Hopping diffusion of two coupled particles in the random trap model

R. Descas and K. Mussawisade
Theoretische Polymerphysik, Universität Freiburg, Hermann-Herder Strasse 3, q, D-79104 Freiburg, Germany
(Received 5 July 2002; published 13 November 2002)

We show that the hopping dynamics of two strongly connected particles can be mapped exactly to single particle dynamics. In this way we are able to calculate the exact asymptotic diffusion coefficient of two connected particles on a linear chain in the random trap model. In particular we calculate the diffusion coefficient for exponentially distributed site energies and show that there exists a critical temperature below which a subdiffusive behavior appears. It turns out that this critical temperature is twice higher than the critical temperature in the single particle case [S. Havlin, B. L. Trus, and G. H. Weiss, J. Phys. A: Math. Gen. 19, L817 (1986)].

DOI: 10.1103/PhysRevE.66.051103 PACS number: 05.40.−a, 36.20.—r

I. INTRODUCTION

Hopping diffusion of classical particles in quenched random media has been the subject of many investigations in the past years (see for reviews [1–5]). In most of these investigations the random medium was simplified by a so called random energy model where the underlying structure is translationally invariant and the disorder is introduced by defining disordered jump rates between the lattice sites chosen randomly from a given distribution (examples are the random trap model, the random barrier model, etc.). The asymptotic behavior of single particle diffusion in such translationally invariant disorder models is at least in one dimensional cases completely understood [6]. However, the description of the dynamics of interacting particles such as the dynamics of lattice gases [7–8], single file diffusion [9], polymer chains [10–15], etc. even in lattices with uniform transition rates is much more complex and is the subject of many recent and current investigations. The subject of this paper is the diffusion of two coupled particles on a one dimensional lattice with random site energies. A model where the particles are connected by an attracting harmonic potential was investigated recently [16]. This is apparently the simplest model of coupled hopping particles and can be seen as a starting point of understanding the diffusion of polymer chains in random media. The diffusion of polymer chains in random media is one of the most fundamental and important quantities and has a broad application in material, biological and physical science and also in industrial purposes.

In the following section we will introduce the model. In Sec. III we derive the exact diffusion coefficient of the center of mass by mapping the dynamics of the two coupled particles into a single particle case. In the last section we conclude and discuss the case of longer chains.

II. MODEL

Consider two connected particles which perform continuous time random walk (CTRW) on a one dimensional lattice in the following way. Each particle has its own clock after which it jumps to a neighboring site under the condition that the distance between the two particles is no longer than one lattice site (see Fig. 1). The particles can be either at the same site or sitting on two neighboring sites. Each lattice site \( i \) corresponds to an energy trap \( E_i \), where the particle is trapped and try to release at each time unit (random trap model). Therefore the waiting time distribution of the particle at site \( i \) is an exponential function [17] which depends on the depth of the trap at this site:

\[
\psi_i(t) = \frac{1}{\tau_i} e^{-t/\tau_i},
\]

where \( \tau_i \) is the mean waiting time of a particle at site \( i \). The exponential factor represent the probability that the particle has not yet jumped until time \( t \) and the prefactor is the jump rate of the particle. The jump rate \( \Gamma_i \) depends on temperature and on the energy trap at site \( i \),

\[
\Gamma_i = \Gamma_0 e^{-E_i/k_B T},
\]

where \( \Gamma_0 \) is the attempt frequency, \( k_B \) is the Boltzmann factor and \( T \) the temperature of the system.

To be precise the jump direction of a particle depends on the position of the two particles. If the particle performing the jump is at site \( i \) and the other particle at site \( j \) than the jump rate from site \( i \) to a nearest neighboring site \( f \) is given by

\[
\Gamma_{i,j} = \Gamma_0 \exp[ -\beta V_{i,j}(i,j)],
\]

where \( \beta = 1/(k_B T) \) and

![FIG. 1. The allowed jumps of two connected particles. The distance between the two particles must not be more than one lattice site.](image)

*Present address: Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany.
III. MAPPING TO A SINGLE PARTICLE PICTURE AND EXACT DIFFUSION COEFFICIENT OF THE CENTER OF MASS

Now consider the motion of the center of mass of two connected particles. Due to the independent jumps of the particles the motion of the center of mass can be represented by an uncorrelated hopping of a single particle on a chain with additional sites in between the sites of the previous chain (see Fig. 2).

We number the sites in the chain of the center of mass picture in a way where the center of mass is on an even or odd site when the two particles are at the same position or at neighboring positions, respectively (see Fig. 2). The jump rates in the center of mass picture are related to the jump rates of the original model in the following way:

\[
r_{2i} = \Gamma_i, \quad l_{2i+1} = \Gamma_i, \quad r_{2i+1} = \Gamma_{i+1}, \quad l_{2i+1} = \Gamma_{i+1},
\]

where \(r_n, l_n\) are the jump rate of the center of mass to the right and to the left, respectively.

The master equation which gives the time evolution of the conditional probability \(P_n(t)\) to find the center of mass at the site \(n\) at time \(t\) if it was at time \(0\) at site \(0\) can be written as

\[
\frac{d}{dt} P_n(t) = r_{n-1} P_{n-1} + l_{n+1} P_{n+1} - (r_n + l_n) P_n. \tag{6}
\]

A numerical solution and the comparison with computer simulations are given in Fig. 3. The dynamics of the connected particles are mapped to the dynamics of one particle in a different energy landscape which we will construct later on. In this way we can use the exact result of the diffusion coefficient of a single particle in a one dimensional translational invariant lattice with arbitrary quenched jump rates [18–20]

\[
D = \left( \frac{1}{r_n P_n} \right)^{-1}, \tag{7}
\]

where the curly brackets indicate the disorder average and \(P_n^\text{eq}\) represents the equilibrium occupation probability at site \(n\) and it is given by

\[
P_n^\text{eq} = \frac{\exp(\beta \epsilon_n)}{Z}.
\]

\(Z = \{\exp(\beta \epsilon_n)\}\) is the partition function and \(\epsilon_n\) is the positive counted energy levels in the energy landscape of the center of mass which can be constructed recursively in the following way (see Fig. 4):

\[
\epsilon_{2i} = \epsilon_{2i-1} - E_i + E_{i+1}, \tag{9}
\]

\[
\epsilon_{2i+1} = \epsilon_{2i} - E_i + E_{i+1}. \tag{10}
\]

Solving these recursive relations and setting \(\epsilon_1 = E_1 = 0\) we find a simple relation to the energy levels in the original random trap model

\[
\epsilon_{2i} = E_i + E_{i+1}, \tag{11}
\]

\[
\epsilon_{2i+1} = 2E_{i+1}. \tag{12}
\]
We are interested in dynamics at equilibrium where the detailed balance condition has to be valid and this can be proved

\[
P_{2i+1}^{\text{eq}} \equiv \frac{1}{Z} e^{\beta (E_i + E_{i+1})} e^{-\beta E_i} = \frac{1}{Z} e^{2 \beta E_{i+1}} = \frac{1}{Z} e^{2 \beta E_{i+1}} e^{-\beta E_i} = P_{2i+1}^{\text{eq}}.
\]

The diffusion coefficient now takes the following form:

\[
D = a^2 \left( e^{\beta E} \right)^{-1} \left( e^{-\beta E} \right)^{-1}.
\]

The first disorder average on the right side is the inverse partition function and the second is the disorder average over the “weighted” jump rates \( Z r_s P_{eq} \) which are simplified by the detailed balance relation (13). The use of Eqs. (11) and (12) leads to the following form of the diffusion coefficient:

\[
D = a^2 \left[ \frac{1}{2} \left( e^{\beta (E_i + E_{i+1})} \right)_{E,E_i} + \frac{1}{2} \left( e^{2 \beta E} \right)_{E} \right]^{-1} \left( e^{-\beta E} \right)^{-1},
\]

where the indices at the curly brackets indicate the parameter of the disorder average. The first disorder average is simply a double integration over the distribution of the energies.

In Fig. 5 one can see the good agreement of the result of Eq. (16) and Monte Carlo simulations. The deviation of the last points are due to the very slow dynamics of the two coupled particles. At low temperatures the linear regime of the mean square displacement is reached after a very long time.

V. DISCUSSION

We have seen that the hopping dynamics of two connected particles as modeled in Sec. II on a linear chain with arbitrary jump rates can be reduced into single particle dynamics by considering the dynamics of the center of mass. This mapping allows the derivation of the exact diffusion coefficient. In the case of exponential distributed energy traps there occurs a dynamic phase transition such as in the single particle case where the critical temperature is a factor of two smaller. In the model considered in this paper, the center of mass is representing directly the two configurational states of the connected particles. One configuration is where both particles are sitting at the same site and the other is where the particles are sitting on neighboring sites. Due to this fact the dynamics of the two connected particles could be described fully by the dynamics of the center of mass. This is not possible anymore if one considers longer chains, where the configurational state of the chain is not represented by the center of mass in a unique way. Here other quantities should be considered which can represent all the states. And the “multistate random walk” of this quantity can then be projected to the center of mass in order to find its diffusion coefficient.

ACKNOWLEDGMENTS

We would like to thank Professor A. Blumen, Dr. Christian von Ferber, Priv. Dotz. Dr. Gunter Schütz, and Dr. K.P.N. Murthy for discussions.