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While Carbon Capture and Storage (CCS) technologies are being developed with the focus of capturing
and storing CO, in huge quantities, new methods for the chemical exploitation of carbon dioxide
(CCU) are being developed in parallel. The intensified chemical or physical utilization of CO, is
targeted at generating value from a limited part of the CO, stream and developing better and more
efficient chemical processes with reduced CO, footprint. Here, we compare the status of the three main
lines of CCS technologies with respect to efficiency, energy consumption, and technical feasibility as
well as the implications of CCS on the efficiency and structure of the energy supply chain.

24 Gt.! However, a reduction of 50% of the global CO, emissions
appears necessary to limit the long-term global average temper-
ature rise to between 2 °C and 2.4 °C by the year 2050.> The Blue
Map Scenario of the International Energy Agency (IEA)
proposes a wide range of measures to achieve a CO, emission cap
of 14 Gt to meet the 2 °C target. Carbon capture and storage
(CCS) is seen as one of the most important single reduction
measures worldwide contributing with 8.2 Gt (Fig. 1). It is
a reduction option suitable for large stationary CO, point
sources, such as fossil power plants, cement industry, and
refineries.

Parallel to the introduction of CCS technologies, Carbon
Capture and Utilization (CCU) is aimed at using CO, as
a carbon source for chemical production and generating value

Introduction

The CO,-footprint of the materials used in everyday life is a new
measure to evaluate the CO, emissions linked with their
production and utilization. Reflecting the efficiency of the use of
fossil resources, the CO,-footprint receives a lot of attention in
the light of the current climate discussion. By 2050, a business as
usual policy would lead to an increase of CO, emissions by
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from a readily available feedstock.>* Exploiting a limited amount
of the CO, as raw material for chemical synthesis or for direct use
as gas or liquid can complement its storage in geological rock
formations.* This includes the utilization of CO, for producing
platform and bulk chemicals, as well as increased utilization for

Broader context

The CO, footprint of our everyday consumer products gives a measure of the intensity with which fossil energy carriers are employed
for their production and during their typical lifetime. Reducing the CO, footprint seems mandatory, as the limited availability of
fossil energy carriers and the rising level of carbon dioxide in the atmosphere due to the CO, emissions caused by combustion of
fossil energy carriers is a matter of growing public concern. However, until renewable energy sources become available to a greater
extent, the combustion of fossil energy carriers will continue and increased combustion of coal may even be necessary as a transition
technology. To counter this effect, CO, capture technologies are being adjusted to the large scale of commercial power stations,
which are one of the major contributors to the global CO, emissions. Once the CO, is separated, the question arises of how to store
the captured CO, for long periods of time or to make use of it as sustainable resource and feedstock. The latter means that, in
essence, we are entering into an anthropogenic carbon cycle. The present review discusses the status of CCS and CCU contributing
with scientific and technological information to the decision finding process that is needed in society and politics.
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Scheme 1 Innovation phases of technologies for collecting, trans-
porting, storing and exploiting CO,, adapted from ref. 6.

manufacturing polymers® and fine chemicals.* Moreover, the
physical use of CO,, e.g., in the petroleum and gas industry
(Enhanced Oil Recovery (EOR), Enhanced Gas Recovery
(EGR), and Enhanced Coal Bed Methane (ECBM)), may
become important applications in the energy supply field.

Carbon dioxide can be captured from CO, containing gases by
using technologies, which are commercially available (Scheme 1)
and established in chemical processing. Because of other frame-
work requirements, the application of CCS technologies in
power plants needs a modification of existing technologies and
the development of improved capture technologies. The main
challenges are the large flue gas flows, the chemical composition
of flue gases, a high degree of CO, purity and the CO, capture
rate. Worldwide, activities are focusing at present on identifying
energy and cost efficient capture solutions.

The purity of the CO,-streamt after separation is decisive for
how much energy is needed for the capture of CO, but also is
a significant aspect for the transport, storage and exploitation of
the carbon dioxide stream (Scheme 2). With increasing require-
ments regarding the purity of the CO,, its capture is more
expensive and requires more energy, whereas with regard to
compression, transport and storage, there may be advantages

T The CO,-stream here is denoted as the gas obtained after separation of
the CO,. It consists mostly of CO,, but can also contain other
components.
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Scheme 2 Criteria for making CO, available by carbon capture (blue)
and evaluating the use of CO, as raw material and gas (green).

concerning the necessary energy expenditure and storage
capacities. A high purity grade of the CO,-stream is generally
required in downstream processing in the chemical industry, as
catalysts, employed in chemical conversion, may be poisoned by
impurities, while impurities incorporated in the products may
impair certain applications (e.g., in the pharmaceutical
industry).*

The transport of carbon dioxide has been commercially real-
ized. Worldwide, currently over 4000 kilometres of CO, pipelines
(mainly in the U.S. and Canada) are in operation. Many of these
pipelines have been built in the 1980’s. The CO, is transported to
oil exploration sites and is used for enhanced oil recovery (EOR).
However, there are still other transport options, as e.g. truck,
train and ship.”

The use of a limited part of the CO, supply by means of
fixation and transformation can complement its storage in
geological rock formations. This includes the utilization of CO,
for producing, e.g., platform and bulk chemicals,} polymers and
fine chemicals.*® There is an industrial policy perspective for the
utilization of CO,,? but it may not be regarded a single solution
for the huge amounts of CO, released by energy conversion
processes, which characterizes the Teraton Challenge.®

For the utilization of CO, as chemical feedstock, the low
energy level of CO, needs to be taken into account. For chemical
transformation of CO,, energy is required, which can be supplied
directly by using energy-rich reaction partners or indirectly as
heat, light or electricity (Scheme 3).*'® The energy supply may
likewise coincide with emissions of carbon dioxide. To minimize
the CO,-footprint, the utilization of energy from renewable
resources (e.g., electricity from wind power stations) is particu-
larly interesting. To evaluate the overall concept, a comprehen-
sive assessment of the different options necessitates product-
based complete CO,- and energy-balances that account for the
utilization of CO, as well as the supply of energy, separation and
transport.

Whereas the storage of CO, in geological rock formations is
set for long periods, the period of CO,-fixation in products varies
greatly. Most attractive are uses, where large amounts of CO, are

1 Bulk chemicals are basic chemicals produced in quantities of more than
10 000 t per annum.
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Scheme 3 Energy balance for the reaction of CO, with high-energy
reactants to low-energy products (top) and of CO, with medium-energy
reactants to high-energy products (bottom).

fixed in products, which are used for long periods and whereby
added value is generated by the utilization of CO, (Scheme 2).
Feasible uses with a short CO,-fixation time are only relevant in
terms of net reduction of CO, emissions, if the use is repeated
very often and substantial amounts of carbon dioxide are fixated
in an anthropogenic carbon cycle.

The CCS and CCU technologies are found in very different
stages of innovation (Scheme 1).#%'12 While certain technolo-
gies have been commercially implemented (EOR, production of
urea and methanol), others are found in the pilot stage or at the
threshold of demonstration (Oxyfuel, production of aliphatic
polycarbonates'®'*). Yet others are found in a very early stage of
technical development or in the conceptualization stage (CO,-
membranes and artificial photosynthesis).

In this paper, we examine the status of research and develop-
ment of CO,-capture, transport and utilization as well as the
perspectives of the corresponding technologies. We will begin
with an overview on the worldwide status of CCS-technologies
and assess innovative industrially applicable approaches
regarding CCS, while we will only touch upon the physical and
chemical exploitation of CO, including the organo-chemical
utilization of CO, as the Cl-building block.§ Concerning
a detailed description and the fundamental aspects of the various
process concepts of CCS, we refer the reader to the literature (see,
e.g. ref. 7, 15 and 16). The focus lies on the discussion of tech-
nology aspects like energy efficiency, capture rates, degree of
impurities and environmental impacts. The analysis comprises

§ CO, as a Cl-building block concerns chemical synthesis routes in which
CO, is used as a carbon source.

also a cost analysis for different capture and transport options.
Also, the environmental impact of CCS technologies is analysed.
Last but not least, the worldwide state of development for CCS
and CO,-utilization is summarized (see also ref. 17-22). Even
though CO,-storage is not the priority of this paper, it is briefly
reviewed for the sake of completeness. For a detailed analysis
about storage options, the state of the art, monitoring tech-
niques, efc., the reader is referred to the literature.®?3-2%

Carbon capture technologies

There are different commercial technologies to capture carbon
dioxide from gases. In chemical processing, there are many
examples, where the separation of CO, from gas streams is
implemented on a large scale. The production of synthesis gas,
hydrogen and ammonia are just some examples.* Technologies
like chemical absorption, physical absorption and membranes
are used today (Scheme 4).72%*” Detailed information about
these options can be found in the literature.”®

Yet the large-scale implementation of CO,-capture in power
plants is linked to many technical challenges, in particular, in the
area of system integration (energy and stream management,
incorporation into the power plant process).?*® Three tech-
nology routes!>'¢#3% are currently most intensively discussed
(Scheme 5):

e CO,-capture from the flue gas stream after combustion
(Post-combustion);

e Use of nearly pure oxygen for fuel combustion instead of air,
which increases the CO,-concentration of the flue gas (Oxyfuel);
and

e CO,-capture from the reformed synthesis gas of an upstream
gasification unit (Pre-combustion).

All the process families need an additional energy input for gas
separation, capture, conditioning and compression/liquefaction
of the carbon dioxide.

|
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Scheme 4 Underlying principles for the capture of carbon dioxide.
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The energy penalty is reflected in a decrease in power plant
efficiency of typically 10 to 14% points. Post-combustion
processes are assessed with an efficiency loss of 10-12% points,”?!
while an efficiency loss of ca. 10% points is currently stated for
the Oxyfuel process.'® Yet considerable efficiency potentials are
seen for all technologies. In the mid- and long-term, losses in
efficiency, ranging from 8-10% points, may be possible. Further
increases in efficiency may be possible by instituting CCS-tech-
nologies of the second generation, such as new gas separation
processes based on the use of membranes and chemical looping
as alternative method for supplying oxygen (vide infra).

CO,-capture after combustion: post-combustion processes

When carbon dioxide is captured after the combustion process,
including the subsequent flue gas cleaning (removal of dust,
sulfur and nitrogen compounds), the process line is described as
‘post-combustion’.?> From a current point of view, the most
promising methods are the so-called ‘chemical absorption’
processes that are often denoted as chemical washes. The
solvents favoured nowadays are those based on amines, or those
containing ammonia or alkali. Another technical variant is the
use of amino acid salts. After the absorption, the CO, is removed
from the solvent by a regeneration process induced by
a temperature increase and/or pressure decrease. The solvent is
then recirculated and the separated CO, processed for the
transport and subsequent storage.

Development line. The absorption in liquid solvents is an
industrially tested and widely applied CO,-separation technique,
with which high purities and degrees of separation can be
attained. Currently, the most developed technique is the amine-
based separation method. In particular, monoethanolamine
(MEA) and other amines have found widespread use. In
connection with the particular requirements associated with the
power plant processes and flue gas compositions, the stability of
the solvents as well as the energy efficiency of the adsorption—
desorption cycle need to be further improved.'®

A possible processing scheme of a plant for post-combustion
capture of CO, is shown in Scheme 6.33** After the flue gas is
cooled, the absorption takes place at a temperature of about
40 °C to 60 °C. The COj-loaded liquid is then directed to
a regenerator (stripper). The low-pressure steam for the neces-
sary temperature change for the regeneration of the washing
liquid is taken from the power plant process at a temperature of
about 100-140 °C. Since the steam is no longer available for
electricity generation, this leads to considerable decrease in the
efficiency of the power plant.
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steam
boiler
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water

water

electric

precipitator desorber reboiler/
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Steam from
power plant
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Scheme 6 Processing scheme of a CO,-capture from the flue gas (post-
combustion).

The most important parameters for operating a post-
combustion CO,-capture unit are:

e Flue gas volume stream (this is decisive for the size and thus
the investment costs of an absorber),

e CO,-content of the flue gas as well as the partial pressure of
the CO, (the partial pressure of the CO, typically lies in the range
of 3-15 kPa, at which the chemical absorption represents the
most suitable method),

e Degree of the CO,-separation (typical degrees of separation
are about 80-95%; higher degrees of separation require a larger
dimensioning of the separator and cause a greater loss in
efficiency),

e Solvent volume stream (essentially determines the dimen-
sioning of the components found behind the actual absorption
unit),

e Purity of the captured CO,.

State-of-the-art. Within the framework of smaller pilot-scale
projects and initial commercial applications, several power
plants implementing CO,-capture from the flue gas have been
built throughout the world. One of the worldwide largest CO,-
washes in connection with a power plant process (320 MW,)) is
currently operated at Shady Point (Oklahoma, USA) for
producing CO, for the food industry. The amine-based chemical
washes attain a separation capacity of 800 t CO, per day, which
corresponds to about 15% of the total CO,-quantity of the power
plant. Another example for the chemical absorption based on
amines is the Sleipner Project in Norway. On a natural gas
offshore platform in the North Sea, each year about 1 million
tonnes of CO, are captured from the recovered natural gas via
a chemical wash and then pressed into a geological reservoir
(Utsira field).

Technical and scientific challenges. Chemical washing
processes based on monoethanolamine (MEA) and other
solvents are associated with technical as well as fundamental
constraints:

Decomposition of the solvent in the presence of oxygen and other
foreign substances (dust): due to the less complex flue gas
composition, the requirements of the chemical washes used today
in the chemical industry are less stringent compared to those of
wash solutions intended for the cleaning of power plant flue
gases. The relatively high oxygen content in power plant flue
gases causes degradation of the amines, which can be prevented
by adding so-called inhibitors. Residual dust may block the
filling body and thus impair the operation of the corresponding
unit components.

Solvent degradation by reaction with sulfur dioxide or nitrogen
oxide from the flue gas: by reaction with SO, and NO,, amines
form salts that have to be precipitated at high temperatures in
special units (reclaimers). This can be avoided by lowering the
residual SO,-content of the flue gas. At about 10 ppm SO, the
salt formation can be prevented.3® This value lies considerably
below the legally prescribed limit for flue gases released into the
atmosphere (70 ppm or 200 mg m * SO, for new plants in
Europe).

Higher energy demand for the solvent regeneration: the energy
input required for regenerating the solvent is decisive for the
overall efficiency of the post-combustion technique. The energy

7284 | Energy Environ. Sci., 2012, 5, 7281-7305
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consumption (low-pressure steam) amounts to about 4 GJ per
tonne CO, captured, whereby about 40-50% of the entire low-
pressure steam is needed for the regeneration step.*® Presumably,
the energy consumption can be cut by 50% by using more effi-
cient washing liquids. Further potential savings can be obtained
by optimal design and switching of the individual unit compo-
nents as well as optimisation of the entire system in order to
approach the thermodynamic limit.

State-of-the-art and pilot plants. Currently there are an
increasing number of post-combustion pilot plants, whereby the
captured CO, is in a range of 0.125 to 500 tons per day.*” Even
though amine-based CO,-washes have been implemented on an
industrial scale, these units have not reached the necessary size
for a power plant. Consequently, an essential challenge is their
optimal thermodynamic design and incorporation into the power
plant process, namely, the “scaling up” of such pilot plants
(Scheme 7). The volume streams of the flue gas treated in today’s
pilot plants and their corresponding power of below 1 MW *” are
minimal compared to that of an entire power plant. The next step
is the construction of demonstration plants with a power rating
of >10 MW, up to 250 MW,*° before the data can be transferred
to today’s conventional power plants with a capacity of 500—
1000 MW,

A pilot plant, which cleans a partial stream of the flue gas, is
currently being operated on the basis of an amine wash (MEA
30 wt%) at the coal power plant in Esbjerg (Denmark).?®* The
CO,-capture capacity is ca. 1 t h™! at a MEA-volume stream of
about 40 m* h~'. This unit comprises all the required components
including a reclaimer and has been in operation since 2006.%®
After about 1000 h of operation (500 h thereof in permanent
operation), experience on the interplay of the unit components as
well as the influence of SO, has been gained. During the first
runs, the energy consumption of the pilot plant was 4.4 GJ t™!
CO,, and the required solvent quantity was 2.4 kg t~! CO,.3%%* In
a second project phase, the energy consumption has been
reduced to 3.7 GJ t! CO,.%" It is one of the main objectives to
further reduce the energy consumption*® aiming at a heat
consumption of 2 GJ t~! CO,-captured (at a capture rate of 90%
and capture costs of 20-30 € per t CO,).

In 2010, a post-combustion pilot plant started operation at the
power-plant site NiederauBem, Germany (Scheme 8).4** An
amine-based wash is being tested there, whereby steam is with-
drawn for regenerating the CO,-loaded liquid from the prelimi-
nary heat stretch. A carbon capture of 90% is aimed for; the CO,
stream is 7.2 t per day. The first test runs showed a purity of ca.
94 vol% CO,. The objective is to obtain purities of over 99 vol%

capacity commercial

|

power plant size

4 demonstration

n- 100 MW
f—— pilot plant
n*10 MW

laboratory scale << 10 MW
e— >

<<1MW

today 2015 2020 year

Scheme 7 Scale-up phases for CCS technology development.
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Scheme 8 Process diagram of the post-combustion pilot plant in
NiederauBem.**?

with a water content of less than 500 ppm. The primary aim is to
develop a post-combustion method with an efficiency loss
(including CO;-processing) of less than 10% points. In a next
step, the construction of a larger amine wash-based demonstra-
tion plant is planned at the site Eemshaven (The Netherlands),
where 200 000 tonnes CO, per year will be captured.*+*?

One German electricity supplier (E.ON AG) has internally set
its aim to equip all power plants built after 2020 with CO,-
capture technology. The post-combustion technology is favoured
due to the possibility of a retrofitting of existing power plants, the
proven technical feasibility as well as the relatively few changes
required to the actual power plant process. Moreover, there are
still considerable efficiency potentials and cost-cutting possibili-
ties. The target is to reach efficiency losses of less than 10% points
as well as CO,-avoidance costs of ca. 30 € per t CO,. In the long
term, even an efficiency loss of only about 8% points is consid-
ered feasible. At the same time, it is aimed to raise the efficiency
of conventional hard coal-fired power plants to 50% (Project
50plus, power plant Wilhelmshaven). In a first step, altogether 7
smaller post-combustion pilot plants will be built onto existing
power plants with a power rating of <10 MW (Table 1).43:%¢

Future developments. More efficient solvents for absorption of
CO, will enable to significantly reduce the energy input for the
regeneration and to decrease the solvent degeneration. The
current amine-based washes require a high-energy expense, which
is incurred for desorption of the CO,-loaded solvent. The use of
sterically hindered or tertiary amines (aMDEA, MDEA, and KS-
1), frequently in combination with activators for accelerating the
reaction, seems to be promising, as they need less energy for
desorption as well as for operating the pumps and compressors.
Moreover, the risk of corrosion can be reduced. Another option
is utilizing amino acid salt solutions that are characterized by
a low absorption enthalpy and a low vapour pressure. Moreover,
they exhibit high selectivity, low degradation and high capacities.
Furthermore, they allow high purities of the CO,-stream to be
attained.* A key factor for the applicability of an absorption
solvent is an extended lifetime and it is anticipated that significant
advances will come from increased understanding of the degra-
dation mechanisms (oxidative and thermal degradation, reaction
with acidic gases, and side reactions with CO,).

The application of aqueous carbonate solutions (e.g., K,CO3)
represents another interesting option, since they are especially
distinguished by a high thermal stability, resistance to oxygen as

This journal is © The Royal Society of Chemistry 2012
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Table 1 Planned CCS-pilot plants of a German electricity supplier (E.ON AG)“

Place Technology Plant size Amount of CO, Commissioning
Maasvlakte (NL) Amine (“CORAL”) 0.3 MW 2 kt per annum 2008
Karlshamn (SWE) Chilled ammonia 3 MW, 15 kt per annum 2008
Datteln (D) Chilled ammonia n.a. n.a. 2009
Heyden (D) Amine 7.5 MW 45 kt per annum 2010
Staudinger (D) Amine 0.4 MW n.a. 2009
Wilhelmshaven (D) Amine S MWy n.a. 2010
n.a. (D) Amine (K1-S Solution) 7.5 MW n.a. 2010

“ n.a. not available.

well as by relatively low absorption and desorption heat values. A
disadvantage is the low reaction rate, which can be raised by
using additives. An alternative is the so-called “chilled ammonia”
method, in which the CO, is bound via ammonia and water. This
method is marked by a low intrinsic energy demand for absorp-
tion and desorption. In addition, ammonia represents an absor-
bent that can be produced inexpensively on a large scale.*46-5¢

Carbonate looping. The ‘carbonate looping’ (often denoted as
‘dry sorption’) represents one further post-combustion tech-
nique. Here, calcium oxide (CaO) is carbonized in a reversible
and exothermic reaction at 600-700 °C and the formed calcium
carbonate (CaCO;) calcination in an endothermic reaction at ca.
900 °C. The core element of the carbonate looping process is
a dual fluidized-bed reactor (Scheme 9), in which the absorber
material is cyclically transported between the carbonator (CO,-
absorption) and the regenerator (CO,-desorption).** The regen-
eration of the calcium oxide can be enhanced under reduced
pressure.®* The released carbon dioxide stream can attain a high
degree of purity.

Carbonate looping using CaO/CaCO; as the absorbing
material is distinguished by the inexpensive and high availability
of the starting materials. The absorbing material deactivates
relatively fast, and permanent and considerable amounts are
needed to replace the deactivated material. Although fresh
CaCOs; has to be continuously added to the process, CaCOs; is
sufficiently available and the deactivated CaCO; is recycled
readily, e.g., by reusing it as a construction material.?

The energy input and the process costs are linked mainly to the
reactivation step. Unlike the classical washing techniques, the
heat of absorption can be integrated in the power plant process
resulting in lower losses in efficiency. Starting from a coal-fired

Decarbonized

flue gas CO, to compression

CaCO;
CARBONATION CALCINATION
650 °C 900 °C
Ca0 L
—
Ash Fuel
C——— CaO
Flue gas from CaCo, Oxygen

power plant

Scheme 9 Carbonate looping process.

base process with an efficiency of about 46%, the loss in efficiency
is estimated to be =7.2% points (including CO,-compression and
CO,-processing).>*>5 This method is also principally feasible as
a retrofitting option for existing power plants.

Reduced efficiency. Efficiency losses are in a range of 10 to 14%
points including capturing and compression of the CO,,”?%%¢
whereby the efficiency losses due to compression and liquefaction
of CO, amount to 2-3% points.”” Options to reduce the energy
losses include the development of new solvents, optimization of
the scrubber process (absorption/desorption) and improved heat
integration of the scrubber and compression process into the
overall power plant process. In the most optimistic scenario,
which considers the use of highly developed solvents, all possi-
bilities to reduce the heat demand for regeneration and the
implementation of all economically feasible heat integration
methods, energy losses of 9.1% points were calculated (including
compression and liquefaction and assuming a capture rate of
90%).2®

Comparative evaluation of post-combustion technology. There
are various advantages, which might promote the application of
post-combustion technology:

e Chemical absorption processes are well known;

e High optimization potential to reduce energy losses;

e Retrofitting of existing power plants is possible;

e No fundamental changes of the original power plant process
are necessary;

e Highest purity of the CO, (>99.99%) of all carbon capture
technology routes.

Disadvantages of the post-combustion technology are:

e High costs;

e Comparably large environmental impact; and

e Flexible operation mode has yet to be demonstrated.

Combustion in pure oxygen: Oxyfuel process

The term “Oxyfuel process” denotes the combustion of carbon-
containing fuels with pure oxygen (Scheme 10). After the flue gas
cleaning and washing, the flue gas essentially consists of
a mixture of carbon dioxide and steam. Unlike conventional
power plants, for which the CO,-content in the flue gas ranges
from 12-15 vol%, the carbon dioxide content in Oxyfuel plants
lies at about 89 vol%. By condensing the steam, one obtains
a pure CO, flue gas, which, after being first demoisturized, dried
and compressed, can be transported to the storage site.
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Scheme 10 Processing scheme of CO,-capture (Oxyfuel).

Development line. Nowadays, the oxygen for the combustion
process is supplied by means of cryogenic air separation units, in
which oxygen is separated from the air by condensation at low
temperatures (<—182 °C). This method is being applied world-
wide on a large scale in the steel industry and in ‘gas-to-liquid’
plants (fuel from natural gas). The oxygen quantities of the
currently largest planned units are in the range of 800 000 m?
h~'.%® By comparison, a hard coal-fired power plant unit with an
electrical power capacity of 500 MW and an efficiency of 43%
requires, with stoichiometric combustion, an oxygen quantity of
approx. 270 000 m* h~'. Combustion with excess oxygen (today’s
excess air coefficients of large plants lie at about 1.15) raises the
necessary O,-quantity accordingly.

When fuel is burned with pure oxygen, the combustion
temperature is higher than that in conventional combustion and
requires—due to the different heat- and flow-specific limiting
conditions—a modification of the steam generator as well as
measures for limiting the combustion temperature, as the heat
stability of the applied materials is limited. Thus, a large fraction
of the CO,-rich combustion gas (about two-thirds of the volume
stream of the flue gas) is directed back into the combustion
chamber (Scheme 10). Furthermore, unreacted oxygen is recy-
cled back into the oxidation process, thereby decreasing the
residual oxygen content in the flue gas. The combustion with
pure oxygen leads to largely reduced amounts of flue gas and to
a changed radiation heat transfer of the flue gases (due to the
altered CO,- and H,O-concentration), thereby necessitating
a new design of heat-exchanger surfaces, a modification of
burners, combustion chamber geometries as well as the imple-
mentation of an optimized flue-gas canal system.?*-°

Technical and scientific challenges. The recycling of a consid-
erable fraction of the flue gas stream back into the combustion
chamber as well as the changed amount of excess air presents
numerous challenges. For example, the reduced amount of excess
oxygen causes burning out problems and corrosion on the
combustion chamber walls. Another important point is the
optimal thermodynamic integration of the CO,-processing into
the actual power plant process to reduce efficiency losses. This
means, e.g., to improve the heat balance by integration of multi-
staged CO,-condensors. Further challenges are:6-*%5%62

Air-separation methods: the air separation requires a high-
energy input, which decisively influences the losses in efficiency of
the Oxyfuel power plant. Hence, increasing the efficiency is an
important target parameter. The required purity of the necessary
oxygen is about 99.5 vol% (remainder: N,, Ar). This standard is
to be maintained upon further increasing the efficiency of the air

separation. Otherwise, a lower degree of purity would lead to
higher residual gas concentrations, which, in turn, would mean
a higher energy consumption of the subsequent components
(e.g., COs-liquefaction). Thus, an optimum has to be found for
the entire process.?°

Steam generator: in general, the excess of oxygen during the
combustion process has to be minimized. Today’s power plants
run with an air excess of about 15% or more in order to ensure
complete combustion and to minimise corrosion.®*%* Excessive
residual oxygen after the combustion adversely affects the energy
consumption of the flue gas processing, like purification and
compression. Some components related to air and flue gas are
operated below atmospheric pressure to prevent the slip of hot
flue gas to the atmosphere. Unregulated air ingress can amount
to several percent (2-4%) of the entire flue gas volume. In an
Oxyfuel plant, such an infiltration would cause the required CO,-
purity not being reached and would lead to additional energy
costs.>%*

Denitrification and desulfurization: the nitrogen contained in
the fuel is responsible for the formation of nitrogen oxides.
Through the lower flue gas volume streams (no atmospheric
nitrogen), the nitrogen oxide concentrations are higher than in
a conventional power plant. Whereas typical lignite-fired power
plants maintain the NO,-limit values (200 mg m?) with the help
of primary measures (e.g., sub-stoichiometric combustion),
secondary measures may be necessary (selective catalytic reduc-
tion in DENOX-units) in lignite-fired power plants with CCS-
technology. To prevent the degradation of the MEA-solvents,
the residual SO,-concentrations have to be reduced significantly
compared to today’s coal power plants (vide supra).

State-of-the-art and pilot plants. In 2008, a pilot plant began
operation at the lignite power plant site Schwarze Pumpe, Ger-
many, for testing the Oxyfuel method. Having a thermal power
rating of 30 MWy, (coal input: 5.2 t h™!, O,: 10 t h™1), it is
currently the worldwide largest Oxyfuel pilot plant.®>¢ Since the
combustion process runs at very high combustion temperatures,
nitrogen oxides are formed in significant amounts. Whereas
conventional lignite-fired power plants forego the taking of NO,-
secondary measures, the use of denitrification units (selective
catalytic reduction) is necessary to maintain the required emis-
sion limits. Until June 2009, 1200 operating hours have been run
in the Oxyfuel mode and about 1000 t CO, were captured with
a purity of 99.7%, and a degree of carbon capture of 90%.
Moreover, one goal is to realize the advanced ultra-supercritical
700 °C-power plant technology (live steam temperature 700 °C,
efficiency without CCS: 50%) with the Oxyfuel method. Current
estimates assume an efficiency loss of 8-10% points, whereby
about 6% points of the efficiency losses result from the air
separation unit.

Further important projects on Oxyfuel are being conducted in
Canada (CANMET Project, 0.3 MWy,), Japan (1.2 MWy,) and
the USA (1.5 MWy,). Moreover, the Australian Callide research
project has been running since 2006, whereby the work on the
pilot plant (2 MWy,) has been finished. Currently, construction
of an Oxyfuel unit with a power rating of about 30 MW, is being
prepared in the Callide coal power plant (Unit A) and should
start up this year. In Europe, further Oxyfuel pilot plants are
currently being operated in the Netherlands (2.5 MW,) as well
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as in Great Britain (3 MWy). Within the European CCS
demonstration programme a 250 MW, demonstration plant is
planned sited in Compostilla (Spain).3°

Future developments. The production of pure oxygen with
conventional cryogenic techniques reduces the power plant effi-
ciency by ca. 7% points. The capture as well as the processing of
the CO, intended for transport cost additional 3% points.
Besides optimizing the whole system, the potential to raise the
efficiency mainly lies in oxygen production. From today’s
perspective, possible ways to increase efficiency are:

e technically improving the cryogenic process (e.g., by imple-
menting the three-column process), thereby cutting the energy
demand for the air separation by about 20%,**” and

e separating oxygen from the air with other methods, such as
by using ceramic membranes or chemical looping.

Membranes. Advances in the process for producing pure
oxygen by means of new high-temperature membranes can
improve the efficiency and cost-effectiveness of the whole plant
due to improved integration in the thermodynamic process of the
power plant.®® A key component is the high-temperature air
separation membrane, which is permeable to oxygen ions above
a material-dependent temperature (mostly >700 °C). The mass
stream of the separated oxygen hereby depends on the partial
pressure difference over the membrane, the membrane thickness
and the temperature. Since only oxygen penetrates the membrane,
a high purity can be obtained provided that leaks within the
membrane module are avoided.®*®*’° Basic prerequisites for
a large-scale utilization of membrane techniques in power plants
are adequate membrane materials, an optimal process design and
a sufficient mechanical strength of the membranes.

Chemical looping. Chemical looping offers another possibility
to supply the oxygen by using metal oxides as O,-carrier
(Scheme 11). Here, in the reactor the fuel is oxidized not by
molecular oxygen but rather by the oxygen carrier. The metal
oxide is then regenerated in another reactor by using air as the
oxidation agent. With the help of the metal oxide, the nitrogen
contained in the air is not directed to the combustion process.
Accordingly, a CO,-rich flue gas can be produced after
condensing the water. Concerning the oxygen carriers, very high
requirements are placed on the reactivity and the regeneration
capability in repeated oxidation-reduction cycles.*”* Labora-
tory-scale and pilot-scale tests are running worldwide to identify
suitable materials with the necessary long-term stability.

N, O, H,0
My Ox
air fuel
reactor MyOx-1 reactor
air fuel

Scheme 11 Illustration of chemical looping combustion.

Reduced efficiency. It seems to be possible to achieve a CO,
purity of 99.5 vol% using a downstream rectification process,
which enables to reduce the fractions of Ar, NO, and O..
According to calculations of Kather and Klostermann® energy
losses amount to 10% points (net, LHV) if state-of-the-art
cryogenic technologies for air separation and gas processing are
used. An optimized heat balance (e.g. integration of compres-
sors) can reduce the efficiency losses to 9% points. Using opti-
mized cryogenic air separation processes (e.g. multi-column
process) reduces the energy losses to approximately 8% points.
However, the additional energy demand of the Oxyfuel process
depends strongly on parameters like O, purity, capture rate and
air ingress. For obtaining higher oxygen purity, higher capture
rate and lower air ingress, increased technical effort is required,
which will lead to higher costs.

Mixed ion electron conducting membranes technology
(MIEC) seems to be a promising candidate for the air separation,
which could reduce the energy losses further. Energy losses in
a range of 6 to 10% points seem to be possible.**>* Chemical
looping research is actually focusing on investigating suitable
materials. Efficiency losses are estimated to be approximately 8%
points.>* Membrane and chemical looping technology are in very
early stages of research and development. They are far away
from commercial application. They have to be regarded as
capture technologies of 2" CCS generation.

Comparative evaluation of Oxyfuel technology. There are
several advantages, which might promote the application of
Oxyfuel technology. These are:

e Environmental impacts are low;

e Cryogenic air separation technology is well known;

e High potential to reduce energy losses.

Disadvantages are:

e Modification of burners and boiler design are necessary;

e Probably no retrofitting option; as well as

e High costs.

Decarbonisation of the combustion gas: pre-combustion
processes

The method for capturing CO, from the fuel gas exploits the
combination of converting the fuel to a hydrogen-rich synthesis
gas and capturing the resulting CO, from the fuel gas. The
decarbonized fuel gas is then directed to a combined gas and
steam turbine cycle process for generating electricity. The CO,-
capture takes place after the fuel gas production and the
conversion of the carbon monoxide to CO, and H,.

Development line. The conversion of fossil fuels to synthesis
gas occurs by partial oxidation in a gasification process. The use
of coal or heavy oil requires cleaning of the synthesis gas in order
to remove ash particles, alkali and sulfur compounds as well as
other impurities. By a subsequent catalytic conversion, the CO is
reacted with steam as oxidant to form carbon dioxide and
hydrogen (CO-shift reaction). Since the fuel gas is available after
the CO-shift at high pressure and consists of high H,-fractions,
the CO,-capture is advantageous by using physical solvents. This
type of gas separation is marked by moderate reductions in
efficiency and costs. It is being commercially used in some
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branches of the chemical industry and is, thus, state-of-the art
technology.” An air separation unit is placed before the gasifi-
cation process in order to increase the yield in the gasification
step, to keep atmospheric nitrogen out of the synthesis gas
process, as well as to minimize the volume streams and, hence,
the unit components. After the conversion of the CO, the fuel gas
produced in this way consists almost exclusively of carbon
dioxide and hydrogen (Scheme 12).7¢

State-of-the-art and pilot plants. Since the 1980s, ‘Integrated
Gasification Combined Cycle’ (IGCC) power plants without
COs-capture have been built, which operate with coal, residual
oil and petroleum coke. However, only five coal fired IGCC
power plants have been built worldwide since the mid-1990s
(Buggenum 253 MW, Wabash River 262 MW, Tampa 250 MW,
Puertollano 300 MW and Nakoso 250 MW).”” So far, IGCC
power plants are less reliable compared to conventional coal fired
power plants. Long start-up periods and low availability are
related to high operational and maintenance costs.?® The tech-
nical shortfalls of the plant in Puertollano, e.g., were caused
mainly by the gasification unit.”

For gasifying coal on a large scale, gasifier types based on
a solid-bed process are being applied worldwide. The solid-bed
gasification process according to the Sasol-Lurgi method
currently has a market share of over 75%.” Fluidized-bed
gasifiers and entrained-bed gasifiers are particularly suited for
the operation of an IGCC-power plant. Entrained-bed gasifiers
allow higher coal throughputs, which allow the construction of
units with a higher capacity. Moreover, a wide spectrum of coal
types can be exploited (e.g., lignite coal and hard coal). For
converting the carbon monoxide in synthesis gas to CO, and H,,
the acid—gas shift method and the desulfurized synthesis gas shift
are utilized currently. The former method necessitates the use of
sulfur-resistant catalysts in the CO-shift reactor, as the desul-
furization takes place only after the CO-shift reaction.

Physical washes can be used for the CO,-capture process due
to the favourable partial pressure of CO, and the higher overall
pressure. Nowadays, the use of physical solvents (e.g., rectisol) is

Steam Steam
T Dedusting {
Flue gas H,S | co
cooler removal shift
T
co,
Coal =¥ O Gasifier separation
cOo,
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Heat turbine
recovery,
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generation,
Air
v

CO,-poor flue gases

Scheme 12 Schematic representation of an IGCC-plant with CO,-
capture.”®

favoured, as H,S and COS can also be removed from the fuel
gas. A methanol-based absorbent serves as the solvent, which
can be regenerated with the help of nitrogen and a temperature
change. The advantage of these washes is the possibility to
combine the fuel gas desulfurization with the CO,-capture. After
the washes, the H,S and COS fractions in the fuel gas are less
than 1 ppm.*

Another technology to separate H, and CO, is the pressure
swing adsorption (PSA), where CO, is selectively absorbed in
a set of switching beds containing layers of solid adsorbents such
as activated carbon, alumina and zeolites.®' The process is built
around adsorptive separations of cyclic character, with two basic
steps: adsorption, in which the more absorbable species are
selectively removed from the feed gas, and regeneration
(desorption), when these species are removed from the adsorbent
so that it can be ready for the next cycle.

Operating gas turbines with synthesis gas is state-of-the-art.
The operation with hydrogen-rich fuel gas, however, demands
changes of the operation mode, adaptations of the combustion
chambers as well as other burner concepts. The fuel gas is diluted
with nitrogen from the air-separation unit or with process steam
for increasing the power and limiting the work temperatures.
Thus the formation of nitrogen oxides is countered.??

Technical and scientific challenges. The efficiencies of IGCC-
power plants are comparable to those of conventional steam
power plants.”?®% Nonetheless, the required availabilities could
not be attained with some of the existing IGCC-plants. More-
over, such power plants are more complex and the investment
costs are clearly higher than those of conventional power
plants.®® Consequently in the past, only few coal-fired IGCC-
power plants have been built. Thus, the essential challenges are
improving the availability as well as reducing the costs.
Compared to conventional power plants, those with CCS-tech-
nology might be advantageous because of the high product
flexibility. Thus, the synthesis gas might also be used for
producing chemicals or fuels (e.g., methanol) or the produced
hydrogen can be used for other applications (e.g. fuel cells). This
possibility to manufacture other products besides electricity and
heat (poly-generation) might also lead to a higher plant utiliza-
tion and greater flexibility.

State-of-the art and pilot plants. Coal fired IGCC plants with
CCS-technology are generating great interest, although many
plans to invest in IGCC power plants have been cancelled. One
planned project is the IGCC plant in Hatfield (Great Britain),
with a power rating of 900 MW, and a capture rate of more than
90%, which has been approved for funding within the European
CCS demonstration programme.>** The construction of
a demonstration plant with a capacity of 270 MW, is also
planned in Canada, where the start-up of this unit is expected in
2015. Since 2006, construction of a coal-fired IGCC plant with
CCS-technology has planned at the power plant site Hiirth. The
heart of this power plant is an entrained-bed gasifier (40 bar,
complete quench), which is suitable for the use of lignite and
hard coal. A target efficiency of ca. 44% is stated for the opti-
mized power plant with CCS-technology. The degree of carbon
capture is about 92%, and the specific emissions value is 107 g
CO, per kW h.
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Future developments. The use of fuel gas in a gas turbine places
great demands on the fuel gas cleaning, in particular the removal
of dust. Hydrogen-rich fuel gases (hydrogen fraction of over
50%) are currently used in gas turbines of a smaller power rating
in refineries.®* The utilization of hydrogen-rich gases in heavy-
duty gas turbines (F-class) is the current focus. The feasibility of
the combustion of hydrogen-rich gases in gas turbines has been
shown in a large-scale demonstrator of a combustion chamber.
However, the design of the compressors, turbines and burners
has to be further developed and optimized.” Plans for pilot
projects are currently concentrating on the thermodynamic
optimal integration of CO,-capture into the overall process. The
first step involves proving the principal technical feasibility of
IGCC-power plants with CO,-capture. Since oxygen is required
for the gasification process, the costs for such IGCC-power
plants are higher and the plants individually consume more
energy. A more energy-efficient supply of oxygen for the pre-
combustion power plants can contribute considerably towards
improving the respective efficiency and reducing operation costs.

Efficiency losses. Efficiency losses in commercially operated
coal fired IGCC plants caused by carbon capture with physical
scrubbing processes are in the range of 9 to 12% points.?578588 A
combined CO, separation and water gas shift reaction could lead
to further reduction of energy losses.®® Substituting physical
scrubbing processes by application of polymeric membranes
could reduce the energy losses to 8% points.?®#5 The capture rate
of today’s IGCC power plants with physical washes might be
lower compared to that of other power plant concepts with CCS
because some CO; is needed for stable gas turbine operation and
meeting NO, requirements.?

Comparative evaluation of the IGCC technology. There are
some advantages, which might favour implementation of the
IGCC technology:

e High efficiency potential;

e Poly-generation of electricity and hydrogen gives flexibility.
Disadvantages of the IGCC technology are:

e High investment costs;

e Lower availability and reliability so far;

e Less technology experience compared with conventional
power plant technologies.

Classification of CO,-capture approaches for retrofitting of
power plants

It is anticipated that the CCS-technology will be commercially
available at the earliest as of 2020. Even though the power plants
built until this date should exhibit the highest efficiencies, they
will not have CCS-technology. Since 2005, approximately
350 GW new coal fired power plants have been built worldwide.
Additionally, old coal fired power plants have been substituted
by new coal fired power plants.®*** According to the actual
energy projections of the International Energy Agency (IEA), the
capacity demand of coal-fired power plants will increase until
2020 in a range of 350 to 675 GW. Consequently, retrofitting of
existing power plants with CCS technology is an important
option. To minimize the losses of efficiency as well as to keep
costs low, a prospective ‘capture-ready’ concept for power plants

is being discussed nowadays for those plants that will be built in
the near future. This concept infers that for a later retrofitting
with CCS technology, certain unit components should be
designed accordingly already in the planning stage (refer to
ref. 94).

From experience, the efficiency of a retrofitted power plant is
lower than that of an optimally designed new power plant.
Considering the substantial losses in efficiency of power plants
with combined CCS, the decision for a CCS-retrofitting is
determined by the remaining economic lifetime and may be
worthwhile for relatively new plants. Another important crite-
rion is the additional need for space for installation of CCS-units.
Thus, it is estimated that, e.g., for a MEA-wash, including the
components for the subsequent CO,-processing (liquefaction
and compression), an additional 50% of the original total area is
needed.’”® How far a CCS-retrofitting changes the power
dynamics and thus deviates from the optimal running mode of
a power plant is an important question from the viewpoint of the
power plant operator and cannot yet be answered. The high
efficiency losses upon retrofitting cause a reduction in the orig-
inal power supply. Consequently, the energy supplier has to
decide whether to compensate for these energy shortfalls by
either building more power capacity or buying this additional
power on the market.

Among the most favourable CCS-technology lines, only those
applying the post-combustion process (e.g., amine scrubbers) are
considered suitable for a retrofitting. For the other technology
lines, practically no operation experience exists or fundamental
technical problems have to be solved first. A suitability of the
Oxyfuel method for a retrofitting of existing power plants has not
yet been clarified. First model-supported simulations (see ref. 95)
show that a power plant operation with oxygen and air might be
feasible. Nonetheless, it is unknown how far high-temperature
corrosion or carbonization effects of the boiler material may
impair the function or life span of the boiler. A complete
replacement of a steam generator, which represents one of the
most expensive construction components, would equal the costs
of building a completely new power plant. Since the pre-
combustion variant represents an entirely different technology
line compared to a conventional steam power plant, it is not
suitable for retrofitting. Even though the retrofitting of existing
IGCC-plants with CCS-units is being discussed internationally,
it does not play a role due to the low number of such power
plants existing throughout the world. Hence, only the retrofitting
with the post-combustion method is discussed in the following.

As mentioned above, high residual concentrations of SO, in
the flue gas degrade the amine-based solvents used today.
Moreover, it is still unclear, which degree of purity is required for
the transport and storage of CO,. Hence, the SO,-concentrations
must be clearly reduced below current levels, making it necessary
to enlarge the SO,-stripping units. For an existing power plant,
this means that the existing flue gas stripper would have to be
modified. An alternative is to exchange the degraded solvent
more often.

Large quantities of low-pressure steam are needed to desorb
the CO,-rich amine liquid. As this steam is no longer available
for the electricity generation, its removal is decisively responsible
for the substantial losses in efficiency. Thermodynamic calcula-
tions®® show that about 65% of the complete low-pressure steam
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of a coal-fired steam power plant is needed for the desorption
process. A retrofitting requires modifications of the low-pressure
turbine part, of the preheaters (heat exchangers before the steam
generator), of the condenser as well as of the cooling water
pumps. Since the low-pressure part of the turbine can only be
supplied with one-third of the steam, two stages of a three-stage
designed low-pressure steam turbine cannot be used. From pilot
plant experiments, it is known that a pressure of about 3.2 bar is
necessary for regenerating the CO,-rich amine solvent. As this
pressure would fall below this level during a partial-capacity
operating mode, the required steam would have to be taken from
the mid-pressure part of the turbine at a very much higher
pressure level, which, in turn, would lead to additional losses in
efficiency.®

A retrofitting with a MEA-unit leads to a 30% higher cooling
water demand than that of a conventional power plant with
CCS.? The higher water consumption is essentially attributed to
the components amine wash, flue gas cooling as well as CO,-
compression. In particular, the flue gas cooling before the
absorber causes a clear increase in the total heat load to be
removed. Which ‘capture-ready’ measures should be taken
depends on the cooling water system. Thus, in a closed cooling
circuit, additional space has to be planned for cooling towers.
With freshwater cooling, it has to be guaranteed that an addi-
tional take-up of fresh water is possible.3®

About 25% of the total losses in efficiency are attributed to the
processing of the carbon dioxide, before it is transported to the
storage site.”® Incorporating the heat resulting from the
compression of the CO, intended for transport is highly signifi-
cant for improving the energy balance by decreasing these effi-
ciency losses.

One advantage of amine-based units is that, in the case of
a malfunction of the washes, the power plant can continue to be
operated. Moreover, there is the possibility to enter step-wise
into the CO,-capture process by determining the CO,-partial
streams or to hereby set constant flue gas streams as a function of
time.”® Furthermore the possibility of a better flexibility of power
plants with wash liquid-based CCS is notable. In the context of
a liberalized electricity market with corresponding electricity
price deviations, the regeneration of wash liquids could be done
in time periods, in which the electricity prices are relatively low.*”

Limiting conditions and testing criteria have been formulated
about whether a power plant is suited for a CCS-retrofitting.””*®
Besides the aforementioned need for space, additional cooling
water, and the availability of CO, storage, the concept comprises
the turbine design, heat-exchanger designs, incorporation of
compression heat into the heat balance as well as the absorber/
desorber unit design.’” The efficiency of retrofitting a ‘capture-
ready’ power plant may be by about 1.5% points higher as
opposed to that of an unprepared power plant.*® The additional
specific construction costs of a plant retrofitted with a MEA-unit
are more than 20% higher than the costs for a new, optimized
power plant equipped with MEA 6%

CO,-transport

For logistic and economic reasons, CO, must be transported at
high densities. The phase diagram with the melting and vapour
pressure curves of pure CO, is given in Fig. 2. Since CO,-
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Fig. 2 Schematic phase diagram of pure CO,.

pipelines are generally not actively cooled, the ambient temper-
ature is (besides the pressure) decisive for the aggregate state of
the carbon dioxide during the transport. Above the critical
temperature of 304.2 K (31.2 °C), the CO, is in supercritical state
and resembles a liquid with respect to its density and flow
behaviour. Because of its high dissolution capability for many
hydrophobic substances, supercritical CO, is used as a solvent
(e.g., in the food industry and petrochemical industry).!%-102
Another important property is that CO, readily dissolves in
water. Under standard conditions, about 0.9 1 gaseous CO,
dissolves itself in one litre water in the form of carbonic acid.
Note that the pH value of the aqueous carbonic acid can be tuned
by adjusting the CO, pressure.'**1%*

For choosing the appropriate transport option, the required
capacities, the geographical location, security issues and the
technical facilities need to be considered. For discontinuous
transport, as by truck, train or ship an intermediate storage
option has to be planned for matching the continuous capture of
CO, from the power plant. Currently, CO, is transported by
truck, ship or pipeline. The transport by truck and train in
pressure vessels is feasible for small amounts (up to a few thou-
sand tons CO, per year) to be transported over short distances.
The preferred option for the transport of large CO,-quantities
(e.g., for EOR) is currently via pipelines. Worldwide, there are
over 4000 kilometres of CO,-pipelines (mainly in the USA and
Canada), although the covered areas and the lengths of the
networks are not comparable with natural gas or petroleum
networks. Existing CO,-pipelines (mostly built in the 1980s)
transport primarily CO, used for enhanced oil recovery. The
existing pipelines have been operated reliably and safely for more
than two decades and can be regarded as state-of-the-art tech-
nology.2*19%1% A statistical analysis of incidents in the USA
points out that there have been no serious accidents.'®” Few CO,-
pipeline damages were caused by problems with overpressure
valves and seals, poor welding seams as well as corrosion
damages. Typical costs for the transport of CO, in pipelines are
onshore 1-7 Euro per tonne CO, and 100 km, whereas
the offshore transport costs 1-11 Euro per tonne CO, and
100 km'24,105,106

CO,-storage

Worldwide, the options to store CO, in geological storage
formations are being discussed intensively. The storage of CO, in
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the ocean is connected with negative impacts on the oceanic flora
and fauna and prohibited according to international agreements
(OSPAR, London Convention). In geological storage options,
the carbon dioxide is trapped in gas-tight rock formations,
whereby the following options are discussed:

e Deep-lying, unused brine-containing porous rock layers so-
called ‘saline aquifers’ onshore, as well as below the ocean
bottom,

e Depleted natural gas- and petroleum reservoirs including
almost depleted reservoirs, whereby the amounts of oil and gas
extracted can be increased by CO»-injection (Enhanced Oil
Recovery, EOR; Enhanced Gas Recovery, EGR), as well as

e Coal seams possibly combined with the recovery of coal
seam gas (Enhanced Coal Bed Methane, ECBM).

The CO, is stored by structurally trapping it below a gas-tight
barrier rock formation (e.g., clay stone or salt) with a convex
shape or without structural encapsulation in extensive storage
reservoirs. At typical pressures and temperatures in saline aqui-
fers, the density of the CO, is lower than that of the ambient rock
formation water. Because of its power to rise up, the CO,-phase
is encapsulated below the convex, gas-tight rock layer. In the
medium term, a considerable amount of carbon dioxide is dis-
solved in the rock formation water, and becomes mineralized in
the long term.'*® Typically, only storage reservoirs located at
depths of more than 800 m are suitable for storage of CO,.

Worldwide, the largest CO,-storage potential is ascribed to
saline aquifers (see Table 2).%2*1% Because of their high salt
concentrations, the water content of these rock layers is other-
wise not economically exploitable. Exhausted natural gas and
petroleum fields also represent a considerable potential. Injected
into nearly depleted reservoirs, the supercritical CO, mobilizes
the remaining hydrocarbons and simultaneously increases the
pressure there. Both processes lead to an increased petroleum
and natural gas yield. Such hydrocarbon reserves have inherently
proven their gas-tightness, because otherwise they could not have
stored oil or gas there over geological eras. For EOR, EGR and
ECBM, there are big uncertainties of the safety and duration of
underground CO, storage. The adsorption processes in coal
seams can be used to store CO,, too. In this case, the released
methane has to be captured in order not to imperil the climate
protecting effect.

The as yet largest, currently operated CO,-storage reservoir in
an aquifer is located below the North Sea. Above the Sleipner
natural gas field in the Norwegian Sector, ca. 1 million t CO, per
year are being separated as byproduct from the recovered natural
gas and injected into the Utsira sandstone formation located at
a depth of about 1000 metres. Besides the technical demonstra-
tion and economic feasibility, methods for monitoring the
injected CO, are explored. A selection of currently running CO,-

Table 2 Estimations of CO,-storage capacities (10° t CO,)*

storage projects worldwide is shown in Table 3.241% The annually
stored CO,-quantities vary from a few thousand tonnes up to
a million tonnes CO, (for comparison: a new generation 500 MW
hard coal unit emits ca. 2.4 million tonnes CO, per year). An
analysis of the storage capacities in Germany shows that the
onshore potential is sufficient for only a few power-plant
generations.

Aspects of CO,-purity with respect to CCS-technologies

After the carbon dioxide is captured, the gas stream still contains
impurities. Different requirements may be placed on the purity of
the carbon dioxide regarding its transport, storage or utilization.
In general, the stricter the purity requirements are, the greater the
technical complexity and energy expenditure and, hence, the
costs for CO,-capture and its processing. Therefore, it is
important to find a technically and economically feasible
optimum over the entire chain (power plant as well as the
capture, treatment, transport, storage and/or utilization of CO,).
As no consensus has been reached yet about the necessary CO,
purity, they cannot be stipulated at present. This uncertainty is
reflected in the current CCS-directive of the European Union,
which states that the gas mixture to be stored should ‘over-
whelmingly’ contain CO,. Possible dangers are considered
insofar as the respective concentrations of the substances in the
CO,-stream are required to be below a level that would harm the
integrity of the transport infrastructure or the storage reservoir
and that would pose a significant environmental and health risk.
In consequence, the composition of the impurities, which ulti-
mately cause the undesired side effects (e.g., corrosion), needs to
be evaluated. Since the materials applied to construct CO,-
pipelines are known and many years of experience have been
acquired, the technical requirements for the material in combi-
nation with the impurities can be specified clearly. The effects
concerning CO,-storage are still the focus of research. Here, one
has to differentiate between the possible interactions with the
geological storage surroundings as well as the requirements
resulting from the storage periphery (e.g., pipe materials, cement)
at the conditions of the injection.

Purity grade and flue gas processing. How the impurities affect
the energy costs of the subsequent flue gas treatment (compres-
sion) depends on the respective contaminants. This will be
illustrated using the following simplified comparison of pure
carbon dioxide and a CO,-stream with impurities. The assumed
CO,-purities were selected exemplarily in order to analyse the
principal effects of individual contaminants on the compression
work. It is assumed that the carbon dioxide to be stored is
compressed to a pressure of 120 bar by using a two-step

CO, storage Global** Europe® Germany'®
Deep saline aquifer 1000-10 000 30-500 12-28
Oil/matural gas field 600-1200 10-15 3
Non-exploitable coal seams/ECBM 3-200 n.a. 0.4-1.7

“ n.a.: no information available.
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Table 3 Classification of realized and planned storage projects

Project (location)

CO,-source

Type of storage

Amount of CO,

In Salah (Algeria)
Sleipner (Norway)

Weyburn (Canada/USA)

K12b (Netherlands)
Otway (Australia)

Snohvit (Norway-offshore)
Permian Basin (USA)
Gorgon (Australia -offshore)

Lacq (France)
Ketzin (Germany)
Nagaoka (Japan)
Frio Brine (USA)
Quinshu (China)

CO,-separation from natural gas
CO,-separation from natural gas
Coal

CO,-separation from natural gas
Natural gas separation
CO,-separation from natural gas
Natural deposits, industry
CO,-separation from natural gas
Oxyfuel power station

External delivery

Industrial production

Industrial production

Industrial production

Natural gas field/saline aquifer
Saline aquifer in maritime area
Natural oil field (EOR)
Natural gas field (EGR)
Depleted gas field

Natural gas field/saline aquifer
Several oil fields (EOR)

Saline aquifer

Depleted gas field

Saline aquifer

Saline aquifer

Saline aquifer

ECBM (pilot project)

1200 kt per annum (since 2004)
1000 kt per annum (since 1996)
1000 kt per annum since 2000
100 kt per annum (since 2004)
50 kt per annum (2007-2009)
0.75 kt per annum (since 2007)
500 000 kt (since 1972)

129 000 kt (2008-2010)

150 kt (2010-2012)

60 kt planed (start in 2008)

10 kt (2004-2005)

3 kt (2005-2006)

200 t
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compressor with intermediate cooling, which compresses the
carbon dioxide in several stages to 58 bar. The completely
condensed carbon dioxide is then raised to a pressure level of 120
bar by using pumps (see Scheme 13 and Fig. 3).

The respective physical-state points (1, 2, 3, 4) are found in
both images. The necessary compression work to raise the
pressure of the pure carbon dioxide is 0.089 kW h kg '. The
density of the compressed CO, is calculated at 564 kg m—. In
the case of impure carbon dioxide, a higher amount of
compression and pump work is necessary due to the different
properties (critical pressure and critical temperature) and
because a two-phase area has to be passed through during the
compression. From a process-engineering point of view, it has to
be ensured that the mixture has first been completely condensed
before the pressure is raised by the pumps. Since the individual
components have other properties than carbon dioxide, the
amount of work for the compression depends on the composition
of the impurities. The following shows how single components
influence this process, whereby impurities of 5% and 10% are
assumed exemplarily in order to better illustrate the relationships
(Table 4).'1°

To be able to recognize the effects of the individual substances,
the extra compression work for each respective impurity was
compared with the aforementioned case of a pure CO,-stream
(Fig. 4)."° If the contamination, e.g., consists only of nitrogen,
the compression work is 9% and 15% greater due to the higher
boiling point of the particular gas mixture (with 5% and 10%
impurities, respectively). Most impurity components cause an
increase on the compression work. An exception is sulfur
dioxide, as it has a lower boiling point than that of carbon
dioxide and, thus, requires less compression work.

Moreover, the presence of impurities affects the density of the
gas mixture. All impurity components cause a reduction of the
density and, hence, of the storage capacity (Fig. 5)."*° For
example, in the case of a 5% or 10% N,-contamination, approx.
30% or 40% less carbon dioxide, respectively, can be stored at

(z2)
(120)
T[] (20) () ()
P[bar] n CoMP1 m covP2 E — o >

O—tEeoE—0-EeoE—06 3

Scheme 13 Simplified CO,-compression system.

a given storage volume than that possible for storing pure carbon
dioxide.

The following gives an estimate of the effect of carbon dioxide
mixtures consisting of several impurities. Two mixtures are listed
exemplarily in Table 5 to illustrate the influence of impurities on
the compression work.'® Note that they are not to be equated to
mixtures that actually occur for CCS demonstration plants.

The energy demand for the compression is essentially deter-
mined by the compressor work. Although the purity of mixture
A1l (89.3 vol%) is lower than that of A2 (92.3 vol%), the specific
compression work is less for Al than for A2 (Fig. 6)."° This is
attributed to the specific physical properties of the components
and their respective concentrations in the gas mixture. For both
mixtures, the densities are depicted in Fig. 7,'® which both lie
clearly below that of pure carbon dioxide, which infers that
a higher storage capacity is needed.

In practice, it is attempted to separate the components of the
contamination as far as possible before the liquid pump. Typical
purities of the carbon dioxide to be stored are in the range 93—
98% CO,. However, with respect to energy consumption, the
separation is disadvantageous. With this in mind, one has to find
an optimum regarding purity, degree of carbon dioxide captured
and energy expense, which meets economic criteria, ensures
safety and the purity requirements prescribed for storage.!'®

Purity grade and CO,-transport. The composition of the
cleaned flue gas depends on the actual power plant process as

4 P[bar] P [bar]
120 . 120
& @ Critical
Liquid fﬂi‘"
Critical o
apoint Pressure@20°C ;
58 )
Liquid
Gas Saturated Gas
30 30 liquid
1/ @ ling @
1 —~ 1 :
O - @ —
20 " 20

Fig. 3 Compression of a pure (left) and contaminated CO,-stream
(right).
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Table 4 Boiling pressures and molar masses of binary CO,-mixtures (90% and 95% purity)

10 + —

Contaminant
Hz CH4 Nz CO 02 Ar COZ SOz
Molecular mass kg kmol™' 2 16 28 28 32 40 44 64
95% CO»-5% Contaminants
Molecular mass—mixture kg kmol™! 41.9 42.6 432 43.2 434 43.8 44.0 45.0
Boiling pressure Bar 127 67 79 77 72 72 58 53
90% CO»—-10% Contaminants
Molecular mass—mixture kg kmol™' 39.8 41.2 424 424 42.8 43.6 44.0 46.0
Boiling pressure Bar 143 75 94 91 84 83 58 50
35 0,12
o 0,106 0,107
30 i 0,087 0,096 0,09 0,098
i 0, 0,
el Impurity = 10% m5% i [l Pure CO,
E 4
201 g B wmixture A1
15 - s )
o B Mixture A2
3
S
£
[<]
o

Relative difference [%]

H, CH N, co o, Ar co, S

10

Fig. 4 Effect of impurities on the compression work (1 to 120 bar) in
comparison to pure CO,.
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Fig. 5 Effect of impurities on the storage density in comparison to pure
CO, (120 bar).

Table5 Composition of flue gases (dry) after the capture assumed in the
analysis of the storage capacity

Constituents [vol%] Pure CO, Mixture Al Mixture A2
CO, 100.0 89.3 923
Ar — 5.7 0.1
N, — 0.3 29
H, — — 4.1
CHy4 — — 0.5
CcO — — 0.1
SO, — 1.6 —
0, — 3.1 —
Molar mass [kg kmol™'] 44.0 43.7 41.7
SP pressure [bar] 58 82 100

Boiling pressure 120 bar

Fig. 6 Effects of impurities of flue gases (CO,-mixtures) on the
compression work.

600

B |mpurities
500 —

=CO,

400 +——

300 +—]

200 -

Storage density [kg/m?]

Pure CO, Mixture A1 Mixture A2

Fig. 7 Effects of flue gas impurities on the storage density (120 bar,
40 °C).

well as on the respective CO,-capture method. Typical impurities
for the respective CCS technology lines differentiated according
to the energy sources are listed in Table 6.''''2 Whereas the
fractions of argon and nitrogen dominate in the Oxyfuel tech-
niques due to air penetration, the contaminants CH, and H,
occurring in the pre-combustion process result from the actual
gasification process. Also SO,, NO,, CO and O, are found in the
power-plant flue gases.

The composition of the transported gases in a selection of U.S.
CO,-pipelines is depicted in Table 7.2 The anthropogenic
sources deal with the synthesis gas production, which explains
the H,S-content as well as the fraction of hydrocarbons with
a lower molecular mass. Upon comparing the compositions from
Tables 6 and 7, the differences in the respective compositions of
the impurities are obvious.

In general, it applies that the impurities cause a higher loss in
transport pressure compared to the transport of pure CO,.'*?
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Table 6 Typical impurities of flue gases™'!!!12

Coal Natural gas
CCS technology line Component (vol%) (vol%)
Post-combustion SO, <0.01 <0.01
NO, <0.01 <0.01
N,/Ar/O, 0.01 0.01
Pre-combustion H,S 0.01-0.6 <0.01
H, 0.8-2.0 1
CO 0.03-0.4 0.04
CHy4 0.01 2
Oxyfuel SO, 0.5 <0.01
NO, 0.01 <0.01
Nz/AI'/OQ 3.7 4.1

Due to the differing properties of the components, the pressure
loss varies greatly. In practice, this means that the pressure at the
beginning of the transport has to be much higher than that
necessary for the actual CO,-storage. An alternative option is to
integrate additional CO,-pumps or CO,-compressors along the
course of the pipeline.

Quality criteria for the pipeline transport. The U.S. company
Kinder Morgan, which builds and operates CO»-pipelines, has
set standards for the CO,-mixtures to be transported (Table 8).1*3
There are different reasons for setting such criteria. Thus,
a minimum purity of 95% CO, is required in order to guarantee
the mixability with petroleum. Substances such as sulfur,
nitrogen and nitrogen oxides adversely affect the mixability,
whereas H,S and hydrocarbons of low molecular weight posi-
tively affect it. This also explains the relatively high threshold for
hydrocarbons. Further reasons for limiting the respective
impurities concern material, corrosion and safety aspects.

These standards can be applied only partially to the transport
of CO,-mixtures originating from power plant processes. The
recommended limits § for CO,-pipelines operating with power
plant CO, mixtures (from pre-combustion- or post-combustion
units) are given in Table 9.'1%114

Some of the reasons for limiting the individual substances are
likewise found in Table 9.197:113:115 For instance, excessive water
content in the CO,-mixture is disadvantageous to the pipeline
transport, as this would promote corrosion and the formation of
hydrates. If solid hydrates accumulate, there is a risk of block-
ages and damage to the pipeline periphery (e.g., valves). A
danger of corrosion results from the formation of carbonic acid,
in particular in combination with other components (such as
SO, and H»S). The formation of free water, which would boost
the corrosion risk, is also problematic. An excessive water
fraction is generally undesired, since it reduces the energy effi-
ciency of the entire process. Moreover, there is the danger that
the properties of the pipeline material (carbon steel) would be
adversely affected, e.g., by becoming brittle. Likewise undesired
is oxygen as an impurity, since together with water, it can
accelerate oxidation reactions, which may lead to corrosive
damage.

€ Limits set within the framework of the EU project “DYNAMIS”,
www.dynamis-hypogen.com

CCS as an option for climate protection

Stringent targets to minimize greenhouse gases demand a wide
spectrum of corresponding measures, which comprise all energy
sectors as well as industry, commerce, transport as well as
households. Over 40% of the worldwide CO,-emissions are
caused by electricity generation in fossil fuel power plants. Thus,
this becomes especially relevant in the context of reducing
greenhouse gas emissions. Measures to be taken regarding fossil
fuel power plants constitute substituting carbon-rich with
carbon-poor energy sources, raising the efficiency of power
plants as well as capturing carbon dioxide and subsequently
storing it, which is accompanied by an overhaul of the power
plant parks.

As current energy scenarios of the International Energy
Agency (IEA) show, CCS technologies are particularly signifi-
cant within the scope of worldwide strategies to reduce green-
house gases.!'® The TEA projects an increase in today’s CO,
emissions of around 29 billion t per annum to about 62 billion t
per annum until the year 2050.1%5 This goes hand in hand with an
increase in atmospheric CO, concentrations to ca. 550 ppm and
a mean temperature increase of 3-4 °C. In two scenarios,
a period until 2050 was evaluated. In the first scenario (ACT
Map scenario), a clear CO; reduction is attained, so that by 2050,
about 35 billion tonnes less CO, will be emitted annually
compared to today’s emissions. This would correspond to a CO,
concentration of about 485 ppm in 2050 (Fig. 8).1°° The second
IEA reduction scenario (BLUE Map scenario) predicts
a decrease in carbon dioxide emissions to about 48 billion t CO,
per annum. Compared to the typical emissions scenario, this
would correspond to a reduction of about 77% and, accordingly,
to a CO, concentration of about 445 ppm in 2050.

For both scenarios, the particular contributions of the indi-
vidual sectors in reducing carbon dioxide emissions are shown in
Fig. 8.1% In both cases, the energy generation sector contributes
the greatest towards minimizing CO, emissions. In both
scenarios, CCS represents the single measure that contributes
most towards reducing CO, emissions. The CCS-fraction of the
total reduction in carbon dioxide due to energy generation is ca.
21% and ca. 26% for the ACT and BLUE map scenarios,
respectively. These results illustrate the importance of CCS-
technology in a global context and show that CCS is becoming
an increasingly attractive option for reducing carbon dioxide
emissions.

Economic perspective

As mentioned above, there are tendencies to make CCS tech-
nologies commercially available from the year 2020 onwards.
CCS-technologies may be an important option upon stipulating
stringent reduction targets on the CO, emissions.''” As there are
many power plants being planned or in construction,''® it may be
necessary to retrofit plants built before 2020 without CCS-tech-
nology. The European CCS-directive envisions a CCS-retrofit-
ting of power plants with a power rating of greater than 300 MW,
whose construction has been begun since 2009. The new
construction of CCS-power plants depends on the energy cost-
effectiveness as well as political framework conditions that
decisively influence the investment decisions of the energy supply
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Table 7 Gas compositions in existing pipelines'!?

CO, CHy4 N, H,S C,H,, CcO 0, Source
Canyon Reef 95% 5% <0.5% 100 ppm — — — Anthropogenic
Central Basin 98.5% 0.2% 1.3% — — — Natural
Sheep Mountain 96.8% 1.7% 0.9% 0.6% Natural
Bravo Dome 99.7% — 0.3% — — — Natural
Weyburn 96% 0.7% <300 ppm 0.9% 2.3% 0.1% <50 ppm Anthropogenic
Table 8 Quality requirements for CO,-pipelines in the USA'"? 60
Component Concentration Criterion Eé 50 - sl B
& . Industry
CO, >95% Mixability S 40! —
N, <4% Mixability < et
C,H, <5% Mixability 8 Bl Trenspor
H,O <480 mg m* Corrosion §
(0)3 <10 ppm Corrosion = . Buildings
H,S <10-200 ppm Safety g%
Glycol <0.04 ppmv Operation 3 .
Temperature <50 °C Material ©° 10 ARG Electricity
o 2,9 Mrd. t et generation
________ 1ccs }ccs
ACT Map Blue Map

companies. Such framework conditions include the further
development of the emissions trade, policies on renewable ener-
gies, as well as the future development of primary energy-carrier
prices.

Additional fuel demand upon implementation of CCS-technol-
ogies. Due to the necessity of gas separation, the efficiency of
a power plant with CCS is always lower than that without CCS.
Decisive for the greater fuel demand of such a power plant is the
ratio of the efficiency without and with CCS. The additional
power needed to compensate for this stems from the ratio of the
efficiency without (9o4) and that with CCS (n,ew). The addi-
tionally required power amounts to [(1o1a/Mnew) — 1] x 100 (in
%). In the case of an exemplary hard coal power plant with an
efficiency of 7,9 = 46% and a post-combustion plant with effi-
ciency losses of 12% points, approximately 35% more fuel is
needed. If one succeeds in reducing the efficiency losses to 8%
points, the amount of additionally needed fuel is diminished to
ca. 21%.

Table 9 Recommended limits for CO,-streams for pipeline transport!!>!*

Fig. 8 Global CO,-reduction in the scenarios of IEA for 2050.

Cost-effectiveness of CCS: costs for generating power and
avoiding CO,. To project the cost-effectiveness of CCS technol-
ogies, it is relevant to view the costs to generate power (LCOE)
and, concerning the reduction in CO,-emissions, the costs to
avoid CO, (CAC). The electricity generation costs with CCS
specify the costs of the power production chain comprising the
power plant with CO,-capture, transport and storage of CO, and
thus allow a comparison with other technologies for electricity
generation. The parameter here is one unit of electricity, which
flows into the grid, e.g., one MWh. In contrast, the CO,-avoid-
ance costs denote those expenses that result for the CO,-quan-
tities, which are not released into the atmosphere and, hence are
‘avoided’. Here, the parameter is one unit of CO», e.g., one tonne
CO,. The avoidance costs are figured by comparing the reference
technology without CCS with the corresponding technology
using CCS. One has to differentiate between the CO,-avoidance
costs and the CO,-capture costs. The former are always higher

Component Concentration Criterion

H,O 500 ppm Technical: below solubility limit of H,O in CO,.
No significant cross-effect of HO and H,S, cross-
effect of H,O and CHy is significant but within
limits for water solubility

H,S 200 ppm Health and safety considerations

CO 2000 ppm Health and safety considerations

(o)) Aquifer < 4 vol%, EOR 100-1000 ppm Technical: range for EOR, because lack of
practical experience on effects of O, underground

CHy4 Aquifer < 4 vol%, EOR < 2 vol% As proposed in ENCAP project

N, <4 vol% (all condensable gases) As proposed in ENCAP project

Ar <4 vol% (all condensable gases) As proposed in ENCAP project

H, <4 vol% (all condensable gases) Further reduction of H, is recommended because
of its energy content

SO, 100 ppm Health and safety considerations

NO, 100 ppm Health and safety considerations

CO, >95.5% Balanced with other compounds in CO,

7296 | Energy Environ. Sci., 2012, 5, 7281-7305

This journal is © The Royal Society of Chemistry 2012


http://dx.doi.org/10.1039/c2ee03403d

Downloaded by Forschungszentrum Julich Gmbh on 13/05/2013 08:27:49.
Published on 01 March 2012 on http://pubs.rsc.org | doi:10.1039/C2EE03403D

View Article Online

than the CO,-capture costs because of the reduction in efficiency
and the necessary compensation by a higher power and a higher
fuel input.

The costs to generate electricity or respectively to avoid CO,
result from several factors, which are essentially delineated by the
technology, the energy carrier prices and other factors affected
by the environmental and climate-political framework (e.g., the
price for CO,-certificates) as well as by the time-line. Due to the
long lifetimes of power plants and the corresponding long-term
binding of capital, these framework conditions are particularly
significant for investment decisions.

The certificate costs result from the remaining CO,-emissions
(without or with CCS), for which a certificate has to be made
available, and the certificate price, which reflects the market price
for CO,. Independent of the mechanism of the first allocation of
certificates (so-called ‘grandfathering’ vs. auctioning) it is
sensible and necessary to consider the certificate costs for the
electricity supply to completely represent the economic situation.
If a power plant does not own certificates, the certificates actually
have to be bought. If a power plant does own certificates,
opportunity costs are incurred, since certificates that are needed
are not available for sale. Thus, the allocation mechanism affects
the profit situation and liquidity.

Electricity generation costs and CO,-avoidance costs. In recent
years, a number of studies focusing on costs of CCS were pub-
lished.®"-119122 Here, CCS and reference plants without CCS are
considered. Post-combustion, pre-combustion and Oxyfuel
concepts are assumed for the fuels lignite and hard coal, whereas
a post-combustion plant is assumed for natural gas. The elec-
tricity generation costs are based on assumptions of efficiencies,
investment costs, and levels of CO,-capture, among others,
compiled within the scope of the current public literature
(Table 10). The cost calculations are based on an economic life
span of 40 years (coal), 25 years (natural gas), and an interest rate
of 5%. The number of full load hours is gaining importance, as in
the case of increased integration of renewable energies the
number of full load hours is expected to decrease. The depicted
electricity generation costs also contain the expenses for the
compression/liquefaction of carbon dioxide for a pipeline
transport of 350 km and for the storage in a saline aquifer at
a depth of 1000 metres, including the monitoring costs. For
transport and storage of CO,, average cost of 5 €511 per t CO,

Table 10 Basic data for calculation of LCOE and CAC

Fuel price €011 per GJ Ref.
Lignite 1.52

Hard coal 2.63 123
Natural gas 6.39 123

Transport and storage costs €011 per t CO,

5.00
Escalation % per annum Ref.
Fuel price 1.20 123
Operation and maintenance 1.50
Transport and storage costs 1.50

was assumed. A moderate price escalation was assumed for the
energy carrier development.

At first, the electricity generation costs were calculated without
figuring in the costs of certificates. This would correspond to
a (theoretical) situation without certificate trade, whereby CCS,
e.g., would be legally stipulated. The direct comparison of power
plant variants allows conclusions to be drawn about the change
in the origination costs without the cost-effectiveness of plants
being already answered upon consideration of a certificate
market. A clear increase in the electricity generation costs
through CCS can be determined for the different variants
(Fig. 9). As a whole, the electricity generation costs are the lowest
for lignite-fuelled power plants and are the highest for natural
gas-fuelled power plants. Upon introducing CCS, the electricity
generation costs rise by 37% (natural gas), 58-65% (hard coal)
and 71-81% (lignite). Here it is obvious that the power plants
with high capital costs show the strongest increase of the elec-
tricity generation costs. This again underscores the importance of
the additional investment costs for CCS. Even though slight
advantages may arise for Oxyfuel power plants with carbon
capture that are fuelled with lignite or hard coal, the results show
that, for the individual fuels, no clear preference for a CCS-
technology line can be derived.

Breakdown of the generation costs according to the individual
types of expenses underscores the argumentation (Fig. 9). Of
central importance is the increase in capital costs upon intro-
ducing CCS for coal-fired power plants. Compared to power
plants without CCS-technology, the additional investment costs
for those with CCS-technology are essentially attributed to
investments for carbon capture. Additionally, the importance of
fuel costs becomes clear: the higher the energy penalty (due to the
efficiency loss), the higher the increase in fuel costs.

Regarding natural gas, the electricity generation cost depends
more strongly on the higher natural gas supply prices and the
lower investments compared to those for coal-fired power plants.
For all power plant variants with CO,-capture, however, the
expenses for the transport and storage of CO, are low compared
to the CO,-capture costs as well as to the entire electricity

70 mLCOE T+S
m LCOE Fuel

u LCOE O+Mvar

Cost [€,9,,/MWh]

LCOE O+Mfix

#LCOE Capex

Lignite Hard Coal Natural Gas

Fig.9 Electricity generation costs (LCOE) of fossil fuel power plants for
2020 and cost structure (T + S: transport and storage; fuel; O + M:
operation and variable and fixed cost for maintenance; Capex: capital
expenditure) for a reference power plant without carbon capture (REF)
and with carbon capture (other variants) for 7500 h full load hours.
Certificate costs were not considered (basic data adapted from ref. 119).
PF: pulverized fuel; IGCC: integrated gasification combined cycle;
CCGT: combined cycle gas turbine.
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generation costs. Altogether, the analyses clearly show that
potential cost-saving measures have to focus on the power plant
base process and the CO,-capture.

Comparison of the CO,-avoidance costs shows that these costs
are lowest for lignite-fired power plants and highest for natural
gas-fired power plants (Fig. 10)."** Regarding natural gas, this is
essentially attributed to the fact that even without CCS, the
natural gas-fired power plants clearly show lower specific CO,-
emissions. Hence, successful savings have then to be ‘bought’ by
high expenditures. The CO,-avoidance costs run at 35-40 € per t
(lignite) und 42-44 € per t (hard coal) and thus slightly favour
the lignite-fired variants. Also in this case, this slight advantage is
related to the high specific CO,-emissions of the lignite-fired
power plants without CCS.

The MIT study “The Future of Coal”'* quotes individually
calculated COj-avoidance costs for coal-fired power plants,
which are much lower than those cited in ref. 125. For hard coal-
IGCC plants, these cost estimates of 20 $ per t CO, may be due to
optimistic expectations regarding the investment costs. The
McKinsey study “Carbon Capture and Storage: Assessing the
Economics” states CO,-avoidance costs of 33-50 € per t for
power plants at the beginning of the commercial use of CCS.®
Upon considering the cited CO,-avoidance costs of 35-40 € per t
(lignite) and of 42-44 € per t (hard coal), this applies largely for
coal-fired CCS power plants. Note that technical and economic
base parameters (such as power plant efficiency, power, fuel
prices, and fixed costs) were estimated differently and different
calculation methods and limiting criteria were applied.

Environmental relevance

While the application of CCS in power generation leads to
a reduction in CO,-emissions and thereby to a reduction in the
global warming potential (GWP),** a more comprehensive
investigation is necessary to account for other environmental
effects.'!27128 Beside direct emissions at the power plant itself,
other major contributors are upstream processes for coal supply
or solvent production (post-/pre-combustion), oxygen supply
(Oxyfuel), and downstream processes such as waste treatment
but also transport and storage. The holistic approach of Life
Cycle Assessment (LCA) opens up the field of vision to addi-
tional fuel supply, changed waste composition and amounts as
well as the environmental impact of chemicals (see, e.g.

80
60
40

20

Cost [€54/tco,]

IGCC-CCS

Lignite Hard Coal Natural
Gas

Fig. 10 CO, avoidance costs (CAC) for CCS-power plants for 2020 for
7500 h full load hours. Certificate costs were not considered. Basic data
adapted from ref. 119.

ref. 129-137). Most studies consider the post-combustion
capture route with coal as fuel and MEA scrubbing. More recent
studies include the Oxyfuel route, while pre-combustion is
underrepresented. New, second generation capture technologies,
such as chilled ammonia or membranes, have not yet been
subject of a LCA analysis.

Underlying assumptions have a considerable impact on the
outcome of the LCA analyses.’?® A significant aspect concerns
the efficiencies of today’s and future power plants. For hard coal,
the assumed efficiencies for a power plant without CCS vary
from 37% up to 54%, representing diverse stages of technology,
but also different technology concepts. Assumptions concerning
the efficiency losses due to the capture system vary between 6 and
18% points. Other parameters with considerable impact on the
results are capture efficiency and quality of CO, captured.
Variation in CO, removal efficiency by +5% points results in
changed values for the GWP by +20%."° Independent of the
capture technology, the type of fuel has the highest impact on the
results.

In the first step, an inventory of all inputs and outputs of the
entire system was evaluated. These values were then categorised
and assigned to a specific environmental impact, whereby each
impact is characterised by a specific impact equivalent. The
absolute impact equivalents per kWh of electricity produced for
each impact category are presented in Fig. 11. As it is sometimes
difficult to interpret these absolute values, each effect is bench-
marked in a normalisation step against the known overall effect
for this class, whereby the world average is chosen as reference
system. All data are related to the total global emissions for the
year 2000, where the global hard coal electricity generation was
5136 TWh."3®

For the pulverised hard coal combustion technology without
capture (Fig. 11), the Global Warming Potential (GWP,
expressed in kg CO,-equivalent) varies from 765 g CO,-eq. per
kWh (future plant of 2025)'*° to 1092 g CO,-eq. per kWh (old PC
plant of 2000).**° The values for the Acidification Potential (AP,
in kg SO,-equivalent) scatter between 0.39 g SO,-eq. per kWh'#°
and 2.76 g SOj-eq. per kWh."*® Most important here is the
assumed flue gas treatment, but also the coal composition. The
Eutrophication Potential (EP, in kg PO, -equivalent) and
Photochemical Oxidation Potential (POCP, in kg C,Hy-equiva-
lent) vary with the efficiency.
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Fig. 11 Environmental impacts of hard coal combustion without

capture, normalised to total global emissions in 2000 (adapted from

ref. 139).
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To estimate the relative importance of the environmental
effects, the data were normalised. Hard coal power generation
has a considerable share of the global GWP with 10.6%, while the
share of global AP is small (2.6%). The effects on the EP and
POCP are even smaller.

Upon introduction of a MEA-based post-combustion capture
technology, the GWP is substantially reduced (Fig. 12). Note
that the reduction is less than the proportion of CO, captured (in
most studies 90%), which is explained readily by the higher
amount of CO, to be captured for CCS systems due to efficiency
losses and, consequently, increased coal consumption. Addi-
tionally, this higher coal demand results in an increase of
methane emissions during mining and transport of the hard coal.

All LCA analyses show an increase in all other impact cate-
gories. The AP and EP of a MEA post-combustion system
increase even though further reductions of SO, and NO, emis-
sions by improved flue gas desulfurization (FGD) and selective
catalytic reduction (SCR), respectively, are assumed. The
underlying reason is the emission of ammonia during MEA
production and degradation'*®!*! as well as ammonia slip from
the SCR. Furthermore, more SO, and NO, are emitted during
coal transport by ship, typically by heavy-oil-fuelled freighters;
the latter also causing an increase in POCP.

One impact category, which is significantly affected by post-
combustion technology, is the Human Toxicity Potential (HTP),
which may increase up to 200% for post-combustion systems.
This follows from heavy metal and organic emissions into air and
water, mainly ethylene oxide emissions from the MEA
supply,’****5 and heavy metal and phosphate emissions into
water from landfilling coal ash.

Normalisation shows that by CCS power generation the GWP
goes down to 2.6%. The contribution to the share in the global
AP increases from 2.6% to 3.2%, while the contribution to EP,
POCP and HTP is small. It has to be pointed out, that AP is
a regional impact and CCS shifts the acidification potential from
the region of power production to regions of coal mining and
transport.

The environmental effects of the Oxyfuel process (Fig. 13) are
similar. While the GWP decreases, the values for AP lie between
—38% and 40%, for EP between —43% and 58% and for POCP
between 23% and 123%. The reason for the large scatter might be
in the differences concerning the assumptions on efficiency and
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Fig. 12 Relative environmental impacts of hard coal combustion with
MEA capture, normalised to the total global emissions in 2000 (adapted
from ref. 139).

energy penalty, improvement of flue gas treatment, and the
distribution of SO, and NO, in the compressed CO, stream vs.
flue gas emissions.'* The environmental effects of IGCC power
plants have been little investigated. Values for GWP between
692 g CO,-eq. per kWh and 862 g CO,-eq. per kWh and for AP
between 0.5 g SO,-eq. per kWh and 0.9 g SO,-eq. per kWh have
been quoted. GWP decreases from 11.5% to 2.9%, while the
share of AP on the global impact increases from 1.5% to 1.8%.
EP and POCP remain rather low compared to the global values.

Status of development of CCS, CO,-exploitation and
-recycling

Currently running and planned large-scale CCS projects

Currently, there are a considerable number of pilot-scale plants
worldwide, with which the various CCS-technologies are being
evaluated, whereby post-combustion plants clearly predomi-
nate.'*!** Planned large-scale projects as well as larger pilot-
scale power plants that are differentiated according to their
respective input energy sources, power ratings as well as the
technology routes are listed in Scheme 14.14

For the CO,-capture in gas power plants, the Mongstad
project is aimed at CO,-capture in combination with a gas power
plant (Karsto, 280 MW, maximum heat decoupling 350 MWy,)
and a refinery. For the first stage, the capture of 100 000 t CO,
per year is planned; afterwards the plant shall be developed to
reach an annual capture capacity of 1 million tonnes CO,. The
currently largest Oxyfuel pilot-scale power plant in the world is
found at the German lignite-fired power plant site “Schwarze
Pumpe” with a power rating of 30 MWy,. Within the scope of the
Australian CCS research initiative, an Oxyfuel plant is being
built at the coal power plant site Callide (Queensland). Within
the framework of the Spanish Ciuden project, the construction of
a coal-fired Oxyfuel plant (20 MWy,) is currently being pushed.
Also to be mentioned are the activities at the power plant site
‘Mountaineer’ (U.S.), where a post-combustion plant (chilled
ammonia) with a power rating of 54 MWy, is currently being
built.

Whereas power plants of a lower power rating (<50 MW) are
being built or already being operated, large-scale power plants
are in planning. In Europe, numerous large-scale projects are
being planned that are targeted at the actual capture, transport as
well as storage of carbon dioxide. These include the coal power-
plant projects Kingsnorth (2 x 400 MW), Ferrybridge (480 MW)
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Fig. 13 Relative environmental impacts of hard coal Oxyfuel tech-
nology, normalised to the total global emissions in 2000 (adapted from
ref. 139).
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Scheme 14 Overview on CCS-projects (Status 2010) with amine (red
circles) and ammonia (purple circles) based post-combustion, pre-
combustion (yellow circles) and Oxyfuel process (blue circles). The flag
marks projects supported by the EU.

and Tilbury (1600 MW) in Great Britain, for which feasibility
studies are presently being developed. Moreover, construction of
a coal-fired power plant (411 MW, heat decoupling 411 MJ s7})
equipped with a post-combustion unit is planned at the Danish
coal power plant site Nordjylland. At the Canadian power plant
site ‘Boundary Dam’, the retrofitting of a coal power plant
(100 MW,,)) with a post-combustion washing unit is being plan-
ned. The carbon dioxide captured there is to be used in petroleum
exploration. Furthermore, the German activities comprise the
construction of post-combustion plants (Wilhelmshaven and
Janschwalde), a pre-combustion plant at the site Hiirth and the
building of an Oxyfuel plant at the power-plant site Janschwalde.

Table 11 Worldwide largest realized CCS-projects

Presently in the world, there are four large projects in which
the capture, transport and storage of carbon dioxide are being
simultaneously demonstrated. They are the projects Sleipner
(Norway), Weyburn (USA-Canada), In Salah (Algeria) and
Snehvit (Norway). The amount of stored carbon dioxide of the
four projects totals to about 7 million t per annum. Also to be
mentioned here are the EOR-activities in Rangeley (USA), where
CO; has been utilized for petroleum exploration for 20 years.
Furthermore, numerous other large storage projects are being
planned, in particular, in the U.S. and Canada. It is estimated
that the amount of CO, stored will rise to 24 million tonnes CO,
until the year 2012.

Within the scope of the GHG-program of the IEA, a survey
was begun with the aim of compiling and summarizing the
experiences gained from so-called CCS ‘grand’ projects. Such
projects infer large pilot plants, demonstration plants as well as
commercial chemical plants and storage projects. In all,
28 projects or plants (Table 11) were identified.*** The largest
CCS-plants are commercial chemical plants, which are imple-
mented, e.g., in the context of producing ammonia and
hydrogen as well as for processing Liquefied Natural Gas
(LNG).

CO,-capture methods of the second generation

Besides the previously described methods to capture CO, and
separate air in power plants, there are many other innovative
technical possibilities to achieve this. Membrane-based methods
as well as the dry sorption of CO, (carbonate looping) are
currently the most promising techniques (Scheme 15) for reali-
zation on the large-scale.’*'%7 Moreover, the ‘chemical looping’

Project/Plant

Criterion

Bellingham Cogeneration Facility
CASTOR Project

Great Plains Synfuel Plant

In Salah

K12-B

Ketzin

MRCSP Michigan Basin

Nagaoka

Otway Basin Project

Pembina Cardium Project

Petrona Fertilizer Plant

IFFCO CO, Recovery Plant Phulpur
Chemical Co. “A” CO, Recovery Plant
IFFCO CO; Recovery Plant Aonla
Prosint Methanol Plant

Rangely CO,; Project
SECARB-Cranfield II

Shady Point Power Plant

Sleipner

Snehvit LNG Project

Schwarze Pumpe

IMC Global Soda Plant

SRCSP Aneth EOR Pradox Basin
SRCSP San Juan Basin

Sumitomo Chemicals Plant
Warrior Run Power Plant
Weyburn

ZAMA EOR Project

Separation > 100 kt per annum

Separation (from exhaust gas) > 10 kt per annum

Separation > 100 kt per annum

Injection > 10 kt per annum, separation > 100 kt per annum

Injection > 10 kt per annum

Injection > 10 kt per annum

Injection > 10 kt per annum

Injection > 10 kt per annum

Injection > 10 kt per annum

EOR Monitoring > 10 kt per annum

Separation (from exhaust gas) > 10 kt per annum

Separation > 100 kt per annum, separation (from exhaust gas) > 10 kt per annum
Separation > 100 kt per annum, separation (from exhaust gas) > 10 kt per annum
Separation > 100 kt per annum, separation (from exhaust gas) > 10 kt per annum
Separation (from exhaust gas) > 10 kt per annum

EOR monitoring > 10 kt per annum

EOR monitoring > 10 kt per annum

Separation (from exhaust gas) > 10 kt per annum

Separation > 100 kt per annum, injection > 10 kt per annum

Separation > 100 kt per annum, injection > 10 kt per annum

Separation (from exhaust gas) > 10 kt per annum

Separation > 100 kt per annum, separation (from exhaust gas) > 10 kt per annum
EOR monitoring > 10 kt per annum

Storage in coal seam > 10 kt CO,

Separation (from exhaust gas) > 10 kt per annum

Separation (from exhaust gas) > 10 kt per annum

EOR monitoring > 10 kt per annum

EOR monitoring > 10 kt per annum
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Scheme 15 Overview of gas separation processes.

method represents an alternative variant for supplying oxygen.
As all these methods are still found in the early stage of devel-
opment, these methods are often characterized as CCS-methods
of the “second generation”.

Membranes are materials that selectively allow gases to
permeate through them (Scheme 16). The membrane-based
capture of gases is employed on a large scale for separating CO,
from natural gas.” Currently, worldwide efforts concentrate on
developing dense, porous, or ion-/electron-conducting
membranes for capturing CO, in power plant processes. The
selectivity of the membranes for the permeability of various gases
essentially depends on the membrane material and transport
mechanisms. The stream of the gas through the membrane is
decisively determined by the partial pressure difference of the
gases between the permeated side and the retention side. Hence,
the use of membranes is a technique particularly suitable for
separation at high gas pressures.

The membrane-based separation has the potential to enable
improved efficiency and the cost-effectiveness of the whole plant.
The use of membranes is particularly interesting for H,/CO,-
separation'® because of the large difference in the physico-
chemical properties of the two gases. Here, one can choose
between separating hydrogen or carbon dioxide. Also for the
production of pure oxygen for the Oxyfuel method membranes
are an interesting option as the conventional cryogenic tech-
niques are essentially responsible for the losses in efficiency and
the efficiency potential mainly concerns the oxygen production
(vide supra).

GasA
GasB
Gas
(A+B) Membrane

Scheme 16 Illustration of gas separation with membranes.

Physical and chemical utilization of CO,

The physical utilization of carbon dioxide ranges from its
application as a coolant and refrigerant to uses in fire extin-
guishers and cleaning processes to its use in the petroleum and
natural gas industry for Enhanced Oil Recovery (EOR) and
Enhanced Gas Recovery (EGR). In recent years, numerous
application areas have been developed and intensively studied.
These include the extraction of natural materials, the processing
and recycling of polymer and rubber products as well as the
impregnation of wood.

The chemical utilization of CO, as a Cl-building block in
synthesis offers the possibility of incorporating it into products
and materials either permanently or at least for a longer period.
This option reflects an emerging anthropogenic carbon cycle
similar to that of photosynthesis. The thermodynamic stability of
CO, (end production of combustion) and its kinetic inertia (low
reactivity) can be overcome by using energy-rich starting mate-
rials as reaction partners and the use of suitable catalysts,
respectively, as has been proven by existing industrial processes
and manifold research results. Alternative to energy-rich starting
materials, an endergonic process may be driven by incorporation
of heat, electricity or light. The highest reduction in CO, foot-
print is achieved, when the energy for chemical processing is
supplied from renewable resources, such as wind power, solar
collectors or panels.

The options for chemically exploiting CO, vary with respect to
the maturity of the technologies. With existing technologies,
carbon dioxide is used as a raw material in numerous important
chemical processes. Currently, the most important applications
are for the production of urea (107 million t per annum), meth-
anol (2 million t per annum), cyclic carbonates (0.04 million t per
annum) and salicylic acid (0.025 million t per annum).

Several innovative technologies are on the cusp of industrial
realization. The synthesis of carbonates and polycarbonates
from CO,>1314150 gllows immediate accessibility to many
markets in the chemistry and polymer sector.’* The hydrogena-
tion of CO, to important chemical products such as methanol
and formic acid'®' and their derivatives is being intensively
studied. Also the Reverse Water Gas Shift (RWGS) reaction
(eqn (1)) is a feasible option for access into the chemical value
chain via CO. Since hydrogen is nowadays produced practically
only from fossil resources, a reduction in the CO,-emission could
be realized by using H, from other sources (e.g., wind power or
biomass). The utilization of H,, for example, for producing
methanol (via the reactions given in eqn (2) and (3)) would then
have to be weighed accordingly:

C02 + H2 = CO + H20 AHzggK = +41 kJ mol~! (1)
CO + 2H, = CH3OH AH>o3x = —90.8 kJ mol™! (2)
C02 + 3H2 == CH3OH + H20 AH298K = —49.8 kJ mol™! (3)

Especially attractive in chemical utilization of CO, is the
aspect that CO, has unlimited availability. There are various
sources of carbon dioxide for its chemical utilization. In the
chemical industry, carbon dioxide is produced in relatively pure
form. Thus, about 120 million metric tons of CO, are formed
yearly as a byproduct during the synthesis of ammonia.

This journal is © The Royal Society of Chemistry 2012
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Furthermore, CO, is formed during ethylene oxide production,
in refineries and during the cleaning of natural gas. Moreover,
carbon dioxide results as a byproduct during the production of
synthesis gas as well as during fermentation processes. The grade
of purity of carbon dioxide from ammonia production and from
fermentation suffices for practically all synthesis purposes.

Carbon dioxide captured from power plants can likewise be
used as a raw material. Nonetheless, due to possible impurities in
the CO,-stream in the power plant, scrubbing might first be
necessary before the CO, can be materially used. The various
impurities in the flue gases include O, N,, H,O, H,S, CO, CO,,
SO,, NO,, heavy metals as well as other hydrocarbons. Certain
criteria have to be met upon cleaning the CO,-streams. From
a chemical point of view, the stability of the applied catalysts
towards catalyst poisons plays a particularly important role and
has to be controlled. Also impurities incorporated into the
products may restrict the use in certain fields of application (e.g.,
as pharmaceuticals). In contrast to classical chemical syntheses,
where other cleaning steps typically follow the incorporation of
CO,, the purity of CO, is essential for its direct physical utili-
zation. Since CO, is often used without further processing steps,
e.g., in the food and beverage industries, CO,-impurities can play
a decisive role here. Since further cleaning of the carbon dioxide
accrues costs, one likewise has to consider the economic balance.
Moreover, from an ecological viewpoint, the additional energy
expenditure for the CO,-cleaning is likewise significant.

There are numerous reactions, where CO, can be employed for
chemical synthesis (see, e.g. ref. 4,152-159). Active catalysts are
available for coupling carbon dioxide with energy-rich unsatu-
rated substrates such as epoxides,'® butadiene or acetylene.
Direct carboxylation of hydrocarbons by inserting CO, into the
C-H bond of alkanes, aromatics or olefins is regarded as a door
for “dream reactions” of modern catalyst research;'® this would
open up an elegant route for producing fine chemicals. This
pathway would allow the conversion of methane and CO, to
acetic acid, benzene and CO, to benzoic acid, and ethylene and
CO, to acrylic acid. Other options are further along the devel-
opment path. The electro-catalytic and, in particular, the photo-
catalytic reduction of CO,'! would be the most elegant way to
exploit carbon dioxide, since it mimics the synthesis performance
of nature in photosynthesis. However, current heterogeneous
and homogeneous catalysts as well as the technical systems still
need to be improved before they can attain technically viable
efficiencies.

Conclusions

As current energy scenarios show, CCS-technologies are
becoming a highly important option within the scope of world-
wide strategies to reduce greenhouse gas emissions. Whereas
carbon capture is already being commercially applied in certain
branches of industry, e.g. in natural gas processing and chemical
production, the use of these technologies in power plants has not
yet reached such a level of maturity. In particular, with regard to
the capture process as well as CO,-processing, it is important
to reduce efficiency losses and investment costs further in order
to satisfy economic and environmental demands. Here, it is
especially important to build demonstration units to reach
market maturity in 10 to 15 years. Additional future technologies

like gas separation by membranes, methods for producing
oxygen, chemical looping as well as dry sorption (carbonate
looping) are regarded as the most promising candidates for
a long-term implementation of carbon capture. As all these
technologies are still in the early research and development stage,
a large-scale application in power plants is expected only later on
in the future. They are thus often called CCS-processes of the
“second generation”.

A clear increase of the electricity generation costs through
CCS can be expected. The increase is highest for lignite-based
power plants (71-81%) and lowest for natural gas-based power
plants (37%). The costs are linked closely to the capital expen-
diture. Additionally, the importance of fuel costs becomes clear:
the higher the energy penalty (efficiency loss), the more fuel is
consumed and the more the cost increase. Although optimistic
costs parameters are expected for the IGCC concept, there is no
clear preference for a single CCS technology line. The CO,
avoidance costs range between 34 and 38 € (lignite) and more
than 60 € per ton CO, (natural gas). In a regime with increasing
share of renewable energies, where the level of full load hours is
expected to decrease, the power generation costs and the CO,
avoidance costs are expected to increase considerably. The
increase is higher for those power plants with a high share of
investment costs.

The introduction of CO, reduction technologies goes along
with an increase of environmental impact (except the global
warming potential (GWP)) regardless of the process routes or
fuel used. This is related to the loss in efficiency and the corre-
sponding additional demand for fuel, operating materials (e.g.
solvents) and increasing waste. Therefore, an extensive further
optimisation at the power plant alone will not have a recognis-
able effect. Reduced environmental impacts can be achieved by
improving upstream processes. When solvents are used in the
process, the toxicological impact on humans and the environ-
ment increases. Beside that the acidification potential (AP)
increases noticeably, shifting the impact from the power plant to
the extraction and transportation of fuel. In comparison to other
industries the central impact for power production is the GWP,
which will be decreased.

Parallel to the implementation of CCS, the technical and, in
particular, chemical exploitation of carbon dioxide (CCU) can
offer an interesting though limited contribution to the reduction
of CO, emissions. Here, the captured CO, is a raw material,
which can be made use of in the value creation chain of the
chemical industry. Increased utilization of CO, may lead to
a reduced carbon footprint of the products. The fixation period
and fixation quantity are decisive for climate protection.
Nevertheless, the utilization of carbon dioxide is an important
option in the total strategy of ‘carbon management’. In partic-
ular, it offers an attractive alternative to the geological storage of
carbon dioxide, enabling us to exploit CO, as a valuable resource
in many different applications.
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