaxation is defined by a functi@(t) in time
domain. The negative derivative ¢6) with respect to Iri
can be written as

dlnt f dInrg(In r)expInt—=In~

—exp(Int—=In7)). (18

This is a convolution of expexp)) with the distribution

functiong(In 7). The resulting relations for the moments are
(In 7y=Eu+[Int], (19

o2 =[(Int)2]—[Int]?>— =?/6, (20)

3 =[(INO%]=3[(INH][Int]+2[Int]%+24(3)
(21)

with the Euler constant Ed0.5772... and{(3)=1.202...
Riemann’s zeta function with the argumen{8nt)"] is de—
fined for the time coordinate in a similar way as (dy’) for
frequencies

[(Int)“]=f+:dlnt( ddlqbt)(lnt) (22

Using this method the logarithmic momentsggfn 7) can be
calculated for the Kohlrausch functibrow 11 of Table ).

For B=1/2 the logarithmic moments are the same as for the
Rajagopal—Ngai distribution. This is because the latter is
constructed to be the exact distribution of relaxation times of
the Kohlrausch function in the special cage-1/2 and a
reasonable approximation for other valuesgof*
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20 X A S — Figure 2 shows a graphical representation of the results
: for the two-parameter Havriliak-Negami function. As ab-
scissa an alternative definition of the skewness,

#3107 T (23)

has been chosen to avoid the divergence of definitl@nin

the limit «—1. It can be seen that the Havriliak—Negami

function is able to represent any width of the relaxation but

only negative skewnedas has been pointed out by Hauvril-
iak and Havriliak® this deficiency can be resolved by allow-
ing y>1 with the weaker restrictiomy<1 but only a few
authors actually use this generalizalian a certain range

. ! delimited by the Cole—Davidson case labeleddsyl in the

_1000 — 0|5 — 1.0 plot

' ' ’ From Fig. 2 and the equivalent plots for the Jonscher and
B.y,o Matsumoto—Higasi functions it seems that the combination
_ “large skewness, small width” cannot be attained. But this is

FIG. 1. Width oy, and skewnessy, , of the most common ‘one- i 5 mathematical property because distributions with any

parameter” functions: KohlrauscHcontinuous curve Cole—Davidson . . .

(dashed curve and Cole—Colédashed—dotted curye combination of the first three moments can be constructed. It
is rather a general experimental outcome thanaapriori
limitation that such highly skewed distributions do not occur

For the most commonly used empirical relaxation func-in reality.

tions with one adjustable parameter, the Kohlrausch, Cole—

Davidson, and Cole—Cole expressions, Fig. 1 shows the first

and second logarithmic moments. As expected the logarithy, -\ .t pre| ATIONS OF EMPIRICAL FUNCTIONS

mic width of the corresponding relaxation time distribution

increases with decreasing parameier, or . If the param- It is clear that all the empirical functions listed in Table
eters have the value one all three functions reduce to thpare distinct. They only coincide if one is a special case of
Debye/exponential case; thus the width of the distributionanother, e.g., the Cole—Davidson function and the
vanishes. If the parameters approach zero the width divergesavriliak—Negami function. Especially, the Kohlrausch
as oy ~B ', a”t, y 1. For the asymmetric ones among function has no equivalent in the frequency domain. Its Fou-
these functions the absolute value of the skewness increasggr transform is only known for special cases whgrés a
with increasing parameter or y; they even diverge as rational numbet/ e.g., for3=1/2:

|71 1nA~(@—=B) Y2 (1—v) Y2 This is a counterintuitive

consequence of normalizing the third moment by the cubed €(®@)—€x | 7 exr{ 1 )erfc( |1 )
width in definition (10). €0~ €x dioTg dioTg diwrg|’
(24

This expression clearly cannot be represented exactly by any
of the empirical functions in frequency domain.

Therefore, considerable effort has been made in the lit-
erature to establish approximate relationships between the
Kohlrausch function and frequency domain expressions.
Starting from the asymptotic properties of the Kohlrausch
function that €'(w)~w for low frequencies ande”(w)
~w P for high frequencies the Cole—Davidson function
with y=8 seems to be the appropriate choice. But Figp) 3
shows that the high- and low-frequency wings have different
levels and will not coincide despite having the same slope.

Therefore, it may be a better compromise for represent-
ing actual data to choose a mediatory valgeB. Such an
attempt was first described by Lindsey and Pattefséh. 8
On grounds of a least-squares fit they propose the relation

0.970y+0.144  for 0.2<y=<0.6,
FIG. 2. Widtho, , and(alternatively defined!skewnesus |, ,/a?, , of the B= 0.683y+0.316 for 0.6< 7.
Havriliak—Negami function: The continuous curves represent constant
@=0.3,...,1 in steps of 0.1, the bold curve belongs to the Cole-Davidson  Using the logarithmic moments derived here an alterna-
limit, a=1. The dotted curves represent constgr0.3,...,1 in steps of 0.1, ; ; ; ;
the bold curve belongs to the Cole—Cole limji=1. The dashed curve tive CorrESpondence can be eStab“She.d by |mpo_3|ng that t.he
shows for comparison the same values for the Kohlrausch function witHinoments up to the second should coincide. This results in

B=03,...1. the relation

1 5 T T T T T T T T T T T T T T T T T T T T T

p,t3/cs2

(25
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1.0 ——— T responding exponent parameters, the following approximate
] relation to the Kohlrauschg is established for given
(a) s Havriliak—Negami parameters:
a 1
o ] B=(ay)%®? (27)
// ] For a given KohlrausclB, the additional relation
@ 05} s . y=1-0.81211— a)®387 (28)
// 1 together with(27) fixes the optimak, y pair to be used. The
3 characteristic times are related by
T
I0g1g—~ =2.61~ )°Sexp ~34). (29
K
00 —————t—— The approach by logarithmic moments equating the sec-

00 05 10 ond moments yields the following relation for the Kohl-

rauschgB with given Havriliak—Negami parameters:
( 1 6y (y) )1’2
=\t —="1] .

a2 ma

(30)

-1
107 For given B the corresponding Havriliak—Negami param-
eters can be obtained by this equation together with the fol-
lowing equation resulting from the third moments:

CW()+2(3)

=3 (3D

1

27(3)| 1—
& )( B
Finally, the ratio of the characteristic times is given by

1 1) P(y)

THN
TK

109 £ In

Eu———. (32

10 10° 10° 108 Figure 4 shows the comparison of both parameter corre-
@ spondence schemes. From Figa)done can see that for
FIG. 3. (a) Correspondence between Cole—Davidson expopemtd Kohl- KOhlIfE?‘USCh parametenszos bOth r_nethOdS yield the same
rausch exponeng resulting from equating the second logarithmic moment Havriliak—Negami parameters within-20.03 range. Never-
(continuous curve For comparison the “least-squares” correspondence estheless, the conversion EJOf Havriliak—Negami parameters

tablished by Lindsey and Patters@Ref. 18 (dashed curveand the corre- . .
spondence from asymptotic behavidotted curve (b) The performance of which are closer to the symmetric cage1 leads to larger

the three approximations demonstrated by compaeitg) for =1/2. The  differences. Interestingly, the discrepancy here is smallest for
line styles for the Cole—Davidson curves are chosen ds)irthe Fourier =1, i.e., the Cole—Davidson case.

transform of the Kohlrausch functiof24) is plotted in bold. The comparison of correspondir&@‘jw) in Fig. 4(b) has
a similar result as for the Cole—Davidson case before. The
AAC correspondencéderived by a fit algorithm similar to

T LP) performs better close to the peak with clear deviations in
B= . (26)  the wings. Equating the logarithmic moments in contrast
69’ (7) g q g g

leads to a more “distributed” occurrence of the differences.

Figure 3a) shows a comparison of the correspondences. It
can be seen that the one based on the logarithmic moments
lies in bgtween the LP formula and the “asymptotic” one. \; coNCLUSIONS
Concerning the agreement the LP correspondence performs
slightly better in the peak while the logarithmic moments  The use of logarithmic moments to characterize nonex-
approach works better on the high frequency side. In botlponential relaxations can be justified by several arguments:
cases the low frequency wing is poorly represented. (1) Many dynamical experiments(especially light

In order to overcome this deficiency one can use a twoscattering® and dielectric spectroscopy can at present be
parameter function, namely Havriliak—Negami, as was firsdone on enormous time or frequency scales. These can ex-
described by Alvarez, Alegay and ColmenerdAAC).Y®  tend up to 18 decades. In such experiments data is necessar-
They use a numerical algorithm to invé® and thus obtain ily taken on a logarithmic abscissa. Therefore, moments on
the distribution function of the Kohlrausch relaxation. Sub-that scale capture the information obtained better than those
sequently, they use this distribution to calculaféw) from  on a linear scale. For example, the average relaxation time
(7). Finally, the Havriliak—Negami function is determined {(7) may be dominated by the low frequency part of the ex-
with the parameters for whick,\(w) fits best to the previ- periment while the average of the logaritiin 7) has to take
ously calculated function. From the tabulated values of corthe whole spectrum into account.
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10 oe=kgToy -, (36)

YIE= Yiinr- (37)

Here,aé and y,g are defined analogously by replacingrin
by E in Egs.(9)—(11). Apart from opening the possibility to
calculate the moments d&(E) without assuming a func-
tional form and fitting complicated convolution expressions
this can be seen as am priori argument to characterize
stretched relaxations by their logarithmic moments.

(3) The logarithmic moments can be directly calculated
from experimental data. This allows the spectral information
to be condensed into a set of numerical values without as-
suming a specific functional form as in the procedure of fit-
ting free parameters. Expressiofigh)—(16) can be used for
frequency domain data, e.g., the dielectric l@8&w). Ex-
pressions(19)—(21) are appropriate for time-domain spec-
] troscopy.

] It has been shown that the logarithmic moments can be
calculated in closed form for all empirical fit formulas which

are currently in use. This allows the use of literature data also
in cases where “raw” spectra are not presented. By compar-
ing the logarithmic moments results from different sources
can be compared also if the authors prefer different fit

0.0
0.0

1071

w
102 schemege.g., Havriliak—Negami and Jonscher
Finally, logarithmic moments can be used to derive ap-
proximate relations between time domain functions and fre-
quency spectra where an exact Fourier transform is impos-
sible (as, e.g., for the Kohlrausch expresgiofhese seem to

109}

be valid over a larger dynamical range than those derived by
least-squares methods.

103 10° 103 108

@ IR. Kohlrausch, Ann. PhygLeipzig) 91, 56 (1854.

FIG. 4. (a) Correspondence between Havriliak—Negami expongntsand zK- S. Cole and R. H. Cole, J. Chem. Phgs 341 (1941).
Kohlrausch exponeng resulting from equating the logarithmic moments ~D. W. Davidson and R. H. Cole, J. Chem. Phy8, 1417(1950; 19, 1484
(continuous curves The thin lines show they, a pairs corresponding to 4(195])- - ] ]
constantg=0-1 in steps of 0.1 according to the second moment relation ~S- Havriliak and S. Negami, J. Polym. Sci., Part C: Polym. Syidp99
(30). The thick line represents the “optimaly, « pairs fulfiling also the (1966. _ , ,
third moment relation(31). The dotted curve shows for comparison the SFor reasons of conformity the exponent parameters are defined here in a
correspondence established by Alvarez, Alegand Colmener¢Ref. 19. way that their value 1 always corresponds to the Debye case. With respect
(b) The performance of the two approximations demonstrated by comparing to the original publications this means a substitutiofud—a (Cole—Cole
€'(w) for B=1/2. The line styles for the Havriliak—Negami curves are cho- and Havriliak—Negamiandm—a, 1—n—b (Jonschex
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