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Theory of rubber friction: Nonstationary sliding
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IFF, FZ-Juich, 52425 Jlich, Germany
(Received 31 May 2001; published 19 March 2p02

When rubber slides on a hard, rough substrate, the surface asperities of the substrate exert oscillating forces
on the rubber surface leading to energy “dissipation” via the internal friction of the rubber. In this paper we
extend an earlier published thed®.N.J. Persson, J. Chem. Ph{45 3840(2001)] to nonstationary sliding,
and present a discussion of how the area of real contact and the friction force depend on the nature of the
substrate surface roughness and on the history of the sliding motion. We consider in detail the case when the
substrate surface has a self-affine fractal structure.
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[. INTRODUCTION and the surfaces of many cleaved, brittle materials tend to be
self-affine fractal with the fractal dimensioD;=3—H
The nature of the friction when rubber slides on a hard~2.2—2.5. In practice there is always a lowar;, and up-
substrate is a topic of considerable practical importance, e.gper, A, cutoff length, so that the surface is self-affine fractal
for the construction of tireSwiper blades, and in the cos- only when viewed in a finite length-scale interva] <
metics industry. Rubber friction differs in many ways from <\o. For surfaces produced by brittle fracture, the upper
the frictional properties of most other solids. The reason forytoff length\ is usually identical to the lateral siteof the
this is the very low elastic modulus of rubber and the highfracture surface. This may also be the case for many surfaces
mte_rnal friction exhibited by rubber over a wide frequency ¢ engineering importanoeee, e.g., Refs. 13—1LHowever,
region. _ _ for road surfaces the upper cutaff is of the order of a few
. The pioneering studl_es (.)f Grosthave shown t.hat rubbe_r millimeters, which correpspponds?f)&the size of the largest sand
friction in many cases is directly related to the internal fr'c'é)articles in the asphalt. Less is known about the short-

tion of the rubber. Thus experiments with rubber surface L
- . . . —distance cutoff\ 1, but below, it will be assumed to be of the
sliding on silicon carbide paper and glass surfaces give fric- . .
der of a few micrometers, so that the length-scale region

tion coefficients with the same temperature dependence K
that of the complex elastic modulli w) of the rubber. In where the road surface may be a_ssumed to be fractal may
particular, there is a marked change in friction at high speed§Xtend over-three orders of magnitude. _
and low temperatures, where the rubber’s response is driven !N SPité of its great practical importance, very few detailed
into the so-called glassy region. In this region, the friction€xperimental studies of the nonstationary frictional dynamics
shows marked stick slip and falls to a levelof 0.4, which ~ Of rubber on a hard rough substrate have been performed.
is more characteristic of plastics. This proves that the frictiofRecently Ronsin and Coeyrehouttdave studiedexperi-
force under most normal circumstances is directly related tgnentally the state-, rate-, and temperature-dependent fric-
the internal friction of the rubber, i.e., it is mainly ulk  tion of elastomer, but focused mainly on the glassy side of
property of the rubber the dynamical response of the polymer. An early study by
Almost all real surfaces have roughness on many differenRoberts and Thomas focused on some simple nonstationary
length scales which must be taken into account when calcusliding problems involving rubbé?,
lating the rubber sliding friction force. This was considered When rubber slides on a hard, rough surface with rough-
in the work by Kiippel and Heinric. However, in Ref. 4 ness on the length scalas it will be exposed to fluctuating
the deformation of the rubber surface in response to the suferces with frequenciem~uv/\. Since we have a wide dis-
face roughness is only included in some average way. One dfibution of length scales ;<A<\, we will have a corre-
us has developed a theory of rubber friction where the deforsponding wide distribution of frequency components in the
mations of the rubber are taken into account on all relevanFourier decomposition of the surface stresses acting on the
length scales.The theories in Refs. 4 and 5 consider rubbersliding rubber block. The contribution to the friction coeffi-
friction when a rubber block is slid abnstantvelocity over  cient u from surface roughness on the length scalwill be
a hard, rough surface. Other studies of this topic are premaximal whenv/\=~1/7, where 1f is the frequency when
sented in Refs. 1 and 6-10. In this paper we extend thém E(w)/|E(w)| is maximal, which is located in the transi-
theory in Ref. 5 tanonstationarysliding. The theory is valid tion region between the rubbery regidaw frequenciesand
for arbitrary (random surface roughness, but explicit results the glassy regioithigh frequencies We can interpret X/ as
are presented for self-affine fractal surface profit?$.Such  a characteristic rate of flips of molecular segmetnfigu-
surfaces “look the same” when magnified by a scaling factorrational changes which are responsible for the viscoelastic
£ in the xy plane of the surface and by a factdt (where properties of the rubber. Since the flipping is a thermally
0<H<1) in the perpendiculaz direction. We note that activated process it follows thatdepends exponentialljor
many materials of practical importance haepproximately  faste) on the temperature~exp(AE/kgT), where AE is
self-affine fractal surfaces. Thus, for example, road surfacethe barrier involved in the transition. In reality, there is a
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wide distribution of barrier heightAE and hence of relax- We now make the basic assumption that during sliding the
ation timesr, and the transition from the rubbery region to whole rubber interfacial surface area moves forwards accord-
the glassy region is very wide, typically extending over threeing to —r(t), i.e., we assume that no Schallamach wave

orders of magnitude in frequency. propagation or local interfacial stick-slip motidwhere dif-
ferent interfacial areas slip at different timesccurs (see
Il. SLIDING FRICTION Ref. 20. At this point it is convenient to introduce a coordi-

) o ) ) nate system with thexy plane fixed in the(undeformed
This section is based on the formalism developed in Refyottom surface of the rubber block, and consider the sub-
;5.' Usn:jg theftheqry c;f (E[Iastlmtgassumlrllg ‘I”“T[ |stohtrog!c ellas— strate as moving with the velocity(t). We first assume that
ic medium for simplicity, one can calculate the displace- the rubber block is in complete contact with the substrate

ment f|e'ldu.i on the surfacg=0 in response to thg surface during sliding. Thus, the rubber block surface displacement
stress distributions;= o3 . Let us define the Fourier trans- field induced by the substrate roughness is

forms
! i u(x,t)=ulx—r(t)],
Ui(CI,w):?J d?x dt u(x,t)e” (@x-et), )
e wherer (t) =x(t)x and

) _ 2 ) i(q-x— ot) .
uixy jd qdo ui(g@)e™ ’ U(q,w)z—g(zj;) jdzxdtu[x—r(t)]e—'(q-x—wt>

and similar foroi(q,w). Herex=(x,y) andq=(dy,q,) are

two-dimensional vectors. We have _ 1 fdzxdtu(x)e“{q'["“(t)]“”t}
(2m)°
ui(g, )= M;j(q,0)0j(q,w)
: : =u(q)f(q,0), (€)
or, in matrix form,
where
u(g,w)=M(q,0)o(q, ),
where the matrixM is given in Ref. 5. _ 1 f 2 —ig-x
We now assume that the surface stre$q,) only acts u(a) (27)2 dxu(e
in the z direction (see below so that
and
U0, ®)=M;A0,®) 05(q, ). )
Sincew~v(q (wherev is a typical sliding velocity we get f(q,w)= Zif dte-ilar®-ot] (4)
a

wlctq~v/ct<1 in most cases of practical interest. Thus,

we can expandM(q,«) to leading order inw/crg. This If o¢(t) denotes the frictional shear stress acting on the bot-

gives tom surface of the rubber block, then the instantaneous
. Eq power absorptiorP(t) = o(t)Aox(t) must be given by the
(Mzp) "=~ 20— (2 rate of work by the substrate surface asperities on the rubber
block:

It is interesting to note that if instead of assuming that the

surface stress acts in tlzedirection we assume that the dis- . o
placemenu points along the direction, then Uf(t)AOX(t):f dx(u(x,t) - o(x,t)), (5
0/(0,0)=(M"1),{0q,0)uq,0), where the terms inside the angular brackets:) denotes

where in the limitw/c1q<1, the ensemble average, and whéggis the surface area. But

V-1 = 2Eq(1-v) u(x,t)=u[x—r(t)]=—r(t)- Vu[x—r(t)]
(M%) =~ (1+0)(3=4v)’ o,
which differs from Eq.(2) only with respect to a factor ==X geulx=rv] ®
4(1—v)?/(3—4v). For rubberlike materials y~0.5) this )

factor is of order unity. Hence, practically identical results Thus, using Eqs(5) and (6),

are obtained independently of whether one assumes that the

interfacial stress or displacement vector are perpendicular to 1 o |9

the nominal contact surface. In reality, neither of these two o=~ A_oJ d°| Zx Ut - (xt) ). @)
assumptions holds strictly, but the result above indicates that

the theory is not sensitive to this approximation. Using Eqgs.(1) and(7) gives
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2m)? I
af(t)=( :) szqdwdw’(—iqx)e"(“’*“’)‘
0

X(u(q,0) - o(—q,~ "))
— (277)2 ’ : —i(0+o")
~A—0j dZdedw (—|qx)e t

X(Mzz)il(—q,w,)<uz(q'w)uz(—q'—w')>.
(8
Substituting Egs(3) in (8) gives

2m)? S
O-f(t):(AL)J d?’qdwdw’ (—ig,)e (@ret
0

X(Mz) H(=q,0")f(q,0)f(—a,0")(ua)u—q)).
©)

Let us now consider sliding on a randomly rough surface

described by the functiom=h(x) [where x=(X,y)]. As-

sume first that the rubber is able to deform and completely

follow the substrate surface profile and tHath(x)|<1.
Thus we can approximaig,~h(x). Using Eq.(9) gives

2m)? o
(/:T) folzqdwolw’(—iqx)e.-—'<w+w)t
0

o(t)=

X (M) H(=qg,0")f(q,0)f(—qg,0 ){h(@h(-q)),

(10
where we assumed thé)=0. Now, note that
A .
<h(q)h(—q)>=(zT°)4f d2x(h(x)h(0))e '@
_ Ao

since(h(x)h(x")) depends only on the differenge-x’. The
spectral density (q) is defined by

C(q)= ! f d2x(h(x)h(0))e '@ (12
V= 2w '
Substituting Eqgs(11) in (10) and using Eq(2) gives

of(t)zf d%q qzcos¢C(q)f dodw’ e @) (q )

iE(w")

f(—q0) —s"
X q’w)z(l—yz)’

(13

where we have used polar coordinates so thatq cosd¢.
Now, note that

f dwf(g,w)e ''=f(q,t)=e 1970 (14)

and
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f do’f(~Guo") o) _gte
T 2(1-19)
o CE(t—t!
=—| dt’ e )(—). (15)
2m 2(1—v?)
Using these equations, E(L3) gives
1 2 2
oi(t)=5—| d°aa°cos¢C(q)
Xf dr ety BT
2(1-1?)
If we define
1 E(t_t,) . '
F(g,t :__J dtl ———— e ia-[r(®-r(t )], 1
BT 0

e get

1
af(t)ziaof d?q g?cos¢C(q)ImF(q,t). (18

The friction coefficientw can be obtained by dividing the
frictional shear stres€l8) with the pressurery:

_l 2~ N2
u(t)—zf d<g g°cos¢C(q)P(q,t)iImF(q,t). (19

In Eqg. (19) we have introduced an additional fact®(q,t),
defined as the fraction of the original macrocontact area
where contact remains when we study the contact area on the
length scalex =2#/q (see below. In principle, v depends
on frequency but the factor 1/(1v?) varies from 4/3
~1.33 for v=0.5 (rubbery region to ~1.19 for v=0.4
(glassy regiopand we can neglect the weak dependence on
frequency.

SinceC(q) andP(q,t) only depend on the magnitude of
g, from Eq.(19),

1
M(t)=§J dq q3C(q)P(q,t)f d¢ cos¢ ImF(q,t).
(20)

Note that the factor cog in the integrand vanishes when
¢= /2, while it is maximal whenp=0. This has a simple
but important physical origin: Consider two cosine-surface
corrugations, where the “wave vector” poinf9 along thex
axis (the sliding directioin and (ii) along they axis. The
former case corresponds =0, and in this case the rubber
block will experience pulsating deformations during sliding
along thex axis. The second case correspondspte 7/2,
where the elastic deformations of the rubloer not change
during sliding along thex axis, and this type of surface
roughness will therefore not contribute to the friction. The
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functionP(q,t) was derived in Ref. 5 for the case of station- (o2(t )N
ary sliding, and the same derivation is valid in the present G(q,t)= oo (22)
case. Thus, 09

Here(<r§(t)>q is the average of the square of the interfacial

S stress, where the average only includes the roughness wave
- . _ 2
P(g.t)= TJO dx X exf —x*G(a.1)], (1) vectors with magnitudemallerthan g, and where it is as-
sumed that contact with the substrate occurs everywhere.
where Now, note that
p (2m2( o
(030) = [ dadude’ e 1 N (q.0)0(~a.0)
0
szqdwdw e ()M (g, 0)M L (—d,0") C(a)f(d,0) f(—d,0")
1 ‘ " E(w) E(w")
_ = 2 I 2a—i(0+®
_4f d’gdwde’ g%e" 1_V2 1,z C@fae)i(=q0 )
1 1 E(t—t") z
_ T 424 42 - ’ Zalar(t’)
4fd q9°C(q) 27Jdt =7 °
1 2 2
=200] dq °C(q) | d¢[F(a,t)|*. (23)
|
Thus P ~F(t)+T (1) (L —t) (29)
1(q so that
Ga0=5| dadcw [ dolF@ul (2 i
) F(qt)———f dt’ e ATt (30
Let us summarize the basic results obtained above. The ao(1=v?)

friction coefficientu(t) for a flat rubber surface sliding on a sypstituting this in Eqs(25)—(27) gives u(t) = u [ X(1)],
nominally flat substrate in the most general case is given bye , thefriction coefficient depends only on the instantaneous
sI|d|ng velocity The necessary condition for the validity of
the expansiori29) in Eq. (28) is that

(25) alx(t)|(r*)?<1, (31)

h * is th i f the k Eq.
where the(normalized area of contactA(\)/A,, on the \(/ég;)r]e.q- 's the memory time of the kernéi(t) [see Eq
length scale\ =2/q, is given by We consider now the limitry<E(w=0), which is satis-

5 , fied in most applications. In this case, for masvalues of
* - sinx i i i
_ 2 interest,G(q,t)>1, so that onlyx<1 will contribute to the
P(a.,) f dx exL ~x"G(a,], (26) integral in Eq.(26), we can approximate sim~x, and

1
M(t)=§f dq q3C(q)P(q,t)f d¢ cosé ImF(q,t),

P(q,t)~ %f:dxexq—x2G(q,t)]:[wG(q,t)]—1’2.

(32)

In the equations above Thus, within this approximation, using Eq&7) and(32) we
get P(q,t)<oy so thatu is independentof the nominal
E(t—t’ ) stressoy. Similarly, note that if we scal&(w)— aE(w),
F(q,t)=— _f e-ialr®-r)1 (2g)  then from Eqgs.27) and (32), P(q,t)x1/a, so thatu de-
oo(1—v? pends only on the frequency variation of the complex elastic
) ) ) modulus, but not on its magnitude. For tires, the condition
Note that ifE(t) changes slowly with, then in Eq.(28) we 0o<E(w=0) is usually satisfied. Consequently, on a dry
can expand road track one expects the same friction for wide and narrow

1
G(q,t)=§qudq &C(q)f d¢|F(q,n]%  (27)
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tires, assuming that the rubber-road adhesional interaction
and temperature effects are unimportant. @

In order to take into account thaP(q,t)—1 when
G(q,t)—0, we use the interpolation formula

P(q,t)=(1+[7G(q,1)]¥?) 2 (33

Numerical evaluation of Eq.26) shows that Eq(33) is an
accurate representation Bfq,t) for all q (or, equivalently, =
all G).

If we assume that the substrate surface is self-affine frac-
tal on all length scales between an upper and lower cutoff,
No=2mlqqy and A1=27/q,, we haveC(q)=0 for q<qo,
while for g>qq,

C(a)~k(q/gp) ~>"*1), (34
whereH=3-D; (the fractal dimension 2 D;<3). If we 10 . . . . . .
define (h?)=h3/2, then Eq.(11) gives k=(hy/qo)?H/2. Re E o)
Using Eqs.(25) and (34) with q=q,{ gives - ' 1
H di/do !
p(t)=7—(doho)’ f dg £ 2HP(L) ° mE
™ 1 w
k4
Xf d¢ cos¢ ImF(q,t), (35 .
whereP({,t)=A(\)/A, is given by Eq.(26) with
H d1/dg
6(a.0 = 7(aho? [ a7 [ dalF(q0 A
1 -2 0 2 4 6
(36) log (@)

ﬂotg t:\at_llszlnc_:te,f I}O a thgc;ogwail/pprhoxmatéorg](q,t) FIG. 1. (a) Rheological model corresponding to E@7). (b)
[ éq’ )] » 1t Toflows tha oMo, AN us The complex elastic modulus(w) as a function of frequency. The
~QoMo- logarithm has 10 as the basi;=10° N/m? anda=1000.

IIl. NUMERICAL RESULTS 1
z_f dt’E(t_t')e*in[X(t)*X(t')l
As an example, assume thktis given by the model m

shown in Fig. 1a). This model is, in fact, not a good descrip- at , A ,
tion of real rubbers, since the transition with increasing fre- =E1{1— ;j dt’ e~ (1Ha)(t=t)mrg=iaxx(t)—x(t)] |
qguency from the rubbery region to the glassy region is too o

abrupt, leading to a too narrogand too high u.(v) peak. (38b

Nevertheless, the model gives a qualitatively corie@b).
The model in Fig. (a) corresponds to the complex elastic
modulus

In what follows we consider two different histories foft):
(i) Sliding velocity step-change:

X(t)=vet for t<O,
Ey(1—iwr) (H=vo

E(w)= l+a—iw7’

37) X(t)=v,t for t>0.

This function is shown in Fig.(b). Note thatE(«)=E; and  Substituting this in Eq(30) and using Eqs(38b) gives
E(0)=E;/(1+a) so thatE(«)/E(0)=1+a. Since typi-

cally E(=)/E(0)~1000 we takea=1000 in all numerical Fo_ 2 ¢ 1+E_ 6(—1)

calculations presented below. We assume> o, in which 1+a ! a l+igquwg
caseu(t) is independent oE; and o. Note that

e—t—iqxvlt 1—e_t_iqxvlt

- (1)

) . (39

a THigwo | 141
E(t)=f do e '“'E(w)=27E, 5(t)——0(t)e‘(1+a)‘”} o b
T wheret is measured in units of* = 7/(1+a), v in units of

(383 1/(go7*), and q is measured in units ofjy. (i) Stop and
so that start:
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X(t)=vet for t<O,
° ol (@ |
X(t)=0 for O<t<T,
x(t)=v,(t—T) for t>T. Hk
4.
Substituting this in Eq(30) and using Eq(38b) gives
L BTN S
T 1+a Y7 a 1+igeq 2r
-t
-0t NT—t)|———+1—e"
6(t)6(T—1) THigw, 0
e t-itwi(t=T) -
=T 4 e (=D —igu(t-T)
ot T){ THigwe e
(=T i . 27
) 1—e (t=T)—igyv(t—=T) o
_ *t7|qxv1(t7T)+
€ 1+igyw, )’ (40 g
where agairt is measured in units of*, wave vectorg in 3
units of g, and velocityv in units of 1/@g7).
Note thatu(t) depends oH and gghg. In what follows
we useH=0.8 andqghg=1. Since w~qghg, the friction 4t
coefficient for othergyhy can be obtained from direct scal-
ing.
Figure Za) shows the kinetic friction coefficient as a -5 . . L . . . . . >
function of the logarithm{with 10 as the basjf the sliding -6 -4 -2 0
velocity. The maximal friction occurs at a velocity. where log(v)

the substrate surface asperities give rise to fluctuating forces o o )

acting on the rubber with frequencies occurring in the tran- _FIG. 2. (8 Kinetic friction coefficientu, and(b) relative area

sition region between the rubbery region and the glassy re2f contactP=A(£)/A(1), as dunction of the logarithmiwith 10 as

gion in the mechanical response of the solid. For real rubbef'® basis of the sliding velocity. The relative area of contact is
; : P hown at two different magnificationg=3 and{=100. The slid-

the peak maximum v) is smaller than in Fig. @), and 3 L .

Mk OFI)oes not decreagzkt(ov)vards zero for “Iarge’gagl “smal| INg velocity is in natural units 16p*) (see text H=0.8, doho

velocities as in Fig. @), but levels off atu,~0.2—0.4. This =1, a00/E,=0.03,2=1000, and;ma,=100.

is, at least in part, a result of the fact that for real rubber . .

Im E(w) does not decrease as rapidly towards zero as it doe& and 1/@o7"), respectively. Note that, andv, are both

for the model elastic modulus?). to the left of the peak maximum in Fig. @e., vo<v. and

Figure 2b) shows the logarithm of the relative area of v1<_vc); in this case the friction coefficient changes mono-

contactP=A({)/A(1) [whereA(1) is the nominal contact tonically between the steady-state valugg(vo) and

ared as a function of the logarithm of the sliding velocig. ~ #k(v1). Similarly, for t>0 the relative contact are@ de-

is shown for two different magnificationg=3 and{=100.  creases monotonically towards the steady-state value taken at

Note thatP decreases from a constant value in the rubberghe velocityv,. A similar effect is observed when the sliding

region to another much smaller value in the glassy regionvelocity changes abruptly fromg>v. to v;>v., both lo-

The drop in magnitude corresponds to the factorcated to the right of the peak maximum in FigaR This is

E(e)/E(0)=1+a=1001. The physical reason for this is illustrated in Fig. 4, which shows the same as Fig. 3, but now

clear: at low sliding velocities the perturbing frequencies actwhen the velocity change@t t=0) from v,=0.01>v, to

ing on the rubber surface from the surface asperities occur in1=0.1. The situation is drastically different, however, if the

the rubbery region wherg(w)~E(0) so the rubber is very Velocity changes fromo<uv.tov,>uv (or vice ygrsa This

soft. At high sliding velocities the perturbing frequencies areiS shown in Fig. 5 for the case whem,=10"" and v,

very h|gh and Correspond to the g|assy region W}*E«@) =0.1. In this case the Slldlng friction exhibits a characteristic
~E(*)=(1+a)E(0). Since the area of real contact is Peak(stiction spike, with the heightA u~ ui(vc) — pi(vo)
roughly proportional to B the observed results follow. and the widthl'~ 7*. This result is easy to understand: As-

Figure 3 shows(i) the friction coefficientu(t), and (i) ~ sume that the sliding velocity changes abruptly fram
the relative area of conta®=A(¢)/A(1) as a function of <v¢ to vi>v.. Thus, the velocity of the solid at the inter-
time when the 5||d|ng Ve|ocity Changes abrupt|y errB face will, during a very short time periOd, increase frfz)lal
=10"*tov,=10"2 att=0. The relative area of contact is 0 vi. If we assume that the frictional shear stress is given
shown at two different magnifications=3 and/=100. The  (approximately by the instantaneous valug(t)~ u[x(t)],
time and the sliding velocity are measured in natural unitsthen it follows that there must be a friction spike of height
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6
@) |

t/ =

FIG. 3. (a) Friction coefficientu(t), and (b) relative area of
contactP=A({)/A(1), as afunction of time when the sliding ve-
locity changes abruptly from 10 to 102 at t=0. The relative
area of contact is shown at two different magnificatiofrs,3 and
£=100. The time and the sliding velocity are in natural units,
and 1/@o7*), respectively(see text H=0.8, qohy=1, aoy/E;
=0.03,a=1000, and; = 100.

Ap=pu(ve) — u(vg) as indeed observed. This argument also

predicts that no friction spike should occur if bath andv ;
are below or above., again in agreement with the calcula-
tions (see Figs. 3 and)4

Figures 6 and 7 show the results of two stop-start calcu

lations. Figure 6 shows a case where the sliding velocity iéA‘

abruptly changed from,=10"3<uv, to zero,t=0, and then

increased back to, att=T=5. Note thatu(t) decreases
continuously during “stop”(relaxation, and then increases
monotonically back tqu,(v,) for t>5. Similarly, the area of

contact increases monotonically during “stop,” and then at

the onset of sliding decreases back towards its origifual

t<<0) value. Itis interesting to note that the area of contact a

the magnification{=100 initially increases exponentially
with time as ~exp(t/7*) giving a straight line in thet
—log P diagram with the slope 1/log(10). This result is easy
to prove analytically: First note that when=v, for t<0
andv=v,=0 fort>0, from Eq.(39) we get

1 iqxvo

a 1+igwo

[1-(1-e He)]. (41
Since in the present casea¥ 102 while quy>0.1 we can
neglect the H term in Eq.(41). SubstitutingF(q,t) in Eq.
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FIG. 4. (a) Friction coefficientu(t), and (b) relative area of
contactP=A({)/A(1), as afunction of time when the sliding ve-
locity changes abruptly from 0.01 to 0.1tat 0. The relative area
of contact is shown at two different magnifications:3 and ¢
=100. The time and the sliding velocity are in natural unitsand
1/(go7*), respectively (see text H=0.8, qohy=1, aocy/E;
=0.03,a=1000, and;,a= 100.

(36) gives G(qg,t)=Gyp(g) for t<0 and G(q,t)
=Gy(q)exp(—2t) for t>0. As long as the area of real con-
tact is small compared to the nominal contact area, we have
[see Eq(32)] P~[7G(q,t)] Y2 so that the area of contact
(t)=A(0)expt), or in real time unitsA(0)exp(t/7*), for

Figure 7 shows a case where the sliding velocity is
abruptly changed fronvy=0.1>v. to zero (at t=0) and
then switched back toy att=T=5. Note that the friction
coefficient again decreases monotonically during “stop,” but
exhibits astiction spikewhenuv is switched back t@. This
i[s in sharp contrast to the case whejx<v, (Fig. 6), and the
origin of this difference is the same as presented before in
the context of Fig. 5. Figure (B) shows that the area of
contact increases monotonically during “stop” and then at
the onset of sliding decreases back to its origitfat t<<0)
value. In this case the contact area for bgth3 and 100
initially increases exponentially with time asexp(t/ )
giving a straight line in theé—log P diagram with the slope
1/log(10). This result can be explained in the same way as in
the context of Fig. 6.

Figure 8 shows the results of several stop-start calcula-
tions withT=0.1, 0.3, 0.5, 1, 2, 3, 5, and 10. An analysis of
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FIG. 5. (a) Friction coefficientu(t), and (b) relative area of
contactP=A({)/A(1), as afunction of time when the sliding ve-
locity changes abruptly from 10 to 0.1 att=0. The relative area
of contact is shown at two different magnifications:3 and ¢
=100. The time and the sliding velocity are in natural unitsand
1/(go7), respectively (see text H=0.8, qohy=1, aoy/E;
=0.03,a=1000, and; = 100.

FIG. 6. (a) Friction coefficient u(t), and (b) relative area
of contactP=A({)/A(1), as afunction of time when the sliding
velocity changes abruptly, reducing frarg=103to 0 att=0 and
then returning taw, att=5. The relative area of contact is shown
at two different magnifications{=3 and {=100. The time and
the sliding velocity are in natural units}* and 1/Qgq7*), respec-
tively (see text H=0.8, qohy=1, acy/E;=0.03, a=1000, and

{max=100.
the heightA x of the stiction spikes shows thatu(T) in-

creases logarithmically with stop time [see Fig. @] as
long as the height of the stiction spike is much smaller tha
the limiting (saturation level, Au(«)~2.8, observed for
large stopping time. Thus the results in Fig. 8 Tox3 are
well described by

ﬁime. Figure 9b) showsA u as a function ofAA(T)/A, for
{=3, as obtained from Fig. 8.

IV. DISCUSSION

The theory developed above can be used to estimate the

1+37)’ (42) friction coefficient for nonsteady sliding of rubber on a

rough, hard substrate. The input for the calculation, namely
where A u)o=~4. This curve is given by the solid line in Fig. the complex elastic moduli&(w) and information about the
9(a) while the circles are the data from Fig. 8. This type of substrate roughnegspectral functiorC(q)] can be obtained
logarithmic time dependence Afu onT is often observed in  directly from relatively simple experiments.
experiment$? but the origin of the effect for nonrubber ma-  The theory relates the friction force to the coordinat
terials is likely to be different from the present cdsee Sec. of the bottom surface of the rubber block. However, the ex-
V). One contribution to the increase in the heighi(T) ternal driving force does not act directly on the bottom sur-
with increasing stopping time results from a corresponding face of the block, but usually on the top surface or at some
increase in the contact ar@a\(T). If the averagdover the  other distant area. When studying the motion of the rubber
contact areashear stresg that is needed to start sliding block it is, in general, necessary to include the elastic defor-
would be independent of the stopping time, then one expectsation of the rubber between the bottom surface of the block
Ap(T)~AA(T). This formula is often assumed to hold, but and the area where the external forces act. Consider, for ex-
Fig. 9(b) shows that this relation does not hold accurately inample, a rectangular elastic block. Assume that the upper
the present case; thus, also will depend on the stopping surface of the block is “glued” to a thin rigid sheet as indi-

Ap= pmax— pi(vo) =~ (Au)gln
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FIG. 7. (a) Friction coefficientu(t), and (b) relative area of FIG. 8. (a) Friction coefficientu(t), and (b) relative area of

contactP=A(¢)/A(1), as afunction of time when the sliding ve- contactP=A({)/A(1), as afunction of time when the sliding ve-
locity changes abruptly, reducing frompy=0.1 to 0 att=0 and locity changes abruptly reducing fromy=0.1to 0 att=0 and then
then returning ta, att=>5. The relative area of contact is shown at returning tovg att=T=0.1, 0.3, 0.5, 1, 2, 3, 5, and 10. The relative
two different magnifications{=3 and /=100. The time and the area of contact is shown at two different magnificatiafts,3 and
sliding velocity are in natural unitst* and 1/@go7*), respect- ¢=100. The time and the sliding velocity are in natural units,
ively (see text H=0.8, qohy=1, ac,/E;=0.03, a=1000, and 1/@o7*), respectively(see text H=0.8, qghy=1, acy/E;
and ¢ a= 100. =0.03, a=1000, and{ = 100.

cated in Fig. 10. If a parallel force is applied to the rigid to both the static and kinetic friction forces. Finally, since
sheet, either directly, or, as is typical in many applicationsmost real surfaces are contaminated with a few monolayers
via an external springspring constank,), then the block of physisorbed organic molecules, the contamination layer
will deform elastically as indicated in the figure. This elastic will also contribute the friction force as discussed in detail in
coupling between the sliding interface, where the frictionmany recent publicatiorfs:” All these additional contribu-
force is generated, and the point or area where the drivingions to the rubber friction give a contribution to the friction
force acts must be taken into account when studying slidingoefficient which is typically of ordep.~0.2.
dynamics of the block, and is particularly important for ma-  Let us comment on the concept of the static friction force.
terials with a low elastic modulus such as rubber. We willlf there would be no interfacial pinning processes of the type
study this problem in another publication. described above, then, strictly speaking, the static friction
Let us point out that in addition to the contribution to force would vanish. However, assume that E{e) function
rubber friction from the internal friction of the rubber studied has the form shown in Fig. 1d), giving rise to a kinetic
above, there will in general be other contributions arisingfriction coefficientu,(v) of the form shown in Fig. 1b).
from pinning effects at the interface. Thus, for a clean rubbeAssume now that we start to pull the block with some speed
surface(if that ever existsin contact with a hard substrate, v, indicated in Fig. 1(b). In this case we would observe a
the rubber molecules at the interface will rearrange themstiction spike (or static friction coefficient of height
selves to bind as strongly as possible to the substrate surface.u(v,), see Fig. 1(c). Thus, if there are very low-
Because of the lateral corrugation of the substrate potentidtequency(long-time relaxation processes in the solicbr-
this will in general give rise to an energy barrier towardsresponding to the low-frequency peak in Fig.(d], they
sliding. If the rubber is in contact with another polymer sur-may show up as a static friction force under most normal
face, e.g., rubber in contact with rubber, chain interdiffusionsliding friction experiments. However, if the sliding velocity
may also occur at the interface which will give a contributionis extremely small{<wv,) there would be no stiction spike,
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FIG. 9. (& The stictionAw(T) as a function of the stopping

time T (from Fig. 8. The solid line is given by Eq42). (b) The

stiction Au(T) as a function of the increase of the relative area of

contactAA(¢)/A(2) (for £=3) (from Fig. 8. The timeT is in units FIG. 11. (@) The “loss spectra” INE(w)/|E(w)| as a function

of 7*. H=0.8, qohp=1, aoo/E,=0.03,2a=1000, and/max=100.  of frequencyw. (b) The kinetic friction coefficient(c) The time-
dependent friction coefficientefined as the time-dependent fric-

which could be interpreted as the absence of a static frictiotion force divided by the logd

force. Thus, there is no single value of the static friction

coeff|C|_ent—|t.depends upon the_ initial dwell time and ratefor rubber. However, we believe that the origin of the:
of starting(which, according to Fig. 10, also depends on the~InT relation observed for nonrubber materlge.qg.,

19
rubber modulus tone, paper, or plasjihas a different origin, unrelated to

th Itntrr?aﬂy_slrl]o&ng flflctl?r:hexpterltr_nents 'IIE h?‘S bteen (t)b?erve he internal friction of these materials: During steady sliding
at the height .(T) of the stiction spike in stop-start ex- -, sliding velocities a wide distribution of tangential

p.eri.ments increases Iogarithmically'with the stopping tirm.e"b‘stresses will occur at the sliding interface. Thus, surface
similar effect was observed above in our model CalCU|at'°nSo15peritie%3 or stress domaifd in the contact area %orm a

wide distribution of elastically deformed states which during
Ks “stop” will slowly relax (by thermal excitation over the bar-
/O'D'\_.Vs riers) towards the equilibriunfunstressedstate. This process
can be showtf to give aA u(T) which depends logarithmi-
cally on the stopping tim&@. The same process gives rise to
rubber a logarithmic dependence of the kinetic friction coefficient
mi on the sliding velocity(for low sliding velocitieg, again
in agreement with experiments. This latter effect is not ob-
served for rubber unless the rubber is probed well into the
glassy region(which requires “low” enough temperature
compared to the rubber glass transition temperatuvbere,
in fact, rubber behaves like most other solid materials, and
FIG. 10. A rubber block on a rough substrate. where the friction no longer is dominated by the internal

t

hard substrate
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friction, but rather by interfacial processes as describedhas been developed for arbitradgfw), e.g., the experimen-
above. tally measuredE(w) can be directly used as an input. The
theory relates the friction force to the coordinate of the bot-
tom surface of the rubber block. In most practical applica-
] ) ] ] tions the external driving force acts some distance away from
There is at present a strong drive by tire companies tqne sliding interface, and it is then necessary to include in the
design new rubber compounds with lower rolling resistancegquations of motion the elastic coupling between the bottom

higher sliding friction, and reduced wear. At present thesgface of the rubber block and the area where the external
attempts are mainly based on a few empirical rules and OBriving force acts.

very costly trial-and-error procedures. We believe that a fun-
damental understanding of rubber friction and wear may help
in the design of new rubber compounds for tires and other
rubber applications, e.g., wiper blades or products for the
cosmetic industry. This work has been supported by a research and develop-
In this paper we have presented a general theory of thenent grant from Pirelli Pneumatici. We thank O. Albohr,
hysteretic contribution to rubber friction faronstationary G. Heinrich, M. Klippel, U. Kuhlmann, G. Luengo, and
sliding. The theory has been developed for rubber sliding ofV. Peveri for useful discussions. B.P. also thanks BMBF for
a hard self-affine fractal surface, e.g., a tire on a road surface. grant related to the German-Israeli Project Cooperation,
Numerical results were presented for a simple rheologicaiNovel Tribological Strategies from the Nano to

V. SUMMARY AND CONCLUSION

ACKNOWLEDGMENTS

model of the complex elastic modul&f w), but the theory

Meso-Scales.”

1D.F. Moore, The Friction and Lubrication of ElastomdPerga-
mon Press, Oxford, 1972M. Barquins, Mater. Sci. Eng’.3, 45
(1985; A.D. Roberts, Rubber Chem. Techn6éb, 673 (1992.

2G. Luengo(private communication

3K.A. Grosch, Proc. R. Soc. London, Ser.2%4, 21 (1963; see
also, A.D. Roberts, Rubber Chem. Techn®b, 3 (1992; S.P.
Arnold, A.D. Roberts, and A.D. Taylor, J. Nat. Rubber R&sl
(1987; M. Barquins and A.D. Roberts, J. Phys. I®, 547
(1986.

M. Kltippel and G. Heinrich, Rubber Chem. Technog, 578
(2000.

5B.N.J. Persson, J. Chem. Phyi45 3840(2002).

6B.N.J. Persson, Surf. Sci01, 445 (1998.

"B.N.J. PerssonSliding Friction: Physical Principles and Appli-
cations 2nd ed.(Springer, Heidelberg, 2000

8B.N.J. Persson and E. Tosatti, J. Chem. Phy2 2021(2000.

9A. Schallamach, Wea6, 375 (1963; Y.B. Chernyak and A.l.
Leonov,ibid. 108 105(1986.

109G, Heinrich, Kautsch. Gummi Kunsts45, 173 (1992; Rubber
Chem. Technol70, 1 (1997.

113. FederFractals (Plenum Press, New York, 1988

12E  Bouchaud, J. Phys.: Condens. Mafie#319(1997).

133 F. Archard, Proc. R. Soc. London, Ser243 190(1957).

14J.A. Greenwood, ifFundamentals of Friction, Macroscopic and
Microscopic Processe®dited by I.L. Singer and H.M. Pollack
(Kluwer, Dordrecht, 199

155, Roux, J. Schmittbuhl, J.P. Vilotte, and A. Hansen, Europhys.
Lett. 23, 277 (1993.

18A. Majumdar and B. Bhushan, J. Tribdl13 1 (1991).

173 A. Greenwood and J.B.P. Williamson, Proc. R. Soc. London,
Ser. A295 300(1966.

180. Ronsin and K.L. Coeyrehourcg, Proc. R. Soc. London, Ser. A
457, 1277(2001).

19A.D. Roberts and A.G. Thomas, Rubber Chem. TechBal 266
(1977.

20B.N.J. Persson, Phys. Rev.@3, 104101(2007).

21B.N.J. Persson, J. Chem. Phg43 5477(2000; M.H. Muser, L.
Wenninger, and M.O. Robbins, Phys. Rev. L88, 1295(2002);
J. Gao, W.D. Luedtke, and U. Landman, Tribol. Le%. 3
(2000.

22p_ Berthoud, T. Baumberger, C. G'Sell, and J.M. Hiver, Phys.
Rev. B59, 14 313(1999.

23C. caroli and P. Nozieres, iRhysics of Sliding Frictionedited
by B.N.J. Persson and E. Tosdttiluwer, Dordrecht, 1996

248 N.J. Persson, Phys. Rev.H, 13 568(1995.

134106-11



