
PHYSICAL REVIEW B, VOLUME 65, 134106
Theory of rubber friction: Nonstationary sliding

B. N. J. Persson and A. I. Volokitin
IFF, FZ-Jülich, 52425 Ju¨lich, Germany

~Received 31 May 2001; published 19 March 2002!

When rubber slides on a hard, rough substrate, the surface asperities of the substrate exert oscillating forces
on the rubber surface leading to energy ‘‘dissipation’’ via the internal friction of the rubber. In this paper we
extend an earlier published theory@B.N.J. Persson, J. Chem. Phys.115, 3840~2001!# to nonstationary sliding,
and present a discussion of how the area of real contact and the friction force depend on the nature of the
substrate surface roughness and on the history of the sliding motion. We consider in detail the case when the
substrate surface has a self-affine fractal structure.
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I. INTRODUCTION

The nature of the friction when rubber slides on a ha
substrate is a topic of considerable practical importance,
for the construction of tires,1 wiper blades,1 and in the cos-
metics industry.2 Rubber friction differs in many ways from
the frictional properties of most other solids. The reason
this is the very low elastic modulus of rubber and the h
internal friction exhibited by rubber over a wide frequen
region.

The pioneering studies of Grosch3 have shown that rubbe
friction in many cases is directly related to the internal fr
tion of the rubber. Thus experiments with rubber surfa
sliding on silicon carbide paper and glass surfaces give f
tion coefficients with the same temperature dependenc
that of the complex elastic modulusE(v) of the rubber. In
particular, there is a marked change in friction at high spe
and low temperatures, where the rubber’s response is dr
into the so-called glassy region. In this region, the fricti
shows marked stick slip and falls to a level ofm'0.4, which
is more characteristic of plastics. This proves that the frict
force under most normal circumstances is directly related
the internal friction of the rubber, i.e., it is mainly abulk
propertyof the rubber.3

Almost all real surfaces have roughness on many differ
length scales which must be taken into account when ca
lating the rubber sliding friction force. This was consider
in the work by Klüppel and Heinrich.4 However, in Ref. 4
the deformation of the rubber surface in response to the
face roughness is only included in some average way. On
us has developed a theory of rubber friction where the de
mations of the rubber are taken into account on all relev
length scales.5 The theories in Refs. 4 and 5 consider rubb
friction when a rubber block is slid atconstantvelocity over
a hard, rough surface. Other studies of this topic are p
sented in Refs. 1 and 6–10. In this paper we extend
theory in Ref. 5 tononstationarysliding. The theory is valid
for arbitrary~random! surface roughness, but explicit resu
are presented for self-affine fractal surface profiles.11,12 Such
surfaces ‘‘look the same’’ when magnified by a scaling fac
z in the xy plane of the surface and by a factorzH ~where
0,H,1) in the perpendicularz direction. We note that
many materials of practical importance have~approximately!
self-affine fractal surfaces. Thus, for example, road surfa
0163-1829/2002/65~13!/134106~11!/$20.00 65 1341
d
g.,

r

s
-
as

s
en

n
to

nt
u-

r-
of
r-
nt
r

e-
e

r

es

and the surfaces of many cleaved, brittle materials tend to
self-affine fractal with the fractal dimensionD f532H
'2.222.5. In practice there is always a lower,l1, and up-
per,l0, cutoff length, so that the surface is self-affine frac
only when viewed in a finite length-scale intervall1,l
,l0. For surfaces produced by brittle fracture, the upp
cutoff lengthl0 is usually identical to the lateral sizeL of the
fracture surface. This may also be the case for many surfa
of engineering importance~see, e.g., Refs. 13–17!. However,
for road surfaces the upper cutoffl0 is of the order of a few
millimeters, which corresponds to the size of the largest s
particles in the asphalt. Less is known about the sh
distance cutoffl1, but below, it will be assumed to be of th
order of a few micrometers, so that the length-scale reg
where the road surface may be assumed to be fractal
extend over;three orders of magnitude.

In spite of its great practical importance, very few detail
experimental studies of the nonstationary frictional dynam
of rubber on a hard rough substrate have been perform
Recently Ronsin and Coeyrehourcq18 have studied~experi-
mentally! the state-, rate-, and temperature-dependent f
tion of elastomer, but focused mainly on the glassy side
the dynamical response of the polymer. An early study
Roberts and Thomas focused on some simple nonstatio
sliding problems involving rubber.19

When rubber slides on a hard, rough surface with rou
ness on the length scalesl, it will be exposed to fluctuating
forces with frequenciesv;v/l. Since we have a wide dis
tribution of length scalesl1,l,l0, we will have a corre-
sponding wide distribution of frequency components in t
Fourier decomposition of the surface stresses acting on
sliding rubber block. The contribution to the friction coeffi
cientm from surface roughness on the length scalel will be
maximal whenv/l'1/t, where 1/t is the frequency when
Im E(v)/uE(v)u is maximal, which is located in the trans
tion region between the rubbery region~low frequencies! and
the glassy region~high frequencies!. We can interpret 1/t as
a characteristic rate of flips of molecular segments~configu-
rational changes!, which are responsible for the viscoelast
properties of the rubber. Since the flipping is a therma
activated process it follows thatt depends exponentially~or
faster! on the temperaturet;exp(DE/kBT), whereDE is
the barrier involved in the transition. In reality, there is
©2002 The American Physical Society06-1



to
e

e
-

e-
e
-

s

th
s-

r

lts
t
r
w
th

the
ord-
ve

i-

ub-
t
ate
ent

ot-
ous

ber

t

B. N. J. PERSSON AND A. I. VOLOKITIN PHYSICAL REVIEW B65 134106
wide distribution of barrier heightsDE and hence of relax-
ation timest, and the transition from the rubbery region
the glassy region is very wide, typically extending over thr
orders of magnitude in frequency.

II. SLIDING FRICTION

This section is based on the formalism developed in R
5. Using the theory of elasticity~assuming an isotropic elas
tic medium for simplicity!, one can calculate the displac
ment fieldui on the surfacez50 in response to the surfac
stress distributionss i5s3i . Let us define the Fourier trans
forms

ui~q,v!5
1

~2p!3E d2x dt ui~x,t !e2 i (q•x2vt),

ui~x,t !5E d2qdv ui~q,v!ei (q•x2vt),

and similar fors i(q,v). Herex5(x,y) andq5(qx ,qy) are
two-dimensional vectors. We have5

ui~q,v!5Mi j ~q,v!s j~q,v!

or, in matrix form,

u~q,v!5M ~q,v!s~q,v!,

where the matrixM is given in Ref. 5.
We now assume that the surface stresss(q,v) only acts

in the z direction ~see below! so that

uz~q,v!5Mzz~q,v!sz~q,v!. ~1!

Sincev;vq ~wherev is a typical sliding velocity! we get
v/cTq;v/cT!1 in most cases of practical interest. Thu
we can expandM (q,v) to leading order inv/cTq. This
gives5

~Mzz!
2152

Eq

2~12n2!
. ~2!

It is interesting to note that if instead of assuming that
surface stress acts in thez direction we assume that the di
placementu points along thez direction, then

sz~q,v!5~M 21!zz~q,v!uz~q,v!,

where in the limitv/cTq!1,

~M 21!zz52
2Eq~12n!

~11n!~324n!
,

which differs from Eq.~2! only with respect to a facto
4(12n)2/(324n). For rubberlike materials (n'0.5) this
factor is of order unity. Hence, practically identical resu
are obtained independently of whether one assumes tha
interfacial stress or displacement vector are perpendicula
the nominal contact surface. In reality, neither of these t
assumptions holds strictly, but the result above indicates
the theory is not sensitive to this approximation.
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We now make the basic assumption that during sliding
whole rubber interfacial surface area moves forwards acc
ing to 2r (t), i.e., we assume that no Schallamach wa
propagation or local interfacial stick-slip motion~where dif-
ferent interfacial areas slip at different times! occurs ~see
Ref. 20!. At this point it is convenient to introduce a coord
nate system with thexy plane fixed in the~undeformed!
bottom surface of the rubber block, and consider the s
strate as moving with the velocityṙ (t). We first assume tha
the rubber block is in complete contact with the substr
during sliding. Thus, the rubber block surface displacem
field induced by the substrate roughness is

u~x,t !5u@x2r ~ t !#,

wherer (t)5x(t) x̂ and

u~q,v!5
1

~2p!3E d2xdt u@x2r ~ t !#e2 i (q•x2vt)

5
1

~2p!3E d2xdt u~x!e2 i $q•[x1r (t)] 2vt%

5u~q! f ~q,v!, ~3!

where

u~q!5
1

~2p!2E d2x u~x!e2 iq•x

and

f ~q,v!5
1

2pE dt e2 i [q•r (t)2vt] . ~4!

If s f(t) denotes the frictional shear stress acting on the b
tom surface of the rubber block, then the instantane
power absorptionP(t)5s f(t)A0ẋ(t) must be given by the
rate of work by the substrate surface asperities on the rub
block:

s f~ t !A0ẋ~ t !5E d2x^u̇~x,t !•s~x,t !&, ~5!

where the terms inside the angular brackets^•••& denotes
the ensemble average, and whereA0 is the surface area. Bu

u̇~x,t !5u̇@x2r ~ t !#52 ṙ ~ t !•¹u@x2r ~ t !#

52 ẋ~ t !
]

]x
u@x2r ~ t !#. ~6!

Thus, using Eqs.~5! and ~6!,

s f~ t !52
1

A0
E d2xK ]

]x
u~x,t !•s~x,t !L . ~7!

Using Eqs.~1! and ~7! gives
6-2
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THEORY OF RUBBER FRICTION: NONSTATIONARY SLIDING PHYSICAL REVIEW B65 134106
s f~ t !5
~2p!2

A0
E d2qdvdv8~2 iqx!e

2 i (v1v8)t

3^u~q,v!•s~2q,2v8!&

'
~2p!2

A0
E d2qdvdv8~2 iqx!e

2 i (v1v8)t

3~Mzz!
21~2q,v8!^uz~q,v!uz~2q,2v8!&.

~8!

Substituting Eqs.~3! in ~8! gives

s f~ t !5
~2p!2

A0
E d2qdvdv8~2 iqx!e

2 i (v1v8)t

3~Mzz!
21~2q,v8! f ~q,v! f ~2q,v8!^uz~q!uz~2q!&.

~9!

Let us now consider sliding on a randomly rough surfa
described by the functionz5h(x) @where x5(x,y)]. As-
sume first that the rubber is able to deform and comple
follow the substrate surface profile and thatu¹h(x)u!1.
Thus we can approximateuz'h(x). Using Eq.~9! gives

s f~ t !5
~2p!2

A0
E d2qdvdv8~2 iqx!e

2 i (v1v8)t

3~Mzz!
21~2q,v8! f ~q,v! f ~2q,v8!^h~q!h~2q!&,

~10!

where we assumed that^h&50. Now, note that

^h~q!h~2q!&5
A0

~2p!4E d2x^h~x!h~0!&e2 iq•x

[
A0

~2p!2 C~q!, ~11!

since^h(x)h(x8)& depends only on the differencex2x8. The
spectral density C(q) is defined by

C~q!5
1

~2p!2E d2x^h~x!h~0!&e2 iq•x. ~12!

Substituting Eqs.~11! in ~10! and using Eq.~2! gives

s f~ t !5E d2q q2cosfC~q!E dvdv8 e2 i (v1v8)t f ~q,v!

3 f ~2q,v8!
iE~v8!

2~12n2!
, ~13!

where we have used polar coordinates so thatqx5q cosf.
Now, note that

E dv f ~q,v!e2 ivt5 f ~q,t !5e2 iq•r (t) ~14!

and
13410
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E dv8 f ~2q,v8!
E~v8!

2~12n2!
e2 iv8t

5
1

2pE dt8 eiq•r (t8)
E~ t2t8!

2~12n2!
. ~15!

Using these equations, Eq.~13! gives

s f~ t !5
1

2pE d2q q2cosfC~q!

3E dt8 e2 iq•[ r (t)2r (t8)]
iE~ t2t8!

2~12n2!
. ~16!

If we define

F~q,t !52
1

2pE dt8
E~ t2t8!

s0~12n2!
e2 iq•[ r (t)2r (t8)] , ~17!

we get

s f~ t !5
1

2
s0E d2q q2cosfC~q!Im F~q,t !. ~18!

The friction coefficientm can be obtained by dividing the
frictional shear stress~18! with the pressures0:

m~ t !5
1

2E d2q q2cosfC~q!P~q,t !Im F~q,t !. ~19!

In Eq. ~19! we have introduced an additional factorP(q,t),
defined as the fraction of the original macrocontact a
where contact remains when we study the contact area on
length scalel52p/q ~see below!. In principle, n depends
on frequency but the factor 1/(12n2) varies from 4/3
'1.33 for n50.5 ~rubbery region! to '1.19 for n50.4
~glassy region! and we can neglect the weak dependence
frequency.

SinceC(q) andP(q,t) only depend on the magnitude o
q, from Eq. ~19!,

m~ t !5
1

2E dq q3C~q!P~q,t !E df cosf Im F~q,t !.

~20!

Note that the factor cosf in the integrand vanishes whe
f5p/2, while it is maximal whenf50. This has a simple
but important physical origin: Consider two cosine-surfa
corrugations, where the ‘‘wave vector’’ points~i! along thex
axis ~the sliding direction!, and ~ii ! along they axis. The
former case corresponds tof50, and in this case the rubbe
block will experience pulsating deformations during slidin
along thex axis. The second case corresponds tof5p/2,
where the elastic deformations of the rubberdo not change
during sliding along thex axis, and this type of surface
roughness will therefore not contribute to the friction. T
6-3
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functionP(q,t) was derived in Ref. 5 for the case of statio
ary sliding, and the same derivation is valid in the pres
case. Thus,

P~q,t !5
2

pE0

`

dx
sinx

x
exp@2x2G~q,t !#, ~21!

where
T
a

b

13410
t G~q,t !5
^sz

2~ t !&q

2s0
2 . ~22!

Here ^sz
2(t)&q is the average of the square of the interfac

stress, where the average only includes the roughness w
vectors with magnitudesmaller than q, and where it is as-
sumed that contact with the substrate occurs everywh
Now, note that
^sz
2~ t !&5

~2p!2

A0
E d2qdvdv8 e2 i (v1v8)t^sz~q,v!sz~2q,v8!&

5E d2qdvdv8 e2 i (v1v8)tMzz
21~q,v!Mzz

21~2q,v8!C~q! f ~q,v! f ~2q,v8!

5
1

4E d2qdvdv8 q2e2 i (v1v8)t
E~v!

12n2

E~v8!

12n2
C~q! f ~q,v! f ~2q,v8!

5
1

4E d2q q2C~q!U 1

2pE dt8
E~ t2t8!

12n2
eiq•r (t8)U2

5
1

4
s0

2E dq q3C~q!E dfuF~q,t !u2. ~23!
us
f

stic
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Thus

G~q,t !5
1

8EqL

q

dq q3C~q!E dfuF~q,t !u2. ~24!

Let us summarize the basic results obtained above.
friction coefficientm(t) for a flat rubber surface sliding on
nominally flat substrate in the most general case is given

m~ t !5
1

2E dq q3C~q!P~q,t !E df cosf Im F~q,t !,

~25!

where the~normalized! area of contactA(l)/A0, on the
length scalel52p/q, is given by

P~q,t !5
2

pE0

`

dx
sinx

x
exp@2x2G~q,t !#, ~26!

G~q,t !5
1

8EqL

q

dq q3C~q!E dfuF~q,t !u2. ~27!

In the equations above

F~q,t !52
1

2pE dt8
E~ t2t8!

s0~12n2!
e2 iq•[ r (t)2r (t8)] . ~28!

Note that ifE(t) changes slowly witht, then in Eq.~28! we
can expand
he

y

r ~ t8!'r ~ t !1 ṙ ~ t !~ t82t ! ~29!

so that

F~q,t !52
1

2pE dt8
E~ t2t8!

s0~12n2!
e2 iq• ṙ (t)(t2t8). ~30!

Substituting this in Eqs.~25!–~27! gives m(t)5mk@ ẋ(t)#,
i.e., thefriction coefficient depends only on the instantaneo
sliding velocity. The necessary condition for the validity o
the expansion~29! in Eq. ~28! is that

quẍ~ t !u~t* !2!1, ~31!

where t* is the memory time of the kernelE(t) @see Eq.
~38a!#.

We consider now the limits0!E(v50), which is satis-
fied in most applications. In this case, for mostq values of
interest,G(q,t)@1, so that onlyx!1 will contribute to the
integral in Eq.~26!, we can approximate sinx'x, and

P~q,t !'
2

pE0

`

dx exp@2x2G~q,t !#5@pG~q,t !#21/2.

~32!

Thus, within this approximation, using Eqs.~27! and~32! we
get P(q,t)}s0 so that m is independentof the nominal
stresss0. Similarly, note that if we scaleE(v)→aE(v),
then from Eqs.~27! and ~32!, P(q,t)}1/a, so thatm de-
pends only on the frequency variation of the complex ela
modulus, but not on its magnitude. For tires, the condit
s0!E(v50) is usually satisfied. Consequently, on a d
road track one expects the same friction for wide and nar
6-4
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THEORY OF RUBBER FRICTION: NONSTATIONARY SLIDING PHYSICAL REVIEW B65 134106
tires, assuming that the rubber-road adhesional interac
and temperature effects are unimportant.

In order to take into account thatP(q,t)→1 when
G(q,t)→0, we use the interpolation formula

P~q,t !'~11@pG~q,t !#3/2!21/3. ~33!

Numerical evaluation of Eq.~26! shows that Eq.~33! is an
accurate representation ofP(q,t) for all q ~or, equivalently,
all G).

If we assume that the substrate surface is self-affine f
tal on all length scales between an upper and lower cu
l0[2p/q0 and l1[2p/q1, we haveC(q)50 for q,q0,
while for q.q0,

C~q!'k~q/q0!22(H11), ~34!

whereH532D f ~the fractal dimension 2,D f,3). If we
define ^h2&5h0

2/2, then Eq.~11! gives k5(h0 /q0)2H/2p.
Using Eqs.~25! and ~34! with q5q0z gives

m~ t !5
H

4p
~q0h0!2E

1

q1 /q0
dz z122HP~z,t !

3E df cosf Im F~q,t !, ~35!

whereP(z,t)5A(l)/A0 is given by Eq.~26! with

G~q,t !5
H

16
~q0h0!2E

1

q1 /q0
dz z122HE dfuF~q,t !u2.

~36!

Note that since, to a good approximation,P(q,t)
;@G(q,t)#21/2, it follows that P;1/q0h0, and thus m
;q0h0.

III. NUMERICAL RESULTS

As an example, assume thatE is given by the model
shown in Fig. 1~a!. This model is, in fact, not a good descrip
tion of real rubbers, since the transition with increasing f
quency from the rubbery region to the glassy region is
abrupt, leading to a too narrow~and too high! mk(v) peak.
Nevertheless, the model gives a qualitatively correctE(v).

The model in Fig. 1~a! corresponds to the complex elast
modulus

E~v!5
E1~12 ivt!

11a2 ivt
. ~37!

This function is shown in Fig. 1~b!. Note thatE(`)5E1 and
E(0)5E1 /(11a) so that E(`)/E(0)511a. Since typi-
cally E(`)/E(0)'1000 we takea51000 in all numerical
calculations presented below. We assumeE1@s0, in which
casem(t) is independent ofE1 ands0. Note that

E~ t !5E dv e2 ivtE~v!52pE1Fd~ t !2
a

t
u~ t !e2(11a)t/tG

~38a!

so that
13410
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2pE dt8E~ t2t8!e2 iqx[x(t)2x(t8)]

5E1F12
a

tE2`

t

dt8 e2(11a)(t2t8)/te2 iqx[x(t)2x(t8)] G .
~38b!

In what follows we consider two different histories forx(t):
~i! Sliding velocity step-change:

x~ t !5v0t for t,0,

x~ t !5v1t for t.0.

Substituting this in Eq.~30! and using Eqs.~38b! gives

F52
a

11a
E1S 11

1

a
2

u~2t !

11 iqxv0

2u~ t !Fe2t2 iqxv1t

11 iqxv0
1

12e2t2 iqxv1t

11 iqxv1
G D , ~39!

wheret is measured in units oft* 5t/(11a), v in units of
1/(q0t* ), and q is measured in units ofq0. ~ii ! Stop and
start:

FIG. 1. ~a! Rheological model corresponding to Eq.~37!. ~b!
The complex elastic modulusE(v) as a function of frequency. The
logarithm has 10 as the basis.E15109 N/m2 anda51000.
6-5
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B. N. J. PERSSON AND A. I. VOLOKITIN PHYSICAL REVIEW B65 134106
x~ t !5v0t for t,0,

x~ t !50 for 0,t,T,

x~ t !5v1~ t2T! for t.T.

Substituting this in Eq.~30! and using Eq.~38b! gives

F52
a

11a
E1S 11

1

a
2

u~2t !

11 iqxv0

2u~ t !u~T2t !F e2t

11 iqxv0
112e2tG

2u~ t2T!Fe2t2 iqxv1(t2T)

11 iqxv0
1e2(t2T)2 iqxv1(t2T)

2e2t2 iqxv1(t2T)1
12e2(t2T)2 iqxv1(t2T)

11 iqxv1
G D , ~40!

where againt is measured in units oft* , wave vectorq in
units of q0, and velocityv in units of 1/(q0t* ).

Note thatm(t) depends onH andq0h0. In what follows
we useH50.8 andq0h051. Sincem;q0h0, the friction
coefficient for otherq0h0 can be obtained from direct sca
ing.

Figure 2~a! shows the kinetic friction coefficient as
function of the logarithm~with 10 as the basis! of the sliding
velocity. The maximal friction occurs at a velocityvc where
the substrate surface asperities give rise to fluctuating fo
acting on the rubber with frequencies occurring in the tr
sition region between the rubbery region and the glassy
gion in the mechanical response of the solid. For real rub
the peak maximum ofmk(v) is smaller than in Fig. 2~a!, and
mk does not decrease towards zero for ‘‘large’’ and ‘‘sma
velocities as in Fig. 2~a!, but levels off atmk'0.220.4. This
is, at least in part, a result of the fact that for real rubb
Im E(v) does not decrease as rapidly towards zero as it d
for the model elastic modulus~37!.

Figure 2~b! shows the logarithm of the relative area
contactP5A(z)/A(1) @whereA(1) is the nominal contac
area# as a function of the logarithm of the sliding velocity.P
is shown for two different magnifications,z53 andz5100.
Note thatP decreases from a constant value in the rubb
region to another much smaller value in the glassy reg
The drop in magnitude corresponds to the fac
E(`)/E(0)511a51001. The physical reason for this
clear: at low sliding velocities the perturbing frequencies a
ing on the rubber surface from the surface asperities occu
the rubbery region whereE(v)'E(0) so the rubber is very
soft. At high sliding velocities the perturbing frequencies a
very high and correspond to the glassy region whereE(v)
'E(`)5(11a)E(0). Since the area of real contact
roughly proportional to 1/E the observed results follow.

Figure 3 shows~i! the friction coefficientm(t), and ~ii !
the relative area of contactP5A(z)/A(1) as a function of
time when the sliding velocity changes abruptly fromv0
51024 to v151023 at t50. The relative area of contact i
shown at two different magnifications,z53 andz5100. The
time and the sliding velocity are measured in natural un
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t* and 1/(q0t* ), respectively. Note thatv0 andv1 are both
to the left of the peak maximum in Fig. 2~i.e., v0,vc and
v1,vc); in this case the friction coefficient changes mon
tonically between the steady-state valuesmk(v0) and
mk(v1). Similarly, for t.0 the relative contact areaP de-
creases monotonically towards the steady-state value tak
the velocityv1. A similar effect is observed when the slidin
velocity changes abruptly fromv0.vc to v1.vc , both lo-
cated to the right of the peak maximum in Fig. 2~a!. This is
illustrated in Fig. 4, which shows the same as Fig. 3, but n
when the velocity changes~at t50) from v050.01.vc to
v150.1. The situation is drastically different, however, if th
velocity changes fromv0,vc to v1.vc ~or vice versa!. This
is shown in Fig. 5 for the case whenv051024 and v1
50.1. In this case the sliding friction exhibits a characteris
peak~stiction spike!, with the heightDm'mk(vc)2mk(v0)
and the widthG;t* . This result is easy to understand: A
sume that the sliding velocity changes abruptly fromv0
,vc to v1.vc . Thus, the velocity of the solid at the inte
face will, during a very short time period, increase fromv0
to v1. If we assume that the frictional shear stress is giv
~approximately! by the instantaneous value,m(t)'m@ ẋ(t)#,
then it follows that there must be a friction spike of heig

FIG. 2. ~a! Kinetic friction coefficientmk , and~b! relative area
of contactP5A(z)/A(1), as afunction of the logarithm~with 10 as
the basis! of the sliding velocity. The relative area of contact
shown at two different magnifications,z53 andz5100. The slid-
ing velocity is in natural units 1/(q0t* ) ~see text!. H50.8, q0h0

51, as0 /E150.03, a51000, andzmax5100.
6-6
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Dm5m(vc)2m(v0) as indeed observed. This argument a
predicts that no friction spike should occur if bothv0 andv1
are below or abovevc , again in agreement with the calcula
tions ~see Figs. 3 and 4!.

Figures 6 and 7 show the results of two stop-start ca
lations. Figure 6 shows a case where the sliding velocit
abruptly changed fromv051023,vc to zero,t50, and then
increased back tov0 at t5T55. Note thatm(t) decreases
continuously during ‘‘stop’’~relaxation!, and then increase
monotonically back tomk(v0) for t.5. Similarly, the area of
contact increases monotonically during ‘‘stop,’’ and then
the onset of sliding decreases back towards its original~for
t,0) value. It is interesting to note that the area of contac
the magnificationz5100 initially increases exponentiall
with time as ;exp(t/t* ) giving a straight line in thet
2 log P diagram with the slope 1/log(10). This result is ea
to prove analytically: First note that whenv5v0 for t,0
andv5v150 for t.0, from Eq.~39! we get

F5
1

a
2

iqxv0

11 iqxv0
@12~12e2t!u~ t !#. ~41!

Since in the present case 1/a51023 while qv0.0.1 we can
neglect the 1/a term in Eq.~41!. SubstitutingF(q,t) in Eq.

FIG. 3. ~a! Friction coefficientm(t), and ~b! relative area of
contactP5A(z)/A(1), as afunction of time when the sliding ve
locity changes abruptly from 1024 to 1023 at t50. The relative
area of contact is shown at two different magnifications,z53 and
z5100. The time and the sliding velocity are in natural units,t*
and 1/(q0t* ), respectively~see text!. H50.8, q0h051, as0 /E1

50.03, a51000, andzmax5100.
13410
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~36! gives G(q,t)5G0(q) for t,0 and G(q,t)
5G0(q)exp(22t) for t.0. As long as the area of real con
tact is small compared to the nominal contact area, we h
@see Eq.~32!# P'@pG(q,t)#21/2 so that the area of contac
A(t)5A(0)exp(t), or in real time units,A(0)exp(t/t* ), for
t.0.

Figure 7 shows a case where the sliding velocity
abruptly changed fromv050.1.vc to zero ~at t50! and
then switched back tov0 at t5T55. Note that the friction
coefficient again decreases monotonically during ‘‘stop,’’ b
exhibits astiction spikewhenv is switched back tov0. This
is in sharp contrast to the case whenv0,vc ~Fig. 6!, and the
origin of this difference is the same as presented before
the context of Fig. 5. Figure 7~b! shows that the area o
contact increases monotonically during ‘‘stop’’ and then
the onset of sliding decreases back to its original~for t,0)
value. In this case the contact area for bothz53 and 100
initially increases exponentially with time as;exp(t/t* )
giving a straight line in thet2 log P diagram with the slope
1/log(10). This result can be explained in the same way a
the context of Fig. 6.

Figure 8 shows the results of several stop-start calc
tions withT50.1, 0.3, 0.5, 1, 2, 3, 5, and 10. An analysis

FIG. 4. ~a! Friction coefficientm(t), and ~b! relative area of
contactP5A(z)/A(1), as afunction of time when the sliding ve-
locity changes abruptly from 0.01 to 0.1 att50. The relative area
of contact is shown at two different magnifications,z53 and z
5100. The time and the sliding velocity are in natural units,t* and
1/(q0t* ), respectively ~see text!. H50.8, q0h051, as0 /E1

50.03, a51000, andzmax5100.
6-7
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the heightDm of the stiction spikes shows thatDm(T) in-
creases logarithmically with stop timeT @see Fig. 9~a!# as
long as the height of the stiction spike is much smaller th
the limiting ~saturation! level, Dm(`)'2.8, observed for
large stopping time. Thus the results in Fig. 8 forT,3 are
well described by

Dm5mmax2mk~v0!'~Dm!0lnS 11
T

3t* D , ~42!

where (Dm)0'4. This curve is given by the solid line in Fig
9~a! while the circles are the data from Fig. 8. This type
logarithmic time dependence ofDm onT is often observed in
experiments,22 but the origin of the effect for nonrubber ma
terials is likely to be different from the present case~see Sec.
IV !. One contribution to the increase in the heightDm(T)
with increasing stopping timeT results from a correspondin
increase in the contact areaDA(T). If the average~over the
contact area! shear stresss that is needed to start slidin
would be independent of the stopping time, then one exp
Dm(T);DA(T). This formula is often assumed to hold, b
Fig. 9~b! shows that this relation does not hold accurately
the present case; thus,s also will depend on the stoppin

FIG. 5. ~a! Friction coefficientm(t), and ~b! relative area of
contactP5A(z)/A(1), as afunction of time when the sliding ve
locity changes abruptly from 1024 to 0.1 att50. The relative area
of contact is shown at two different magnifications,z53 and z
5100. The time and the sliding velocity are in natural units,t* and
1/(q0t* ), respectively ~see text!. H50.8, q0h051, as0 /E1

50.03, a51000, andzmax5100.
13410
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f
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time. Figure 9~b! showsDm as a function ofDA(T)/A0 for
z53, as obtained from Fig. 8.

IV. DISCUSSION

The theory developed above can be used to estimate
friction coefficient for nonsteady sliding of rubber on
rough, hard substrate. The input for the calculation, nam
the complex elastic modulusE(v) and information about the
substrate roughness@spectral functionC(q)] can be obtained
directly from relatively simple experiments.

The theory relates the friction force to the coordinatex(t)
of the bottom surface of the rubber block. However, the
ternal driving force does not act directly on the bottom s
face of the block, but usually on the top surface or at so
other distant area. When studying the motion of the rub
block it is, in general, necessary to include the elastic de
mation of the rubber between the bottom surface of the bl
and the area where the external forces act. Consider, for
ample, a rectangular elastic block. Assume that the up
surface of the block is ‘‘glued’’ to a thin rigid sheet as ind

FIG. 6. ~a! Friction coefficient m(t), and ~b! relative area
of contactP5A(z)/A(1), as afunction of time when the sliding
velocity changes abruptly, reducing fromv051023 to 0 att50 and
then returning tov0 at t55. The relative area of contact is show
at two different magnifications,z53 and z5100. The time and
the sliding velocity are in natural units,t* and 1/(q0t* ), respec-
tively ~see text!. H50.8, q0h051, as0 /E150.03, a51000, and
zmax5100.
6-8
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THEORY OF RUBBER FRICTION: NONSTATIONARY SLIDING PHYSICAL REVIEW B65 134106
cated in Fig. 10. If a parallel force is applied to the rig
sheet, either directly, or, as is typical in many applicatio
via an external spring~spring constantks), then the block
will deform elastically as indicated in the figure. This elas
coupling between the sliding interface, where the fricti
force is generated, and the point or area where the driv
force acts must be taken into account when studying slid
dynamics of the block, and is particularly important for m
terials with a low elastic modulus such as rubber. We w
study this problem in another publication.

Let us point out that in addition to the contribution
rubber friction from the internal friction of the rubber studie
above, there will in general be other contributions aris
from pinning effects at the interface. Thus, for a clean rub
surface~if that ever exists! in contact with a hard substrate
the rubber molecules at the interface will rearrange the
selves to bind as strongly as possible to the substrate sur
Because of the lateral corrugation of the substrate pote
this will in general give rise to an energy barrier towar
sliding. If the rubber is in contact with another polymer su
face, e.g., rubber in contact with rubber, chain interdiffus
may also occur at the interface which will give a contributi

FIG. 7. ~a! Friction coefficientm(t), and ~b! relative area of
contactP5A(z)/A(1), as afunction of time when the sliding ve
locity changes abruptly, reducing fromv050.1 to 0 att50 and
then returning tov0 at t55. The relative area of contact is shown
two different magnifications,z53 andz5100. The time and the
sliding velocity are in natural units,t* and 1/(q0t* ), respect-
ively ~see text!. H50.8, q0h051, as0 /E150.03, a51000,
andzmax5100.
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to both the static and kinetic friction forces. Finally, sin
most real surfaces are contaminated with a few monolay
of physisorbed organic molecules, the contamination la
will also contribute the friction force as discussed in detail
many recent publications.21,7 All these additional contribu-
tions to the rubber friction give a contribution to the frictio
coefficient which is typically of orderm;0.2.

Let us comment on the concept of the static friction forc
If there would be no interfacial pinning processes of the ty
described above, then, strictly speaking, the static frict
force would vanish. However, assume that theE(v) function
has the form shown in Fig. 11~a!, giving rise to a kinetic
friction coefficientmk(v) of the form shown in Fig. 11~b!.
Assume now that we start to pull the block with some spe
v1 indicated in Fig. 11~b!. In this case we would observe
stiction spike ~or static friction coefficient! of height
;mk(va), see Fig. 11~c!. Thus, if there are very low-
frequency~long-time! relaxation processes in the solid@cor-
responding to the low-frequency peak in Fig. 11~a!#, they
may show up as a static friction force under most norm
sliding friction experiments. However, if the sliding velocit
is extremely small (v,va) there would be no stiction spike

FIG. 8. ~a! Friction coefficientm(t), and ~b! relative area of
contactP5A(z)/A(1), as afunction of time when the sliding ve-
locity changes abruptly reducing fromv050.1 to 0 att50 and then
returning tov0 at t5T50.1, 0.3, 0.5, 1, 2, 3, 5, and 10. The relativ
area of contact is shown at two different magnifications,z53 and
z5100. The time and the sliding velocity are in natural units,t*
and 1/(q0t* ), respectively~see text!. H50.8, q0h051, as0 /E1

50.03, a51000, andzmax5100.
6-9
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B. N. J. PERSSON AND A. I. VOLOKITIN PHYSICAL REVIEW B65 134106
which could be interpreted as the absence of a static fric
force. Thus, there is no single value of the static fricti
coefficient—it depends upon the initial dwell time and ra
of starting~which, according to Fig. 10, also depends on t
rubber modulus!.19

In many sliding friction experiments it has been observ
that the heightDm(T) of the stiction spike in stop-start ex
periments increases logarithmically with the stopping time
similar effect was observed above in our model calculati

FIG. 9. ~a! The stictionDm(T) as a function of the stopping
time T ~from Fig. 8!. The solid line is given by Eq.(42). ~b! The
stiction Dm(T) as a function of the increase of the relative area
contactDA(z)/A(1) ~for z53) ~from Fig. 8!. The timeT is in units
of t* . H50.8, q0h051, as0 /E150.03, a51000, andzmax5100.

FIG. 10. A rubber block on a rough substrate.
13410
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for rubber. However, we believe that the origin of theDm
; ln T relation observed for nonrubber materials22 ~e.g.,
stone, paper, or plastic! has a different origin, unrelated t
the internal friction of these materials: During steady slidi
at low sliding velocities a wide distribution of tangenti
stresses will occur at the sliding interface. Thus, surfa
asperities23 or stress domains24 in the contact area form a
wide distribution of elastically deformed states which duri
‘‘stop’’ will slowly relax ~by thermal excitation over the bar
riers! towards the equilibrium~unstressed! state. This process
can be shown24 to give aDm(T) which depends logarithmi-
cally on the stopping timeT. The same process gives rise
a logarithmic dependence of the kinetic friction coefficie
mk on the sliding velocity~for low sliding velocities!, again
in agreement with experiments. This latter effect is not o
served for rubber unless the rubber is probed well into
glassy region~which requires ‘‘low’’ enough temperature
compared to the rubber glass transition temperature!, where,
in fact, rubber behaves like most other solid materials, a
where the friction no longer is dominated by the intern

f

FIG. 11. ~a! The ‘‘loss spectra’’ ImE(v)/uE(v)u as a function
of frequencyv. ~b! The kinetic friction coefficient.~c! The time-
dependent friction coefficient~defined as the time-dependent fric
tion force divided by the load!.
6-10
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friction, but rather by interfacial processes as describ
above.

V. SUMMARY AND CONCLUSION

There is at present a strong drive by tire companies
design new rubber compounds with lower rolling resistan
higher sliding friction, and reduced wear. At present the
attempts are mainly based on a few empirical rules and
very costly trial-and-error procedures. We believe that a f
damental understanding of rubber friction and wear may h
in the design of new rubber compounds for tires and ot
rubber applications, e.g., wiper blades or products for
cosmetic industry.

In this paper we have presented a general theory of
hysteretic contribution to rubber friction fornonstationary
sliding. The theory has been developed for rubber sliding
a hard self-affine fractal surface, e.g., a tire on a road surf
Numerical results were presented for a simple rheolog
model of the complex elastic modulusE(v), but the theory
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has been developed for arbitraryE(v), e.g., the experimen
tally measuredE(v) can be directly used as an input. Th
theory relates the friction force to the coordinate of the b
tom surface of the rubber block. In most practical applic
tions the external driving force acts some distance away fr
the sliding interface, and it is then necessary to include in
equations of motion the elastic coupling between the bott
surface of the rubber block and the area where the exte
driving force acts.
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