Measurement of central exclusive $\pi^+\pi^-$ production in pp collisions at $\sqrt{s} = 0.9$ and 1.96 TeV at CDF

Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439, USA
3 University of Athens, 157 71 Athens, Greece
4 Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798, USA
6a Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6b University of Bologna, I-40127 Bologna, Italy
7 University of California, Davis, Davis, California 95616, USA
8 University of California, Los Angeles, Los Angeles, California 90024, USA
9 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
10 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
11 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
12 Comenius University, 842 48 Bratislava, Slovakia;
Institute of Experimental Physics, 040 01 Kosice, Slovakia
13 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14 Duke University, Durham, North Carolina 27708, USA
15 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
16 University of Florida, Gainesville, Florida 32611, USA
17 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18 University of Geneva, CH-1211 Geneva 4, Switzerland
19 Glasgow University, Glasgow G12 8QQ, United Kingdom
20 Harvard University, Cambridge, Massachusetts 02138, USA
21 Division of High Energy Physics, Department of Physics, University of Helsinki, FIN-00014, Helsinki, Finland;
Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
22 University of Illinois, Urbana, Illinois 61801, USA
23 The Johns Hopkins University, Baltimore, Maryland 21218, USA
24 Institut für Experimentalle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
25 Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea;
Sungkyunkwan University, Suwon 440-746, Korea;
Korea Institute of Science and Technology Information, Daejeon 305-806, Korea;
Chonnam National University, Gwangju 500-757, Korea;
Chonbuk National University, Jeonju 561-756, Korea;
Ewha Womans University, Seoul 120-750, Korea
26 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
27 University of Liverpool, Liverpool L69 7EZ, United Kingdom
28 University College London, London WC1E 6BT, United Kingdom
29 Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
30 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
31 University of Michigan, Ann Arbor, Michigan 48109, USA
32 Michigan State University, East Lansing, Michigan 48824, USA
33 Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
34 University of New Mexico, Albuquerque, New Mexico 87131, USA
35 The Ohio State University, Columbus, Ohio 43210, USA
36 Okayama University, Okayama 700-8530, Japan
37 Osaka City University, Osaka 558-8585, Japan
38 University of Oxford, Oxford OX1 3RH, United Kingdom
39 Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
40 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
41 Istituto Nazionale di Fisica Nucleare Pisa, I-27100 Pavia, Italy
MEASUREMENT OF CENTRAL EXCLUSIVE $\pi^+\pi^-$ \ldots

PHYSICAL REVIEW D 91, 091101(R) (2015)

091101-3

RAPID COMMUNICATIONS
We measure exclusive $\pi^+\pi^-$ production in proton-antiproton collisions at center-of-mass energies $\sqrt{s} = 0.9$ and 1.96 TeV in the Collider Detector at Fermilab. We select events with two oppositely charged particles, assumed to be pions, with pseudorapidity $|\eta| < 1.3$ and with no other particles detected in $|\eta| < 5.9$. We require the $\pi^+\pi^-$ system to have rapidity $|y| < 1.0$. The production mechanism of these events is expected to be dominated by double pomeron exchange, which constrains the quantum numbers of the central state. The data are potentially valuable for isoscalar meson spectroscopy and for understanding the pomeron in a region of transition between nonperturbative and perturbative quantum chromodynamics. The data extend up to dipion mass $M(\pi^+\pi^-) = 5000$ MeV/c2 and show resonance structures attributed to $f_0(1270)$ mesons. From the $\pi^+\pi^-$ and K^+K^- spectra, we place upper limits on exclusive $\chi_{c0}(3415)$ production.

DOI: 10.1103/PhysRevD.91.091101

PACS numbers: 13.85.Ni, 13.75.Lb, 14.40.Be, 14.40.Lb

In quantum chromodynamics, the theory of strong interactions between quarks and gluons, calculations of hadronic interactions are most reliable in the perturbative regime of high four-momentum transfer squared, i.e., for distance scales much less than the size of hadrons, typically 1 fm. Diffractive processes with low transverse-momentum (p_T) [1] hadrons involve nonperturbative physics where Regge theory describes scattering processes [2,3]. The data presented in this paper, from proton-antiproton ($p\bar{p}$) collisions at $\sqrt{s} = 0.9$ and 1.96 TeV, extend the experimental study of central exclusive production to above the charmonium threshold, where the calculation of exclusive χ_c production by gluon fusion involves perturbative QCD processes [4,5]. Elastic scattering and other diffractive interactions are characterized by a large region of rapidity [1], Δy (or $\Delta \eta$ as an approximation), devoid of hadrons, called a rapidity gap. Such processes are described in Regge theory by the exchange of a pomeron, P, which at leading order is a pair of gluons in a color-singlet state [2].

Central exclusive production is here defined to be $p\bar{p} \to p^{(*)}(X) \oplus \bar{p}^{(*)}(X)$, where X is a specific central ($|y_X| < 1$) state and \oplus represents a large region of rapidity, $1.3 < |\eta| < 5.9$, where no particles are detected. The incident particles remain intact or dissociate diffractively ($p \to p^*$) into undetected hadrons. In this study we do not detect outgoing (anti)protons, and we include events where they dissociate into hadrons with $|\eta| > 5.9$. With two large rapidity gaps and central hadrons, the process is expected to be dominated by double pomeron exchange, DPE [2,3]. Only at hadron colliders with center-of-mass energy $\sqrt{s} \gtrsim 50$ GeV [6,7] are rapidity gaps larger than $\Delta y = 3$ possible with central state masses $M(X)$ up to about 2500 MeV/c2.

Calculations of the hadron mass spectrum in this domain have large uncertainties and do not yet include resonances. The CDF Collaboration reported the first observations of exclusive $P + P \to \gamma\gamma$ [8], and $P + P \to \chi_c$ using the $J/\psi + \gamma$ decay mode [9], which can be calculated semiperturbatively through quark-loop diagrams [4,5,10–12].

In DPE the central state X must have isotopic spin $I = 0$ (isoscalar) with positive parity, C-parity and G-parity, and dominantly even spin J, so exclusive production of $f_0, f_2, \chi_0(0,2)$, and $\chi_{c0}(2)$ mesons is allowed. Thus, DPE is a quantum number filter, favoring states having valence gluons, such as glueballs, i.e., hadrons with no valence quarks. Such states are expected in QCD, but 40 years after being proposed [13], their existence is not established [14]. More measurements in different production modes and decay channels should provide insight on the issue. In addition to its role in meson spectroscopy, DPE studies shed light on the nature of the pomeron. Data at different collision energies provide additional tests of the theory; in Regge theory the cross section for $p + (\pi^+\pi^-) + \bar{p}$, with the $\pi^+\pi^-$ in a fixed central region, decreases approximately like $1/\ln(s)$ [15,16].

The analysis reported here uses data from the CDF II detector, a general purpose detector to study $p\bar{p}$ collisions at the Fermilab Tevatron, and is described in detail elsewhere [17]. Here we give a brief summary of the detector components used in this analysis. Surrounding the beam pipe is a tracking system consisting of silicon microstrip detectors and a cylindrical drift chamber in a 1.4 Tesla solenoidal magnetic field. The tracking system is close to 100% efficient at reconstructing the trajectories of isolated charged particles with $p_T > 0.4$ GeV/c and $|\eta| < 1.3$. A barrel of time-of-flight (ToF) counters surrounds the drift chamber for $|\eta| \lesssim 0.9$. The magnet coil is surrounded by the central, end-wall ($|\eta| < 1.32$) and plug ($1.32 < |\eta| < 3.64$) calorimeters. These scintillator/photomultiplier sampling calorimeters have separate electromagnetic (EM) and hadronic (HAD) compartments with pointing tower geometry.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Gas Cherenkov detectors (CLC) [18] covering 3.7 < |η| < 4.7 monitor the luminosity and are used in veto to reject events with charged particles in that rapidity interval. Beam shower counters (BSC) consisting of 1.7 radiation lengths of lead followed by scintillation counters are located at 5.4 < |η| < 5.9. The uninstrumented regions 4.7 < |η| < 5.4 contribute to the nonexclusive background.

The data collected at √s = 1.96 and 0.9 TeV correspond to integrated luminosities of 7.23 and 0.075 pb⁻¹, respectively, with a 6% uncertainty. Only data-taking periods with ≤4 inelastic collisions per bunch-crossing could be used. The 0.9 TeV data are from a special 40 hour period in 2011, with only three bunches of protons and antiprotons, and with low luminosity per bunch. The first stage online event selection (level-1 trigger) requires two calorimeter towers (EM + HAD) in |η| < 1.3 to have ET ≥ 0.5 GeV, with a veto on any signals in the BSC and CLC counters. A higher-level trigger rejects events with any significant energy deposit in the plug calorimeter. These requirements retain events with activity exclusively in the central region of the detector and reject most events with additional inelastic interactions in the same bunch crossing.

We select events with two charged particles, each with |η| < 1.3 and pT > 0.4 GeV/c, and no other activity significantly above noise levels in the full detector, to |η| = 5.9. The noise levels are determined for each subdetector using bunch-crossing (zero-bias) triggers in which no tracks or CLC hits are detected. We apply a requirement (cut) both on the sum of all signals in each subdetector and on the photomultiplier with the highest signal in each calorimeter. As we do not detect the final-state (anti) protons, the data include diffractive dissociation if all the produced hadrons have |η| > 5.9, with higher pT masses allowed at √s = 1.96 TeV than at 0.9 TeV.

As we only use bunch-crossings with no other visible interaction, we define an effective integrated luminosity L_eff. This is determined from the probability that the full detector is empty, in zero-bias events, using the above noise criteria, as a function of the individual bunch luminosity L_bunch. The distribution is exponential with the intercept consistent with 1.0 and slope consistent with the expected visible (|η| < 5.9) fraction [19] of the inelastic cross section [20]. We find L_eff = 1.16 (0.059) pb⁻¹ at √s = 1.96 (0.9) TeV, with a 6.7% uncertainty.

We assume the particles to be pions and discuss non-ππ backgrounds later. We require |y(ππ)| < 1.0 and study differential cross sections dσ/dM(ππ) up to 5000 MeV/c². The charged particle tracks are required to have a good fit with ≥ 25 hits in both the stereo and axial layers of the drift chamber, with a χ²/DoF < 2.5, to both pass within 0.5 mm of the beam line in the transverse plane and to be within 1 cm of each other in z at their closest approach. This rejects cosmic ray background, nonprompt pairs (e.g. K⁺ → π⁺π⁻) and events with poorly measured tracks. Each track is projected to the calorimeter, where it is required to deposit an energy that meets the trigger requirements. We suppress events with neutral particles, or un reconstructed charged particles, by requiring no other energy deposits in the central calorimeters outside the cones √Δη² + Δφ² = 0.3 around the extrapolated track positions.

The events with same-sign hadrons are approximately 6.5% of the total, and are rejected. These are nonexclusive events with at least two undetected particles, either due to an inefficiency or having very low pT with no reconstructed track and no calorimetric energy above the noise level.

There is also a background from opposite-sign hadron pairs that are not π⁺π⁻. This is determined using the timing information from the ToF counters, available only when both particles have |η| < 0.9. Only 67% of all pairs have both particles identified as π, K, or p, and for these (89 ± 1)% are π⁺π⁻. As a check we restrict both tracks to have |η| < 0.7, and then 90% of the pairs are identified; there is no significant change in the composition. All the spectra presented are for hadron pairs with assigned pion masses and include non-π⁺π⁻ backgrounds. The final sample contains 127 340 (6240) events at √s = 1.96 (0.9) TeV with two opposite-charge particles in the chosen kinematic region, pT > 0.4 GeV/c and |η| < 1.3, and with |y(ππ)| < 1.0.

We present acceptance-corrected and normalized differential cross sections dσ/dM(ππ) in two kinematic regions: integrated over all pT(ππ) for M(ππ) > 1000 MeV/c² and integrated over pT(ππ) > 1 GeV/c for M(ππ) > 300 MeV/c². The region with smaller pT(ππ) and M(ππ) has limited acceptance and trigger efficiency. We calculate the acceptance and reconstruction efficiency by generating single pions, simulating the CDF detector response with a GEANT-3 Monte Carlo program [21], and applying the selection criteria. This gives the four-dimensional product of geometrical acceptance, detection and reconstruction efficiencies, A[pT(ππ), M(ππ)], that we fit with an empirical smooth function. The trigger efficiency is obtained from minimum-bias data, selecting isolated tracks and determining the probability that the towers hit by the particle fire the trigger.

To compute the event acceptance, we generate states X = π⁺π⁻, uniform in rapidity over |y(ππ)| < 1.0, in M(ππ) and pT(ππ) bins, using a mass range M(ππ) from 2mπ to 5000 MeV/c² with pT(ππ) from 0 to 2.5 GeV/c and with an isotropic π⁺π⁻ distribution in the X-frame. The data, binned in M(ππ) and pT(ππ), are divided by the acceptance and L_eff to obtain the differential cross sections. The systematic uncertainty on the cross sections is dominated by the luminosity (6%) and the choice of exclusivity cuts, which affect both the candidate event selection and L eff. These cuts are varied in the data over a reasonable range, and the resulting systematic uncertainty is shown in the plots as shading.
We first discuss differential cross sections for $M(\pi\pi) > 1000$ MeV/c^2 integrated over $p_T > 0.4$ GeV/c, $|\eta| < 1.3$ and $|y(\pi\pi)| < 1.0$ between two rapidity gaps $1.3 < |\eta| < 5.9$. Red open circles for data fall monotonically with $|y(\pi\pi)| < 1.3$ and for $|y(\pi\pi)| < 1.0$ between resonances. Structures in the mass distribution are observed up to approximately 2400 MeV/c^2, suggesting production of higher-mass resonances. Figure 3 shows the mass region from 1600 MeV/c^2 to 3600 MeV/c^2, with a fit to a fourth-order polynomial. There is some structure up to 2400 MeV/c^2. Reference [22] lists five established resonances above $M = 1400$ MeV/c^2 with seen $\pi\pi$ decays and quantum numbers allowed in DPE reactions: $f_0(1500), f_0(1525), f_0(1710), f_2(1950),$ and $f_4(2050)$. The $f_0(1500)$ and the $f_0(1710)$ are both considered to be glueball candidates [14], but mixing with quarkonium states complicates the issue. From 2400 to 5000 MeV/c^2, the data fall monotonically with $M(\pi\pi)$, apart from the small excess at 3100 MeV/c^2, which is consistent with the photoproduction reaction $\gamma + p \rightarrow J/\psi \rightarrow e^+e^-$ [9].

The differential cross sections at the two energies are similar in shape. The ratio $R(0.9:1.96)$ of the differential cross sections at 0.9 and 1.96 TeV is shown in Fig. 1(b), and for $1000 < M(\pi\pi) < 2000$ MeV it is $R(0.9:1.96) = 1.284 \pm 0.039$, consistent with the ratio of approximately 1.3 expected by Regge phenomenology (when both protons are intact), which falls as $1/|\ln(s)|$ [3,16]. However, our data include dissociation, with higher masses $M(p\rho^0)$ allowed at $\sqrt{s} = 1.96$ TeV, since we require gaps to $\eta = \pm 5.9$ at both energies. For $2000 < M(\pi\pi) < 3000$ MeV $R(0.9:1.96) = 1.560 \pm 0.056$.

For $p_T(\pi\pi) > 1$ GeV/c the acceptance extends down to $M(\pi\pi) = 300$ MeV/c^2, we show the acceptance-corrected differential cross section in Fig. 4. This is approximately uniform up to a sharp drop at $M(\pi\pi) = 1000$ MeV/c^2 seen in previous experiments [3], where the $f_0(980)$ and the K^+K^- threshold occur. The absence of a ρ^0 signal is expected, as it is forbidden in DPE, and the cross section for photoproduced ρ^0-mesons is small, especially for
MEASUREMENT OF CENTRAL EXCLUSIVE $\pi^+\pi^-$...

\[p_T > 1 \text{ GeV/c}. \] Above \(M(\pi\pi) = 1000 \text{ MeV/c}^2 \) the same features are observed as in the full sample.

We previously observed exclusive \(\chi_c^0 \) production in the \(J/\psi + \gamma \) decay channel \[9\], but the mass resolution was not sufficient to resolve the three \(\chi_c \) states, and the \(\chi_{c1} \) and \(\chi_{c2} \) mesons have much higher branching fractions to the \(J/\psi + \gamma \) final state than the \(\chi_{c0}(3415) \). If all the \(J/\psi + \gamma \) events were attributed to the \(\chi_{c0}(3415) \), \(d\sigma/dy|_{y=0} = 76 \pm 10 \text{(stat)} \pm 10 \text{(syst)} \) nb. The \(\chi_{c0}(3415) \) decays to \(\pi^+\pi^- (0.56\%) \) and \(K^+K^- (0.61\%) \), and the \(\chi_{c1}(3510) \) and \(\chi_{c2}(3556) \) mesons have smaller branching fractions to these channels. In addition, the CDF II mass resolution is approximately 25 MeV/c^2, less than the mass difference between these states. We do not see significant excesses of events at \(M(\pi\pi) = 3415 \text{ MeV/c}^2 \) or at \(M(\pi\pi) \) approximately 3280 MeV/c^2 where the \(K^+K^- \) final state would appear in this distribution. Using the known branching fractions \[22\], efficiency, and \(L_{\text{eff}} \), we find \(d\sigma/dy|_{y=0}(\chi_{c0}) < 35.5 \text{ (23.4) nb at 90\% C.L. in the } \pi^+\pi^- (K^+K^-) \text{ decay channels, respectively. These limits imply that } \lesssim 50\% \text{ of our previous } J/\psi + \gamma \text{ events were from the } \chi_{c0}(3415) \) \[9\].

Cross section values restricted to the kinematic range of this measurement with \(M(\pi\pi) > 2600 \text{ MeV/c}^2 \) have been calculated in the DIME Monte Carlo \[23\]. There are large uncertainties arising from the unknown \(\pi\pi\Upsilon \) form factor in this regime, but while this MC with an exponential form factor agrees with the data at 3000 MeV/c^2, it predicts a steeper \(M(\pi\pi) \) dependence and is lower than the data by a factor of 3 at 5000 MeV/c^2. The Orear-like form factor is strongly disfavored, as illustrated in Fig. 2. We are not aware of any predictions of the cross sections for exclusive \(f_0(980), f_2(1270) \) mesons, other low-mass resonances, or cross sections below 2500 MeV/c^2.

In summary, we have measured exclusive \(\pi^+\pi^- \) production with \(|y(\pi\pi)| < 0.8 \) and rapidity gaps over 1.3 < \(|y| < 5.9 \text{ in } p\bar{p} \text{ collisions at } \sqrt{s} = 0.9 \text{ and } 1.96 \text{ TeV.} \) The cross section at \(\sqrt{s} = 1.96 \text{ TeV shows a sharp decrease at } 1000 \text{ MeV/c}^2 \) (for \(p_T(\pi\pi) > 1 \text{ GeV/c} \)), a strong \(f_2(1270) \) resonance, and indications of other features of uncertain origin at higher mass. The cross section at 0.9 TeV is similar in shape but higher by a factor 1.2−1.6. As the production is expected to be dominated by double pomeron exchange, selecting isospin \(I = 0 \) and spin \(J = 0 \text{ or } 2 \text{ states,} \) the data can be used to further our knowledge of the isoscalar mesons. We have placed upper limits on exclusive \(\chi_{c0} \) production using the \(\pi^+\pi^- \) and \(K^+K^- \) decay modes. Measurements of DPE mass spectra in other channels should advance our understanding of scalar and tensor glueballs.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the US Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council; and the EU community Marie Curie Fellowship Contract No. 302103.

[1] A coordinate system is used with the \(z \)-axis along the proton beam direction; \(\theta \) is the polar angle, \(\phi \) is the azimuthal angle, pseudorapidity is \(\eta = - \ln(\tan(\theta/2)) \), transverse momentum is \(p_T = |p| \sin \theta \), and transverse energy is \(E_T = E \sin \theta \).

