The depth distribution of plutonium, americium, and 137Cs originating from the 1986 accident at the Chernobyl Nuclear Power Plant (NPP) was investigated in several soil profiles in the vicinity from Belarus. The vertical migration of transuranic elements in soils typical of the 30 km relocation area around Chernobyl NPP was studied using inductively coupled plasma mass spectrometry (ICP-MS), alpha spectrometry, and gamma spectrometry. Transuranic concentrations in upper soil layers ranged from 6×10^{-12} g g$^{-1}$ to 6×10^{-10} g g$^{-1}$ for plutonium and from 1.8×10^{-13} g g$^{-1}$ to 1.6×10^{-11} g g$^{-1}$ for americium. These concentrations correspond to specific activities of $^{239+240}$Pu of 24–2400 Bq kg$^{-1}$ and specific activity of 241Am of 23–2000 Bq kg$^{-1}$, respectively. Transuranics in turf-podzol soil migrate slowly to the deeper soil layers, thus, 80–95% of radionuclide inventories were present in the 0–3 cm intervals of turf-podzol soils collected in 1994. In peat-marsh soil migration processes occur more rapidly than in turf-podzol and the maximum concentrations are found beneath the soil surface (down to 3–6 cm). The depth distributions of Pu and Am are essentially identical for a given soil profile. $^{239+240}$Pu/137Cs and 241Am/137Cs activity ratios vary by up to a factor of 5 at some sites while smaller variations in these ratios were observed at a site close to Chernobyl, suggesting that 137Cs is dominantly particle associated close to Chernobyl but volatile species of 137Cs are of relatively greater importance at the distant sites.

Introduction

The 1986 failure of the Chernobyl nuclear power plant (NPP) Reactor 4 produced widespread regional contamination of the environment with transuranic elements. A previous study demonstrated that irradiated uranium concentrations in relocation areas of Belarus varied from 5×10^{-12} g g$^{-1}$ to 2×10^{-8} g g$^{-1}$ in the top 10 cm of the soil profile; surface concentrations were also inversely related to distance from the reactor. According to calculations of isotope production in irradiated uranium of the Chernobyl reactor, the abundance of total transuranic elements (Np, Pu, Am, Cm) is about 0.4% of the core U inventory. The released radionuclides can possibly enter the biosphere, which represents a serious perturbation of the environment’s indigenous content of radionuclides. The initial surface inventory of Chernobyl fallout in contaminated regions.

Along with α-spectrometry and γ-spectrometry, which are traditionally used for determination of Pu and Am, inductively coupled plasma mass spectrometry (ICP-MS) is a method of choice for the sensitive and accurate determination of long-lived radionuclides in environmental samples at ultratrace (pg g$^{-1}$) levels. ICP-MS is attractive for these studies on account of high sensitivity, good accuracy of isotopic measurements, and relatively simple sample preparation procedures. The objective of the present work has been to apply ICP-MS for an experimental study of the depth profiling of Pu and Am in Belarus soils typical of the 30 km relocation area around the Chernobyl NPP and to compare ICP-MS data with earlier results obtained by radioanalytical techniques on the same soil samples.

Experimental

Instrumentation

A double-focusing sector-field ICP-MS (ICP-SFMS ELEMENT, Finnigan MAT, Bremen, Germany) was used for measurements of Pu and Am performed at Research Center Jülich. The ICP torch was shielded with a grounded platinum electrode (Guard Electrode®, Finnigan MAT). A microconcentric low-flow nebulizer with membrane desolvation (Aridus, CETAC Technologies Inc., Omaha, Nebraska, USA) was used for...
solution introduction in ICP-SFMS. Aqueous solution was introduced into the Aridus in the continuous flow mode via a peristaltic pump (Perimax 12 Spectec GmbH, Erding, Germany). Optimization of experimental parameters of ICP-SFMS was performed to maximize $^{238}\text{U}^+$ ion intensity while minimizing $^{239}\text{UH}^+$ formation; a 1 µg l$^{-1}$ natural uranium solution was used for optimization. The measured isotopic ratio was corrected using a mass discrimination factor (assuming a linear correlation) determined experimentally from measurements of a CCLU-500 laboratory standard solution; further corrections for UH^+ at m/z 239 and detector dead time were also performed as described previously. The combined uncertainty of isotopic ratio measurements was calculated by combining contributions from standard deviations of the measured ratio and background (including instrument background and interfering hydride ions), the uncertainty of mass discrimination factors, and uncertainties associated with activities of the internal standards ^{242}Pu and ^{241}Am. The ICP-MS experimental parameters are summarized in Table 1. Further details of the ICP-SFMS and the measurement procedure used can be found elsewhere.

Comparative analysis of Pu concentrations in three soil samples measured previously using alpha spectrometry were performed at Northern Arizona University with respect to a possible influence of sample inhomogeneity on measurement accuracy. A VG Axiom MC inductively coupled plasma mass spectrometer (Thermo Elemental, Winsford, Cheshire, UK) was equipped with an ultrasonic nebulizer (CETAC U-5000AT) for high efficiency sample introduction. Sample solutions were introduced at 400 µl min$^{-1}$; signals were collected in an “E-Scanning” mode for ^{239}Pu, ^{240}Pu, and ^{241}Am. A dwell time of 10 ms was used to collect data at 10 narrowly spaced points (0.25 peak widths) at the summit of each peak; 50 such sweeps were recorded for each integration. Each integration required about 45 s. Integrations were collected in blocks of three. Preliminary measurements indicated that signals for $^{239}\text{U}^+$ were about 10,000 cps indicating satisfactory removal of U; since $^{238}\text{U}^+$ was found to be 0.00002–0.00003, the contribution of $^{239}\text{UH}^+$ to the signal measured at m/z 239 was negligible. The raw ratio data (^{239}Pu/238U and ^{240}Pu/238U) were corrected for mass discrimination based upon a mass bias factor of 1.007 determined for ^{235}U/238U in a natural U solution (true value $= 137.87$). The concentrations of ^{239}Pu and ^{240}Pu radionuclides were determined by isotope dilution technique; these were converted into the conventionally reported $^{239+240}\text{Pu}$ activity using the specific activities of each isotope.

Alpha spectrometric determinations of $^{239+240}\text{Pu}$ activity were performed using a 450 mm2 solid state alpha detector (Canberra Industries, Inc., 800 Research Parkway, Meriden, CT 06405, USA) having a 28% counting efficiency, a background of $< 10^{-3}$ s$^{-1}$ and a resolution (FWHM) of 25 keV (^{214}U). Activities of ^{241}Am in samples (ashed soil samples, precipitation of iron hydroxide from alkali-treated samples of soils) were performed using a spectrometer suitable for X-ray and soft gamma-radiation (Xγ) spectrometer. This spectrometer was equipped with a planar semi-conductor detector (PSD, detector surface of 2000 mm2, thickness of a sensitive layer of 7 mm, an entrance window made from beryllium with a thickness of 300 µm) fabricated from pure germanium (EGP 2000-07R, Eurometers). Germanium detector represents a semiconductor diode having a p-n structure which is sensitive to ionizing radiation, particularly X rays and gamma rays. The $E_{γ}$ = 59.6 keV ^{241}Am emission line was used as described elsewhere. Determinations of ^{137}Cs and ^{134}Cs were performed via gamma-lines with energies of 661.66 keV and 604.7 keV, respectively. The ^{137}Cs-^{134}Cs spectrometer was equipped with a DGDK-508-3 semiconductor detector (Aspect Ltd., Dubna, Russia). The overall efficiency of the spectrometer-detector combination was performed using known ^{137}Cs standards of 10.3, 5.3, 1.01, and 0.49 kBq.

Standards and reagents

The ^{242}Pu and ^{243}Am tracer solutions were supplied by Amersham International Ltd. (UK). The isotopic purity of the tracer solutions was monitored by ICP-MS in order to demonstrate the absence of impurities (^{239}Pu, ^{240}Pu, ^{241}Am). An isotopic standard solution of uranium (CCLU-500 laboratory standard, Nuclear Research Centre, Prague, Czech Republic) with ^{235}U/238U isotope ratio of 0.9999 was used to determine mass discrimination for the isotope ratio measurement by ICP-MS. The solutions were diluted to the necessary concentrations for determining the isotopic ratio of uranium by ICP-MS with deionized Milli-Q water (18 MΩ) obtained from a Millipore Milli-Q-Plus water purifier and acidified to 1% subboiled HNO$_3$.

Samples

Soil samples were collected in May, 1994 from the relocation zone of Belarus (8–45 km to the north and north-west of Chernobyl NPP) in areas that have been undisturbed by technogenic and anthropogenic activities since the 1986 accident. The general features of these sites and the soil characteristics are representative of southern Belarus; the terrain consists of low-lying bogs, elevated terraces, and rolling plains. The soil types investigated ranged from turf-podzols to alluvial peat-marsh soils. The peat deposits analysed were moderately or strongly minerotrophic. Descriptions of sampling areas, with indications of the nearest settlement, distances to the Chernobyl NPP, relief, and soil type are given in the figure captions. The soil was collected using a coring device that was specially designed to cut 1 cm thick soil layers down to a depth of 20 cm.

Sample preparation

After homogenization, 250 g of the air-dried soil samples were ground, sieved through a 1.0 mm screen for the removal of stones and fragments of plant roots, and carefully mixed; then the samples were dried to constant weight at 105 °C for 24 h and ashed at 600 ± 50 °C for 1 h. Plant roots and vegetation were incinerated separately at 550 ± 50 °C for 2 h and then the ashed plant material was mixed with the ashed soil. For plutonium isotope analysis 2 g of the soil sample was spiked with a known quantity of ^{241}Pu yield tracer (from 1 pg g$^{-1}$ to 100 pg g$^{-1}$ depending on expected $^{239+240}\text{Pu}$ concentration); the mixture was milled and stirred with 20 ml HNO$_3$ and then with 20 ml HCl. The residue was then dissolved with warm HF, the solution was evaporated, the residue was boiled with concentrated HClO$_4$, evaporated again, and the residue was dissolved in 100 ml 7.5 M HNO$_3$ and filtered. After that 2 ml of NH$_4$OH HCl and 5 ml of 8 M NaNO$_3$ were added consecutively. After heating at 90 °C the solution was passed through a 0.45 µm filter and ready for further analysis.

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF power/W</td>
<td>1200</td>
</tr>
<tr>
<td>Cooling gas flow rate/min</td>
<td>18</td>
</tr>
<tr>
<td>Auxiliary gas flow rate/min</td>
<td>1.36</td>
</tr>
<tr>
<td>Nebulizer gas flow rate/min</td>
<td>1.01</td>
</tr>
<tr>
<td>Sweep gas flow rate/min</td>
<td>4.82</td>
</tr>
<tr>
<td>Solution uptake rate/ml/min</td>
<td>0.08</td>
</tr>
<tr>
<td>Spray chamber temperature/°C</td>
<td>70</td>
</tr>
<tr>
<td>Membrane temperature/°C</td>
<td>160</td>
</tr>
<tr>
<td>Total acquisition time per replicate/min</td>
<td>0.2</td>
</tr>
<tr>
<td>Number of replicates</td>
<td>10</td>
</tr>
<tr>
<td>Number of measurements per sample</td>
<td>6</td>
</tr>
<tr>
<td>Mass resolution/m Am$^{-1}$</td>
<td>300</td>
</tr>
</tbody>
</table>

The ICP-MS experimental parameters are summarized in Table 1. Further details of the ICP-SFMS and the measurement procedure used can be found elsewhere.
through a column of Microthene supporting tri-n-octylamine (TNOA) for the plutonium retention. The column was washed with 100 ml 7.5 M HNO₃ and 100 ml of 6 M HCl. Plutonium was eluted with oxalic acid in nitric acid. The eluted Pu fractions were divided into two portions for alpha spectrometry and ICP-MS, respectively. For alpha spectrometry, Pu was electropolated on a stainless steel disk at pH 1.5–2.0 for 90 min at 550 mA cm⁻² current density. Precipitation of iron hydroxide from alkali-treated solution of soils for ²⁴¹Am measurement via gamma-spectrometry was performed as described elsewhere.¹³

In addition, a digestion of soil samples with potassium pyrosulfate preparation procedure was performed for ICP-MS determinations of ²³⁹⁺²⁴⁰Pu activities at Northern Arizona University. Approximately 0.30–0.35 g of ashed soil were mixed with 1.0–1.1 g of potassium pyrosulfate in a 40 ml borosilicate glass vial. A ~0.008 Bq solution aliquot of NIST 4334 g ²⁴²Pu tracer was added, and the mixture was dried at 110 °C. The sample–spike–pyrosulfate mixtures were sintered at 600 °C for 2.25 h. This treatment recovers refractory non-silicate forms of Pu. After cooling, 5 ml of 16 M HNO₃ and 5 ml water were added, and the mixtures were heated at 75–80 °C for 16 h. The mixtures were filtered with a glass wool-packed pipet tip and were then diluted to 20 ml. 0.4 g of NaNO₃ (s) and 30 mg TEVA resin beads (EIChrom, Darien IL, USA; TE-B25-A, 100–150 μm) were added to retain Pu. The resin was collected in a pipet tip, and was rinsed using two 5 ml portions of 2 M HNO₃ followed by 1.5 ml of 8 M HCl. Pu was eluted using 1 ml of 0.05 M ammonium oxalate. The Pu fractions were diluted to 5 ml prior to analysis.

Results and discussion

Fig. 1–7 present experimentally measured distributions of radionuclides in soil profiles of various types. In general, the

Fig. 1 Distributions of plutonium (²³⁹Pu⁺²⁴⁰Pu) and americium (²⁴¹Am) concentrations in comparison to distribution of ¹³⁷Cs specific activity (a) and ²³⁹⁺²⁴⁰Pu/¹³⁷Cs and ²⁴¹Am/¹³⁷Cs activity ratios (b) in soil profile collected in Masany. Distance from Chernobyl NPP: 8 km; relief: withered pine forest; soil type: turf-podzol, sand. *Note, that Am concentration is multiplied by 10 in all figures with index (a) for better presentation.

Fig. 2 Distributions of radionuclides (a) and activity ratios (b) in soil profile Krasnoe. 18 km from Chernobyl NPP, dune base, turf-podzol, sand.

Fig. 3 Distributions of radionuclides (a) and activity ratios (b) in soil profile Lesok. 19 km from Chernobyl NPP, plain meadow, light turf-podzol, sand-clay.

concentration of Pu and Am correlated inversely with distance from Chernobyl NPP. Thus, average plutonium concentration in 10 cm soil layer decreased from 86 pg g⁻¹ at 8 km (Masany) to 6 pg g⁻¹ at 45 km from Chernobyl NPP (Lomachi). Isotope ratios of ²⁴⁰Pu/²³⁹Pu varied from 0.36 to 0.42 in upper layers of seven soil profiles analyzed. No correlation of plutonium
isotope ratios with the distance from Chernobyl NPP was observed, possibly due to the concentrations of plutonium originating from Chernobyl exceeded plutonium concentration from global fallout by 1 to 4 orders of magnitude. On the other hand, precision of 240Pu/239Pu isotope ratios measured in deep soil layers via routine ICP-MS procedure was 5 to 30% because of low plutonium concentration (in pg g$^{-1}$ and sub pg g$^{-1}$

Fig. 4 Distributions of radionuclides (a) and activity ratios (b) in soil profile Kulazhin. 20 km from Chernobyl NPP, degenerating hayfield, peat-gley.

Fig. 5 Distributions of radionuclides (a) and activity ratios (b) in soil profile Radin. 21 km from Chernobyl NPP, plain meliorated peatbog, peat-gley.

Fig. 6 Distributions of radionuclides (a) and activity ratios (b) in soil profile Dernovichi. 33 km from Chernobyl NPP, bushed meadow in lowered flood land, peat-marsh.

Fig. 7 Distributions of radionuclides (a) and activity ratios (b) in soil profile Lomachi. 45 km from Chernobyl NPP, meliorated massif in a low terrace above water meadow, peat-marsh on a light sedge peat.
Chernobyl uranium. However, the averaged over profile ratios of
(UO$_2$), aggregates of fuel particles with reactor graphite and
Chernobyl vicinity (Masany) the radioactive fallout consists
(Kulaszhin, Radin), maximum specific activities of actinides
were observed for peat-marsh soils (Fig. 4–7). In peat
soil depth in Fig. 2b and 3b.

Fuel and condensation components was similar in the four
Kulaszhin and Radin. That points to the fact, that the ratio of
tal errors in four soil profiles collected in Krasnosel’
5–7 cm depth (Fig. 1b), whilst in more distant locations
Krasnosel’ and Lesok (about 20 km from Chernobyl NPP) the
position of the fuel component (UO$_2$ particles) and condensa-
destruction, oxidation and leaching processes. On the contrary,
mechanic migration of fuel particles and due to particle

According to a model of vertical migration of radionu-
cides, there are two main mechanisms of migration in soil:
(1) rapid migration of radionuclides added in a water-
soluble form; (2) slow migration of a radioactive substance,
which is fixed in hardly soluble soil complexes or ‘hot’
particles. The results obtained for turf-podzol soils show, that
the portion of actinides migrating slowly is about 80–95%.
Hence one can conclude that the main part of nuclear fuel
fallout is contained in low-soluble matrix and the mass transfer
of radioactive substances is very slow. 239Pu/137Cs and
241Am/137Cs activity ratios in turf-podzol soil profiles collected
in Masany (at 8 km from Chernobyl NPP) were almost
constant within experimental errors down to a 10 cm depth,
except for a slight peak of 239+240Pu/137Cs ratio observed at the
5–7 cm depth (Fig. 1b), whilst in more distant locations
Krasnosel’e and Lesok (about 20 km from Chernobyl NPP)
the 239+240Pu/137Cs and 241Am/137Cs activity ratios decreased with
soil depth by 3 to 5 folds (Fig. 2b and 3b). In the close
Chernobyl vicinity (Masany) the radioactive fallout consists
mainly of fine-dispersive particles of destroyed nuclear fuel
(UO$_2$), aggregates of fuel particles with reactor graphite and
carbon-bitumen particles etc., where both actinides (Pu and
Am) and fission products are “encapsulated”. Therefore, the measured activity ratios in Masany soil coincided with the
calculated activity ratios in the core of the Chernobyl reactor
which accounts for the decay of 137Cs and production of
241Am. In this case the radionuclides migrate as a result of
mechanic migration of fuel particles and due to particle
destruction, oxidation and leaching processes. On the contrary,
the fallout in Krasnosel’e and Lesok represented a super-
depth profiles below 5 cm. These results correspond to the results of a
previous study where a similar decrease of Chernobyl NPP-
derived U concentration with soil depth was also observed
for turf-podzol soils, based upon using 239+240U as an indicator of
Chernobyl uranium.

Table 2 presents results of plutonium measurement in three
soil samples collected in Masany, Krasnosel’e and Radin using
alpha spectrometry (average results obtained during a previous
interlaboratory comparison program in Minsk, Belarus12) and
ICP-MS. Agreement is rather poor between these 239+240Pu
activities and the previous alpha spectrometric results for
samples collected in Masany and Krasnosel’e. The potassium
pyrolysat preparations were performed using very small (ca.
0.3 g) aliquots of solid sample and therefore the apparent
disparities may largely arise from inhomogeneity of samples
and the presence of varying numbers of high-activity hot
particles in individual subsamples. Note that the 239+240Pu
specific activity agreement is relatively good for NIST 4357,
in which Pu is homogeneously distributed. Our ongoing work
with soil samples from Belarus in the vicinity of the Chernobyl
reactor shows that the soils are very heterogeneous with respect
to specific activity (Bq kg$^{-1}$) and isotopic compositions. The
isotopic compositions of samples from Krasnosel’e, Masany,
and Radin will be the subject of a future paper.

Conclusions

The depth distributions of Pu, 241Am and 137Cs were
investigated in soils from seven locations in Belarus from the
Chernobyl vicinity. The specific activity vs. depth profiles indicate that migration in the soil profiles is occurring relatively
slowly, and 80–95% of radionuclide inventories are present in

<table>
<thead>
<tr>
<th>Sample</th>
<th>239+240Pu</th>
<th>239+240Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krasnosel’e</td>
<td>27 ± 5</td>
<td>10 ± 2</td>
</tr>
<tr>
<td>Masany</td>
<td>153 ± 23</td>
<td>56 ± 9</td>
</tr>
<tr>
<td>Radin</td>
<td>15 ± 3</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>NIST 4357</td>
<td>10.4 ± 0.2a</td>
<td>9.7 ± 0.1, 10.9 ± 0.2</td>
</tr>
</tbody>
</table>

J. Environ. Monit., 2003, 5, 661–666 665
the 0–3 cm intervals of turf-podzol soils. In addition, the depth distributions of actinide radionuclides (239Pu, 240Pu, 241Am) in a specific soil profile exhibited generally similar trends. This suggests that the depth distributions of the radionuclides depend to a limited extent upon the chemical properties of the specific elements, but rather are controlled by soil type and its effect over time on the deposited particles, e.g. formed at high temperatures during the burning of reactor core. Upon decomposition of the deposited fuel particles, chemical fractionation of individual elements is expected whereby specific elements will be more mobile in the soil profile. 239+240 Pu/137Cs and 241Am/137Cs activity ratios vary by up to a factor of 5 at some distant sites while smaller variations in these ratios were observed at site Masany, which is close to Chernobyl. This can be explained by the fact that 137Cs is dominantly associated with fuel particles in the close Chernobyl vicinity (giving similar distributions to the actinides). In general, at more distant sites a “condensation component” representing volatile species including 137Cs is of greater importance. In peat-marsh soils, the vertical transport processes are more pronounced, and maximum activities are found at 3–5 cm beneath the surface.

Acknowledgements
The authors are grateful to Prof. O. I. Yaroshevich, Dr. I. V. Zhuk and Dr. V. P. Kudrjashev for valuable discussions as well as preparation of selected samples and gamma spectrometric measurements of 241Am. M. E. K. acknowledges support from the US National Science Foundation (CHE-0116804) for purchase of the Axiom ICPMS.

References
12 I. V. Zhuk, private communication.