Stochastic optimal velocity model for pedestrian flow

September 9, 2015 | Antoine Tordeux3 and Andreas Schadschneider4 | PPAM 2015 Workshop on Complex Collective Systems

3Forschungszentrum Jülich, Germany \texttt{a.tordeux@fz-juelich.de}
4Institut für Theoretische Physik der Universität zu Köln, Germany \texttt{as@thp.uni-koeln.de}
Objectives

♦ Modelling of pedestrian trajectories

♦ Continuous stochastic *optimal velocity* microscopic model

♦ Statistical calibration of the model parameters

♦ Fundamental diagram and stop-and-go wave phenomena
Overview

1. Description of the data
2. Stochastic optimal velocity model
3. Calibration of the parameters
4. Simulation results
5. Concluding remarks
Overview

1. Description of the data
2. Stochastic optimal velocity model
3. Calibration of the parameters
4. Simulation results
5. Concluding remarks
Pedestrian trajectories

- Trajectories of soldiers in laboratory conditions (in Düsseldorf, 2006)
- Uni-dimensional closed system of length 27 m (lane width 0.8 m)
- Uniform initial configurations
- Several tested density levels (from 11 to 70 pedestrians)
- Data collection from video analysis by using free software PeTrack

5 Maik Boltes – Jülich Supercomputing Centre

Available Online
$N = 25$ pedestrians
$N = 45$ pedestrians
$N = 62$ pedestrians
Fundamental diagram
Global sample

![Graph of Speed vs Spacing](image)

A. Tordeux & A. Schadschneider
Stochastic OV model for pedestrian flow
Description of the data
Slide 10
Main features

♦ Stop-and-go waves for sufficiently high density levels

♦ Piecewise linear fundamental diagram
 → Free state: Speed constant (desired speed)
 → Congested state: Speed correlated to the spacing

♦ Noise in the dynamics
Overview

1. Description of the data
2. Stochastic optimal velocity model
3. Calibration of the parameters
4. Simulation results
5. Concluding remarks
Notations

\[\Delta x_n = x_{n+1} - x_n \]

\[\Delta x_n - \ell \]

\[\ell \]

Notations \(x_n \) is the position, \(\Delta x_n \) the spacing and \(v_n \) the speed of agent \(n \)
Deterministic optimal velocity (OV) model

- Introduced by Masako Bando et al. for road traffic flow\(^6\)

\[
\begin{align*}
\frac{dx_n(t)}{dt} &= v_n(t) \, dt \\
\frac{dv_n(t)}{dt} &= \frac{1}{b} \left(V(\Delta x_n(t)) - v_n(t) \right) \, dt
\end{align*}
\]

(1)

with \(V(\cdot)\) the OV function and \(b\) relaxation time

- Uniform solution\(^7\) unstable if \(b > 2/V'(d)\)

- Convergence to non-uniform solutions with stop-and-go for particular non-linear OV functions / Instability hard to control (collision)

\(^7\) where \(\Delta x_n = d\) and \(v_n = V(d)\) for all \(n\)
Stochastic OV model

♦ Introduction of the relaxation in a stochastic noise

\[
\begin{align*}
\text{d}x_n(t) &= V(\Delta x_n(t)) \, \text{d}t + \varepsilon_n(t) \, \text{d}t \\
\text{d}\varepsilon_n(t) &= -\frac{1}{b} \varepsilon_n(t) \, \text{d}t + a \, \text{d}W_n(t)
\end{align*}
\]

with \(W(t) \) the Wiener process and \(a \) the noise amplitude

♦ First order OV model with inertia at the second order through the noise (Langevin equation)

♦ Uniform solution *always* stable in the deterministic case \((a = 0) \)
White noise and the Langevin process

White noise

Ornstein-Uhlenbeck process
Overview

1. Description of the data
2. Stochastic optimal velocity model
3. Calibration of the parameters
4. Simulation results
5. Concluding remarks
Calibration of the parameters

♦ Piecewise linear OV function

\[V(d) = \min\{v_0, \max\{0, (d - \ell)/T\}\} \] \hspace{1cm} (3)

with 3 parameters: pedestrian size \(\ell \), time gap \(T \) and desired speed \(v_0 \)

♦ \((s_k, d_k)\) sample of observations of speed\(^8\) and distance spacing

♦ Estimation of the parameters \(p = (\ell, T, v_0) \) by least squares

\[\tilde{p} = \arg \min_p \sum_k (v_k - V_p(d_k))^2 \] \hspace{1cm} (4)

\(^8\) The speed is calculated by differencing the position over \(\delta t = 0.8 \text{ s} \)
Parameters of the OV function

\[\tilde{v}_0 = 0.92 \text{ m/s} \]
\[\tilde{T} = 1.04 \text{ s} \]
\[\tilde{\ell} = 0.34 \text{ m} \]
Histogram of the residuals

\[\tilde{\sigma}_R = 0.14 \text{ m/s} \]
Estimation of the parameters for the noise

- The stationary variance and autocorrelation of the noise are $a^2 b/2$ and $e^{-\delta t/b}$ (Langevin process)

\[\tilde{b} = -\delta t / \log(\tilde{c}_t) \quad \text{and} \quad \tilde{a} = \tilde{\sigma}_R \sqrt{2/\tilde{b}} \] (5)

with $\tilde{\sigma}_R$ the empirical std-dev of the residuals and \tilde{c}_t their autocorrelation

- Estimations for all the data: $\tilde{a} \approx 0.09 \text{ms}^{-3/2}$ and $\tilde{b} \approx 4.38 \text{s}$

- Estimations depend on the spacing
Parameters for the noise by class of spacing

\[\tilde{a} \quad (m/s^{3/2}) \]

\[\tilde{b} \quad (s) \]

Spacing (m)

\[0.5 \quad 1.0 \quad 1.5 \]

\[0.07 \quad 0.09 \quad 0.11 \]

\[2 \quad 6 \quad 10 \quad 14 \]
Overview

1. Description of the data
2. Stochastic optimal velocity model
3. Calibration of the parameters
4. Simulation results
5. Concluding remarks
Simulation of the model

♦ Numerical simulation using explicit Euler-Maruyama scheme

\[
\begin{align*}
 x_n(t + dt) &= x_n(t) + dt \cdot V_p(\Delta x_n(t)) + dt \cdot \varepsilon_n(t) \\
 \varepsilon_n(t + dt) &= (1 - dt/\tilde{b}) \varepsilon_n(t) + \sqrt{dt} \tilde{a} \xi_n(t)
\end{align*}
\]

with \((\xi_n(t), n, t)\) ind. normal random variables and time step \(dt = 1e-3\) s

♦ Same settings as in the data (ring of 27 m, from 11 to 70 pedestrians, uniform initial configuration)
$N = 25$ pedestrians

Real data

Simulation

Space (m)

Time (s)

0.0 0.5 1.0 1.5 2.0
0 20 40 60 80 100 120

A. Tordeux & A. Schadschneider
Stochastic OV model for pedestrian flow
Simulation results
$N = 45 \text{ pedestrians}$
$N = 62$ pedestrians

Real data

Simulation

A. Tordeux & A. Schadschneider
Stochastic OV model for pedestrian flow
Simulation results
Mean value, standard deviation and correlation
Global sample

<table>
<thead>
<tr>
<th>5251 obs.</th>
<th>(d)</th>
<th>(v)</th>
<th>(d_1)</th>
<th>(v_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>Mean</td>
<td>0.68</td>
<td>0.67</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>Std-dev</td>
<td>0.33</td>
<td>0.34</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Corr. (d)</td>
<td>1</td>
<td>1</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>(v)</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Legends: \(d\) distance spacing, \(v\) speed (calculated over 0.8 s), \((d_1, v_1)\) predecessor spacing and speed
Speed density by class of spacing

Global sample

A. Tordeux & A. Schadschneider

Stochastic OV model for pedestrian flow

Simulation results
Spacing and speed autocorrelation functions

- $N = 25$
- $N = 45$
- $N = 62$

Spacing

Speed

A. Tordeux & A. Schadschneider Stochastic OV model for pedestrian flow Simulation results Slide 30
Overview

1. Description of the data
2. Stochastic optimal velocity model
3. Calibration of the parameters
4. Simulation results
5. Concluding remarks
Conclusion

♦ Minimalist model for description of pedestrian trajectories and stop-and-go wave phenomena

♦ Stochastic inertia / Linear (or piecewise linear) model
 → No deterministic instability of uniform solution
 → No requirement of specific non-linear OV functions
 → No generic collision and backward motion problems

♦ Relaxation time of stochastic approach \(b \approx 5 \text{ s} \) while \(b \approx 0.5 \text{ s} \) in general with classical OV models
 → New relaxation mechanism for the modeling of stop-and-go