Towards UNICORE 8
development directions

Bernd Schuller
b.schuller@fz-juelich.de

UNICORE Summit 2015, Karlsruhe, June 7, 2015
Outline

• New features
 – Python TSI
 – Apache Hadoop

• Plans
 – CDMI

• Current issues towards UNICORE 8
UNICORE The TSI

- other UNICORE servers
- command-line client
- Eclipse-based client

UNICORE/X

connect callback

TSI

Cluster access node(s)

Local RMS (e.g. Torque, LL, LSF, etc.)
Python TSI - motivation

• Current Perl TSI
 – basic concepts are (still) very good!
 – well tested in production

• … but
 – Perl code is hard to maintain
 – Next to no unit tests
 – SSL support in Perl is horrible
 – The Perl code's license is kind of unclear
Python TSI - goals

- Clean re-implementation
 - unit tests
- Keep existing configuration as far as possible
- Improve
 - SSL support
 - Structure and readability
 - Extensibility: adaptation to local should be in one place
Python TSI: status

- Working
 - both Python 2.7 and 3.x support
 - Nobatch, Slurm and Torque versions
 - Packaging (one package per BSS)

- TODOs
 - SSL certificate pinning (only allow particular XNJSs to connect)
 - SGE version
 - New feature: computing time budget
 - Review documentation
Apache Hadoop

- Large-scale, distributed „Big Data“ framework
- Both data and compute functionality
 - HDFS (Hadoop Distributed File System)
 - YARN (Yet Another Resource Negotiator)
- Basis for many applications and additional frameworks (e.g. MapReduce, Apache Spark, ...)

Apache Hadoop
Hadoop - HDFS

- Distributed storage
- Master / slave architecture
 - NameNode for metadata
 - DataNodes stores the data
- Replication, fail-over, etc
Hadoop - HDFS

HDFS Architecture

- **Namenode**
 - Metadata (Name, replicas, ...): /home/foo/data, 3, ...

- **Client**
 - Read
 - Write

- **Datanodes**
 - Block ops
 - Replication
 - Blocks

- **Rack 1**
- **Rack 2**

http://hadoop.apache.org/docs/current/
Hadoop - YARN

- Resource management
 - ResourceManager
 - arbitrates resources among the applications in the system
 - NodeManager
 - one per node – monitoring resource usage

- Job management
 - scheduling, starting, monitoring, ...
Hadoop - YARN

http://hadoop.apache.org/docs/current/
UNICORE / Hadoop integration
(when UNICORE can access the Hadoop services)
UNICORE / Hadoop integration alternative
(when Hadoop services are not directly accessible via the network)

UNICORE Client

UNICORE/X Server

XNJS

SSH libs

run Hadoop commands on login node

YARN
HDFS NameNode

Worker
Worker
Worker

Worker
Worker
Worker

Worker
Worker
Worker
Hadoop – UNICORE integration: goals

- HDFS as storage backend
 - already done previously, only updates required

- YARN as „batch system“

- „UNICORE-like“ application support
 - IDB, Generic gridbean, portal support, ...
Demo – FSD Testgrid

- HDFS as storage backend
- YARN for running jobs
- Apps configured in IDB
Hadoop – UNICORE integration: status

• HDFS / YARN work, using latest API v2.7.0
• Unit tests with embedded Hadoop, also tested on FSD cloud testbed
• Features:
 – HDFS can be used as Uspace and normal storage, including storage factory
 – Yarn applications can be defined in IDB
• Target release 7.5.0
Hadoop – UNICORE integration: TODOs

• File permissions
 – Better way? Multiuser support?

• Documentation
 – Both admin and end-user

• More example apps
 – Implement real life use cases
CDMI

• Cloud Data Management Interface
• Implement as SMS back-end
• Username/password authentication
• Collaboration with
 - dCache (CDMI server)
 - TU Dresden (use case)
• Not started yet, some old prototype code exists somewhere :-}
Towards UNICORE 8

• Remove dependency on XmlBeans?
 – Not maintained any more, upcoming issues might not be solveable
 – Replace by JAXB (part of JDK)
 – Very high effort!
 • SAML code / security library
 • XNJS, JSDL, Brokering
 • WS interfaces (core, workflow, clients, ...)
Towards UNICORE 8

- Further increase usage of REST API
 - e.g. SOAP/XML to setup a security session
 - use REST API during security session lifetime

- Simple notification mechanism
Thanks

• Tim Kreuzer (Hadoop integration)