A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study

F. Binkofski,1 G. Buccino,2 S. Posse,3 R. J. Seitz,1 G. Rizzolatti,2 H.-J. Freund1
1Department of Neurology, Heinrich-Heine-University of Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
2Institute of Human Physiology, University of Parma, Italy
3Institute of Medicine, Research Center Jülich GmbH, Germany

Keywords: inferior parietal cortex, object manipulation, secondary somatosensory area (SII), ventral premotor cortex

Abstract

Functional magnetic resonance imaging (fMRI) was used to localize brain areas active during manipulation of complex objects. In one experiment subjects were required to manipulate complex objects for exploring their macrogeometric features as compared to manipulation of a simple smooth object (a sphere). In a second experiment subjects were asked to manipulate complex objects and to silently name them upon recognition as compared to manipulation of complex not recognizable objects without covert naming. Manipulation of complex objects resulted in an activation of ventral premotor cortex [Brodmann’s area (BA) 44], of a region in the intraparietal sulcus (most probably corresponding to the anterior intraparietal area in the monkey), of area SII and of a sector of the superior parietal lobule. When the objects were covertly named additional activations were found in the opercular part of BA 44 and in the pars triangularis of the inferior frontal gyrus (BA 45). We suggest that a fronto-parietal circuit for manipulation of objects exists in humans and involves basically the same areas as in the monkey. It is proposed that area SII analyses the intrinsic object characteristics whilst the superior parietal lobule is related to kinaesthesia.

Introduction

The capacity to grasp and manipulate objects is one of the hallmarks of motor dexterity in humans. It is lacking in prosimians and does not reach the degree of human precision and sophistication in apes. Effective grasping and object manipulation are based on three fundamental properties of the motor system: the capacity to generate independent finger movements, the ability to transform sensory information concerning the object to be grasped into an appropriate hand configuration, and a sophisticated somatosensory control of finger movements (see Jeannerod et al., 1995).

While it has been known since the thirties that independent finger movements depend on direct connections of the corticospinal tract with the spinal cord motoneurons (see Porter & Lemon, 1993), the mechanisms through which sensory information controls grasping and manipulatory movements began only recently to be understood.

Recording and intracortical microstimulation studies showed that in the macaque monkey there is a large distal hand movements representation in the rostralmost part of ventral premotor cortex (area F5) (Rizzolatti et al., 1981, 1988; Kurata & Tanji, 1986; Hepp-Raymond et al., 1994). The neurons of this area discharge during specific goal-directed hand movements such as grasping, holding and tearing. Many of them become active also in response to visual presentation of 3-D objects provided that these are congruent with the type of prehension coded by the recorded neuron (Rizzolatti et al., 1988; Murata et al., 1997). Area F5 is directly connected with the primary motor cortex (F1) and receives rich input from the secondary somatosensory area (SII), from parietal area PF (7b), and from a parietal area located inside the intraparietal sulcus, the anterior intraparietal area (AIP) (Matsumura & Kubota, 1979; Muakkassa & Strick, 1979; Godschalk et al., 1984; Matelli et al., 1986; Luppino et al., 1999). The study of AIP showed that many of its neurons discharge during finger and hand movements, others respond to specific visual 3-D stimuli and, finally, others discharge both during active finger movements and in response to 3-D stimuli congruent in size and shape with the coded grasping movement (Taira et al., 1990; Sakata et al., 1992). Taken together, these data suggest that F5 plays a pivotal role in controlling the organization of hand–object interaction.

Brain imaging experiments carried out in humans failed up to now to convincingly demonstrate the existence of a cortical circuit similar to that described in the monkey. Using positron emission tomography (PET) techniques neither Rizzolatti et al. (1996) nor Grafton et al. (1996a) found any area specifically active during grasping movements. A blood flow increase in the premotor cortex was found only dorsally at the level of the superior frontal sulcus. This dorsal site was found to be active in tasks involving arm movements without grasping (Colebatch et al., 1991; Deiber et al., 1991; Grafton et al., 1992; Fink et al., 1997; Seitz et al., 1997). Finally, no blood flow increase was found in correspondence of the intraparietal sulcus where the putative human area AIP should be located (Binkofski et al., 1998a).

Slightly more encouraging results were reported by Matsumura et al. (1996). As Grafton et al. (1996a), they also asked subjects to point or grasp cylinders of different size. In contrast with the latter authors, they found a blood flow increase in a ventral premotor site, located at the rostral border of Brodmann’s area (BA) 44. The importance of these finding is, however, diminished by the fact that no activation was found in the parietal region around the intraparietal sulcus. The significance of the premotor activation remains therefore
unclear. Finally, Faillenot et al. (1997), in an experiment in which grasping was contrasted with pointing as well as with object shape matching, found only an activation of the left inferior postcentral sulcus when grasping was contrasted with pointing. When grasping was compared with matching, a condition in which no movement was required, several areas related to the sensorimotor system were active (central gyrus, postcentral sulcus, mesial motor areas, cerebellum, parietal operculum), but none that may be considered specific for grasping movements.

These essentially negative findings could be due to several possibilities. There may be interspecies differences in the organization of ventral premotor and intraparietal cortex. For example the development of a motor speech area in humans may have dramatically changed the location of the human functional homologue of monkey area F5. Intersubject variability may have obscured the comparisons and reduced the probability of obtaining intersubject coregistration and statistical significance in this area. In favour of this view are the data of Schlaug et al. (1994) showing a clear activation of Broca’s area in single subjects during accurate finger movements. Finally, the task used in all the above experiments may have not required sufficient behavioural demand to activate the area involved in hand–object interactions. In all of them the objects to be grasped were rather simple and, most importantly, the movements were short-lasting and made at intervals.

The aim of the present experiment was to re-address the problem of whether a specific circuit involved in hand–object interaction is present also in humans and, if so, where it is located. As a main task we used a continuous manipulation of three-dimensional complex objects, either recognizable or not recognizable by means of manipulation. In contrast with previous tasks, ours required continuous finger movements and a constant change in finger configurations. Because of these requirements, we supposed that this task should be more efficient than those previously employed for activating brain areas involved in hand–object interactions. Furthermore, functional magnetic resonance imaging (fMRI), rather than the PET technique, was used.

Our results show that during manipulation of complex objects there is an activation of BA 44, a region in the intraparietal sulcus, SII and a sector of the superior parietal lobule. We propose that the circuit formed by these areas is the human homologue of the monkey grasping/ manipulation circuit including areas AIP and F5.

Methods

Subjects

Twelve right-handed male subjects, aged 25–35 years, were studied. Right-handedness was assessed by the Oldfield inventory (Oldfield, 1971). Two experiments were carried out with six subjects per experiment. None of the subjects had a current or past history of neurological disorders and each was normal on neurological examination. The study was approved by the Ethic Committee of the Heinrich-Heine-University, Düsseldorf. All subjects gave written consent prior to the study.

MRI-scanner and scanning sequences

Functional magnetic resonance imaging of cerebral blood oxygen level-dependent signal changes was performed as described in detail elsewhere (Binkofski et al., 1998a). Magnetic resonance (MR) images were recorded on a 1.5 Tesla Siemens ‘Vision’ MRI system (SIEMENS Magnetom, Erlangen, Germany), using standard echo planar imaging and a standard radio frequency head coil for signal transmission and reception. Sixteen axial slice positions (slice thickness, 4 mm; interslice gap, 0.1 mm) were orientated in the anterior–posterior commissure plane covering the brain volume above the temporal pole. The following sequences were used: gradient echo planar imaging, sequence repetition time (TR), 3 s; signal (echo)-gathering time (TE), 66 ms; FOV, 200 × 200 mm (FOV, field of view); matrix size, 64 × 64; in-plane resolution, 3.125 × 3.125. In addition, high-resolution anatomical images of the entire brain were obtained by using a strongly T1-weighted gradient echo sequence (fast low-angle shot), sequences: TR, 40 ms; TE, 5 ms (flip angle, α = 40°), one excitation per phase-encoding step, FOV, 25 cm, matrix size, 256 × 256, 128 sagittal slices with 1.25 mm single slice thickness.

Data acquisition and image analysis

Image analysis was performed on a SPARC II workstation (Sun Microsystems) using MATLAB (Mathworks Inc., Natiek, MA, USA) and statistical parametric mapping package SPM96 (Friston et al., 1994a,b; 1995b, 1997; Poline et al., 1995; Worsley & Friston, 1995). First, the 50 volume images of each condition were automatically realigned to the tenth image to correct for head movements between scans (Friston et al., 1995b). Then the images were coregistered and transformed into a standard stereotactic space, using the intercommissural line as the reference plane for transformation. During the normalization, pixels were slightly smoothed with a Gaussian filter to achieve isotropic voxels of 4 × 4 mm in the x and y dimensions, with an interplanar distance of 4 mm. Voxels that had values >0.8 of the mean volume in all the images were selected to restrict the analysis to intracranial regions. The effects of global (whole volume) activity and time were removed as confounds, using linear regression and sine/cosine functions (up to a maximum of 2.5 cycles per 50 scans). Removing the latter confounds corresponded to high-pass filtering of the time series to remove low frequency artifacts, which could arise due to aliased cardiorespiratory and other cyclical components.

The stereotactically-normalized fMRI time-series data of the subjects were analysed separately. The alternating periods of ‘baseline’ and ‘activation’ were modelled using a simple delayed box-car reference vector accounting for the delayed cerebral blood flow change after stimulus presentation. Significantly activated pixels were searched for by using the ‘General Linear Model’ approach for time-series data suggested by Friston and colleagues (Friston et al., 1994a;b; Friston, 1995a, 1997; Poline et al., 1995; Worsley & Friston, 1995). Therefore we defined a design matrix comprising contrasts that tested for significant activations during hand manipulation in each condition separately (tests for simple main effects). Group activation maps were calculated by pooling the data for each condition across all subjects. Pixels were identified as significantly activated if they passed the highest threshold of Z = 3.09 and belonged to a cluster of at least 10 activated pixels (P < 0.05, corrected for multiple comparisons) (Friston et al., 1994b). The activated pixels surviving the procedure were superimposed on high-resolution MR scans of a standard brain (Montreal Neurological Institute) and on ‘SPM brain projections’.

With the aid of published Talairach-coordinates (Talairach & Tournoux, 1988; Roland & Zilles, 1996) and prominent sulcal landmarks (precentral, central and postcentral sulci, etc.) clusters of activated voxels were assigned according to their centre of mass activity. In addition the Talairach coordinates of the ventral premotor foci were compared with the coordinates of cytoarchitectonically-defined probability maps related to Brodmann’s areas (BAs) 44 and 45 (Amunts et al., 1998, 1999).
Experiments.

Manipulation movements included movements of the thumb, index and the middle finger (see Kunesch et al., 1991; Binkofski et al., 1992). Both hands were tested, separately. The experiments were designed to assess the cortical areas involved in manipulation of complex objects. It consisted of two experimental conditions for each of which five epochs of fMRI measurements were acquired. Each epoch was formed by a 15-s ‘activation’ phase, immediately followed by a 15-s ‘baseline’ phase (Fig. 1, upper part). On the whole 50 images for each condition were acquired. The total duration of one measurement was 2.5 min. In the first condition (a) the activation phase consisted of a continuous manipulation of complex plastic objects, while the baseline phase consisted of rest, during which no motor activity was required. In the second condition (b) the activation phase was the same as in the first one, while the baseline consisted of continuous indifferent manipulation of a sphere. The condition order was randomized across the subjects. The objects to manipulate were small plastic toys of real objects (e.g. houses, animals). During the activation phase of each epoch a different object to be manipulated was used. The objects were asked to manipulate the objects carefully and to explore their basic features (surface, roughness, edges). Throughout the manipulated objects had a meaning and could therefore in principle be named by the subjects, preliminary tests excluded any of those used in experiment 1 that could be recognized by the subjects by manipulation. Subjects were informed that they were not required to recognize the objects located in their hands but only to manipulate them. The sphere that was manipulated during the baseline phase was made of plastic, had a smooth surface and a diameter of 3 cm.

**Experiment 2**

As it will be shown in Results, experiment 1 demonstrated a strong activation of BA 44, an area involved in speech production. Considering this finding, a second experiment was designed the aim of which was to test whether the activation of BA 44, observed in the first experiment, was due to manipulatory finger movements or was related to an internal naming of object features. Like experiment 1, experiment 2 consisted of two conditions. In the first condition (a) complex objects of similar material, size and surface characteristics as those of the first experiment were presented. The instruction was to manipulate the objects carefully, to explore their basic features (surface, roughness, edges) and to avoid any covert naming either of the objects or of their features. In the second condition (b) a set of common objects similar in material, size and surface characteristics as used in the previous condition, but easy to recognize through manipulation (e.g. a matchbox, a small plastic car) was used. The instruction this time was to recognize the objects by means of manipulation and to name them covertly. At the end of the scanning session the subjects were asked to report the recognized objects. The experimental design of experiment 2 was the same as that of experiment 1. It is summarized in Fig. 1 (lower part).

**Results**

**Experiment 1**

The activations in this experiment and their anatomical locations are summarized in Table 1.

Manipulation of complex objects vs. rest activated the sensorimotor areas (primary somatosensory area, SI, and primary motor cortex, MI), the dorsal premotor cortex (dPMC) in the anterior bank of the precentral gyrus, the opercular part of the inferior frontal gyrus (ventral premotor cortex, vPMC), the supplementary motor area (SMA proper), the cingulate motor cortex (mCing, BA 24), the opercular parietal areas in the region corresponding to the secondary somatosensory area (SII), the superior parietal lobule (SP), and an area located in the anterior part of the lateral bank of the intraparietal sulcus. We refer to this last area as the anterior intraparietal area (AIP). SI, MI and mCing were activated contralaterally to the manipulating hand whilst the dPMC and vPMC and the parietal areas AIP, SII and SP were activated bilaterally. An additional bilateral activation was observed in the inferior parietal lobule (IP) and some left-sided activity in the posterior part of the superior parietal lobule (PP) was observed during manipulation with the left hand. Some weak activations were found in the contralateral thalamus and in the posterior insula.

The comparison between the manipulation of complex objects and the manipulation of a sphere identified only a subset of areas activated in complex object manipulation vs. rest (Table 1). Among them the activated areas were: vPMC (BA 44), AIP, SII and SP and left IP. All these activations were bilateral. Weak additional ipsilateral activation was found in the inferior parietal lobule for both hands. For the left hand there was also a weak activation in the posterior part of the superior parietal lobule. The areas related to movement control, e.g. MI, SI, premotor areas, the SMA, and the thalamus, did not show up in this comparison.

**Experiment 2**

The results of this experiment are shown in Table 2 and Fig. 2. Figure 2 shows a general view of the activated areas from both
### Table 1. Functional areas significantly activated in the conditions of Experiment 1

<table>
<thead>
<tr>
<th>Functional area</th>
<th>Talairach Coordinates (x, y, z)</th>
<th>Complex object manipulation vs. rest</th>
<th>Complex object manipulation vs. sphere manipulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Right hand</td>
<td>Left hand</td>
<td>Right hand</td>
</tr>
<tr>
<td>M1/S1 r</td>
<td>40, −32, 52</td>
<td>7.56</td>
<td></td>
</tr>
<tr>
<td>dPMC r</td>
<td>32, −10, 52</td>
<td>4.82</td>
<td>4.83</td>
</tr>
<tr>
<td>vPMC r</td>
<td>52, 8, 20</td>
<td>5.10</td>
<td>4.99</td>
</tr>
<tr>
<td>Thal r</td>
<td>−12, −16, 4</td>
<td>3.31</td>
<td></td>
</tr>
<tr>
<td>SH r</td>
<td>60, −20, 16</td>
<td>7.46</td>
<td>5.82</td>
</tr>
<tr>
<td>AIP r</td>
<td>40, −40, 44</td>
<td>7.74</td>
<td>7.98</td>
</tr>
<tr>
<td>pIPS r</td>
<td>40, −48, 50</td>
<td>4.06</td>
<td>4.83</td>
</tr>
<tr>
<td>IP r</td>
<td>56, −32, 36</td>
<td>7.28</td>
<td>8.09</td>
</tr>
<tr>
<td>SP r</td>
<td>36, −52, 60</td>
<td>4.98</td>
<td>6.36</td>
</tr>
<tr>
<td>CING r</td>
<td>0, 12, 28</td>
<td>3.88</td>
<td>6.46</td>
</tr>
<tr>
<td>SMA r</td>
<td>4, −12, 64</td>
<td>3.69</td>
<td>3.89</td>
</tr>
<tr>
<td></td>
<td>4, 0, 44</td>
<td>6.73</td>
<td>6.21</td>
</tr>
<tr>
<td>M1/S1 l</td>
<td>−46, −32, 50</td>
<td>6.78</td>
<td></td>
</tr>
<tr>
<td>dPMC l</td>
<td>−40, −16, 32</td>
<td>6.57</td>
<td></td>
</tr>
<tr>
<td>vPMC l</td>
<td>−52, 8, 28</td>
<td>7.36</td>
<td>5.7</td>
</tr>
<tr>
<td>Thal l</td>
<td>−16, −16, 8</td>
<td>3.38</td>
<td></td>
</tr>
<tr>
<td>SH l</td>
<td>−64, −20, 24</td>
<td>7.59</td>
<td>7.5</td>
</tr>
<tr>
<td>AIP l</td>
<td>−40, −40, 40</td>
<td>7.82</td>
<td>7</td>
</tr>
<tr>
<td>pIPS l</td>
<td>−40, −52, 44</td>
<td>5.04</td>
<td>4.9</td>
</tr>
<tr>
<td>IP l</td>
<td>−52, −32, 36</td>
<td>7.86</td>
<td>6.62</td>
</tr>
<tr>
<td>SP l</td>
<td>−32, −56, 56</td>
<td>5.25</td>
<td>4.6</td>
</tr>
<tr>
<td>PP l (G. ang.)</td>
<td>−16, −76, 52</td>
<td>3.71</td>
<td></td>
</tr>
</tbody>
</table>

Z-scores are presented, with the premotor activation foci fitting into the probability maps of BA 44 in bold. Abbreviations: l, left; r, right; M1/S1, primary sensorimotor area; dPMC, dorsal premotor area; vPMC, ventral premotor area; Thal, thalamus; mCing, motor cingulate; SMA, supplementary motor area; SII, secondary somatosensory area; AIP, anterior intraparietal area; pIPS, posterior intraparietal; IP, inferior parietal lobule; SP, superior parietal lobule; PP, posterior parietal area; G. ang., angular gyrus.

### Table 2. Functional areas significantly activated with and without naming in Experiment 2, with manipulation of complex objects vs. spheres

<table>
<thead>
<tr>
<th>Functional area</th>
<th>Talairach Coordinates (x, y, z)</th>
<th>Complex objects vs. sphere without naming</th>
<th>Complex object vs. sphere with naming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Right hand</td>
<td>Left hand</td>
<td>Right hand</td>
</tr>
<tr>
<td>dPMC r</td>
<td>32, −10, 52</td>
<td></td>
<td>4.78*</td>
</tr>
<tr>
<td>vPMC r</td>
<td>52, 8, 20</td>
<td>5.83</td>
<td>3.97</td>
</tr>
<tr>
<td>IFG pars triangularis r</td>
<td>50, 32, 4</td>
<td>4.27</td>
<td>3.46</td>
</tr>
<tr>
<td>SH r</td>
<td>60, −20, 16</td>
<td>4.47</td>
<td>4.36</td>
</tr>
<tr>
<td>AIP r</td>
<td>40, −40, 44</td>
<td>6.45</td>
<td>4.14</td>
</tr>
<tr>
<td>pIPS r</td>
<td>40, −50, 48</td>
<td>4.27</td>
<td>5.27</td>
</tr>
<tr>
<td>IP r</td>
<td>56, −30, 36</td>
<td>6.83</td>
<td>5.71</td>
</tr>
<tr>
<td>SP r</td>
<td>32, −60, 56</td>
<td>3.67</td>
<td>3.48</td>
</tr>
<tr>
<td>dPMC l</td>
<td>−28, −8, 48</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>vPMC l</td>
<td>−50, 46, 4</td>
<td>3.27</td>
<td>3.08</td>
</tr>
<tr>
<td>IFG pars triangularis l</td>
<td>−40, 32, 16</td>
<td>5.16</td>
<td>6.2</td>
</tr>
<tr>
<td>SII l</td>
<td>−64, −20, 24</td>
<td>5.93</td>
<td>4.75</td>
</tr>
<tr>
<td>AIP l</td>
<td>−40, −40, 40</td>
<td>4.35</td>
<td>4.75</td>
</tr>
<tr>
<td>pIPS l</td>
<td>−52, −32, 36</td>
<td>6.11</td>
<td>5.52</td>
</tr>
<tr>
<td>IP l</td>
<td>−32, −56, 56</td>
<td>4.35</td>
<td>3.27*</td>
</tr>
<tr>
<td>SP l</td>
<td>−30, −68, 40</td>
<td>4.13</td>
<td>3.95</td>
</tr>
</tbody>
</table>

Z-scores are presented, with the premotor activation foci fitting into the probability maps of BAs 44 and 45 in bold. Abbreviations: l, left; r, right; M1/S1, primary sensorimotor area; dPMC, dorsal premotor area; vPMC, ventral premotor area (convexity, on the precentral sulcus; opercular, on the pars opercularis, BA 44); IFG, inferior frontal gyrus (pars triangularis, BA 45); SII, secondary somatosensory area; AIP, anterior intraparietal area; pIPS, posterior intraparietal; IP, inferior parietal lobule; SP, superior parietal lobule; PP, posterior parietal area; G. ang., angular gyrus. *Activation significantly different between the two experimental conditions (with and without naming).
FIG. 2. Legend opposite.

FIG. 3. Legend opposite.
FIG. 3. Frontal and parietal activation foci projected on sections from a standard brain (Montreal Neurological Institute). Manipulation of complex objects with objects covertly named by the subjects. The red and yellow areas indicate pixels with Z-scores > 3.1 (corrected $P < 0.05$). The comparison of complex manipulation without covert naming of the objects vs. simple manipulation confirmed the data of the first experiment. In addition, the data showed a further vPMC activation more ventrally located and a PP activity around the posterior angular gyrus.

The comparison of complex manipulation with covert naming vs. simple manipulation is shown in Table 2 and in Fig. 2. It is evident that additional activations in the more anterior opercular vPMC and, most importantly, in the triangular part of the inferior frontal gyrus are present in this condition. This area was active neither in experiment 1 nor in the condition of experiment 2 in which naming of the manipulated objects was not required (Table 2, Fig. 2).

The comparison of the coordinates of the activated foci located around the opercular and triangular parts of the inferior frontal gyrus with the coordinates of the probability maps of BAs 44 and 45 (Amunts et al., 1998, 1999) clearly demonstrated that the activation foci located in the pars triangularis related to covert naming of objects fitted entirely into BA 45. The foci activated during complex object manipulation without naming and located in vPMC fitted into the borders of BA 44.

The more detailed anatomical locations of the ventral premotor and intraparietal foci from the second condition of experiment 2 are shown in the Fig. 3. The triangular focus is located beneath the anterior part of the middle bank of the intraparietal sulcus (Fig. 3 upper panel, left; middle panel, middle; lower panel, right). The opercular focus is located in the ventral frontal lobe anterior to the precentral sulcus (Fig. 3 upper panel, right; middle panel, middle; lower panel, left). The intraparietal focus is located on the lateral bank of the anterior intraparietal sulcus (Fig. 3 upper panel, left; middle panel, right; lower panel, right).

Discussion

The main finding of the present study is the demonstration that during manipulation of complex three-dimensional objects there are, in humans, selective activations of vPMC (BA 44), an area located in the anterior part of the lateral bank of the intraparietal sulcus (area AIP, BA 40) and of SII. An additional activation was present in the superior parietal lobule. If one compares these active sites with the areas that mediate grasping and manipulation in monkeys, it appears not only that, contrary to previous negative data (Grafton et al., 1996a; Matsumura et al., 1996; Rizzolatti et al., 1996; Faillenot et al., 1997), a circuit for hand–object interactions exists also in humans, but also that it is formed by the cortical areas that are usually considered to be the homologue of the monkey areas involved in the same function.

In the following sections we review the functional properties of the areas involved in hand–object interactions in humans and compare them with those of the putative homologous areas in the monkey. The influence of task design on the pattern of cerebral activation is also discussed.

Ventral premotor cortex (vPMC)

In humans the ventral sector of the premotor cortex is formed by two areas: the ventral part of area 6a alpha and BA 44 (Vogt & Vogt, 1919). The two areas share a common basic cytoarchitectonic structure, the main characteristics of which are the poverty (BA 44) or lack (BA 6) of granular cells (see Campbell, 1905; von Economo, 1929) and the presence of large pyramids in the third layer.

Classically, both ventral BA 6 and BA 44 were thought of as areas controlling oro-laryngeal movements, but with a different specialization and selectivity. The most lateral part of BA 6 was considered to be responsible of the motor control of buccal and laryngeal movements, regardless of the movement purpose, while, in contrast, BA 44 was considered to be the main speech motor area.

A series of recent studies showed that this view describes only partially the function of vPMC. These studies, based on brain imaging techniques, showed that a blood flow increase was present in vPMC during learning of finger movement sequences (Seitz & Roland, 1992a), during mental imagery of grasping movements (Decety et al., 1994; Grafton et al., 1996b), during imaging of joystick movements (Stephan et al., 1995), during mental rotations necessary for hand recognition (Parsons et al., 1995), and during preparation of finger movements on the basis of a copied movement (Krams et al., 1998). The vPMC was also found to be of importance for motor tasks with high motor execution demands (Winston et al., 1997). These data appear to suggest that, in addition to the control of oro-laryngeal movements, a representation of hand/arm movements is also contained in this area (Parsons et al., 1995; Preuss et al., 1996; Rizzolatti & Arbib, 1998).

Until the present study, experiments in which the existence of a fronto-parietal circuit subserving hand–object interactions was overtly tested gave negative results (see Introduction). The most likely reason for this failure was the use of tasks based on discrete movements interrupted by long pauses. Such a paradigm (plus the simplicity of the required movements) is probably insufficient to activate the premotor cortex in a statistically significant way (see Grafton et al., 1996a).

In the present study we asked subjects to manipulate continuously complex objects and therefore continuously change finger configurations. Because the objects were placed into the subjects’ hands and were obscured from the subjects’ view, the subjects performed manipulatory finger movements induced by the macrostructure of the objects. We thought that such a task should be more effective in activating areas involved in finger control than those employed in previous experiments. The results confirmed this prediction. A marked activation was found in BA 44. This activation was bilateral, with a prevalence in the left hemisphere both when the task was executed with the right hand and when executed with the left hand (Table 1,2; Fig. 2).

© 1999 European Neuroscience Association, European Journal of Neuroscience, 11, 3276–3286
These results fit well with the organization of vPMC in the monkey. As in humans, the vPMV in the monkey is constituted of two areas, F4 located caudally and F5 located rostrally (Matelli et al., 1985). Single-neuron recordings from F5 showed that in this area there are two large, partially overlapping, somatotopic fields, a hand field and a mouth field (Gentilucci et al., 1988). While the mouth field has not been much studied, there is evidence that hand-related neurons become active during goal-directed actions such as a grasping, holding and manipulation (see Introduction and, for more details, Rizzolatti & Fadiga, 1998).

It is interesting to note that a homology between BA 44 and area F5 was suggested in the 1940s by von Bonin & Bailey (1947) on the basis of their cytoarchitectonic studies. (In their terminology, F5 is the superior precentral bank of area 4.) Anatomical and physiological evidence converging on the vPMV area suggests that the BA 44 area may be a monkey homologue of SMA (Frith et al., 1995). An analogous argument can be presented in favor of a monkey homologue of area 7b, the area immediately posterior to the central sulcus (Penfield & Jasper, 1947). On the basis of their physiological recordings, Logigian & Gouras (1981), and Logigian et al. (1989), argued that the monkey homologue of area 7b was located in the rostral part of the lateral bank of the intraparietal sulcus. Binkofski et al. (1998a) reported that, after a lesion centred in this region, patients show selective deficits in the co-ordination of finger movements required for object grasping, their reaching movements being only mildly disturbed. Moreover, the same effect was observed as evident from fMRI, when healthy subjects performed prehension movements (Binkofski et al., 1998a).

The present study confirms this localization (Table 1.2). During complex object manipulation an activation was found in the cortex located in the intraparietal sulcus. The active area lay in the rostral part of the sulcus in correspondence with its lateral bank (BA 40).

An activation within the right intraparietal sulcus was found by Faillenot et al. (1997) using a visual object matching task. This activation was interpreted as related to visual recognition of invariant features of objects. No activation of the intraparietal sulcus was found during grasping. The activation of the inferior part of the left postcentral gyrus (BA 2/40) found in this condition was probably due to proprioceptive afferences related to finger movements. An activation similar to that observed by Faillenot et al. (1997) was recently reported by Taira et al. (1998) in a visual axis discrimination task.

An activation of BA 40 was found also in mental imagery of grasping as well as trajectory movements (Grafton et al., 1996b; Seitz et al., 1997). These activation sites, however, were located more posteriorly than that described in our study. This difference might be explained by postulating that, as in SMA proper (Tyszka et al., 1994; Roth et al., 1995; Grafton et al., 1996b), in the intraparietal sulcus the region for imagined movements is close to but distinct from that for actual movements. It may also be, however, that the observed different locations between true and imagined movements are not due to a real functional differentiation inside the sulcus, but to intersubject variability or to methodological factors. Finally, it is important to note that the ‘grasping’ studies that failed to reveal a premotor activation during grasping movements also failed to find an activation of AIP. This finding further supports the view that the task used in those experiments was inadequate for exciting the human circuit responsible for hand–object interactions.

In conclusion, it appears that in humans as in monkeys there is a parieto-frontal circuit for hand–object interactions. The parietal node of this circuit is area AIP in the monkey and the intraparietal area activated in the present study in humans. It is important to stress that AIP neurons do not discharge only during object presentation and visually-guided hand shaping, but also during object holding and manipulation (Sakata et al., 1992, 1995; Jeannerod et al., 1995). Furthermore the AIP neuron types defined as ‘motor dominant’ and ‘visual-and-motor’ discharge during hand-related actions performed in the dark. Thus, the activation of human intraparietal sulcus during movements executed without visual guidance is in full accord with the neurophysiological data on monkey area AIP.

**Intraparietal sulcus**

Posterior parietal lobule lesions involving the superior parietal lobe and the adjacent areas of the intraparietal sulcus are known to produce reaching deficits (Balint, 1909; see also De Renzi, 1982; Perenin & Vighetto, 1988). Although less frequently reported, another important impairment in sensorimotor and visuomotor behaviour following posterior parietal damage is an inadequate hand and finger shaping (Jeannerod, 1986; Pause et al., 1989; Binkovskii et al., 1992).

Until recently very little was known about the location of the finger/hand movement representation in human parietal cortex. Recently, evidence has been provided that grasping finger movements are localized in the cortex, located in the anterior part of the lateral bank of the intraparietal sulcus. Binkofski et al. (1998a) reported that, after a lesion centred in this region, patients show selective deficits in the co-ordination of finger movements required for object grasping, their reaching movements being only mildly disturbed. Moreover, the same focus was activated as evident from fMRI, when healthy subjects performed prehension movements (Binkofski et al., 1998a).

The present study confirms this localization (Table 1.2). During complex object manipulation an activation was found in the cortex located in the intraparietal sulcus. The active area lay in the rostral part of the sulcus in correspondence with its lateral bank (BA 40).

**Area SII**

The second somatosensory area (SII) in primates, including humans, lies mostly in the upper bank of the Sylvian fissure, immediately posterior to the central sulcus (Penfield & Jasper, 1954; Woolsey, 1958; Whitsel et al., 1969; Lüders et al., 1985; Kaas & Pons, 1988; Burton et al., 1993). In human imaging studies SII has been shown to be activated by strong somatosensory stimuli such as vibration and somatic pain (Seitz & Roland, 1992b; Talbot et al., 1991; Binkofski et al., 1998b). Recent studies in the monkey showed that the SII of classical authors is formed by two separate areas both sensitive to tactile stimuli: the parietal ventral area (PV) located rostrally and SII caudally (Krubitzer et al., 1995). Furthermore around the PV/SII complex there are other cortical fields that also respond to somatosensory stimuli (Robinson & Burton, 1980; Krubitzer et al., 1995). In the present study the term SII will be used in a broader sense indicating both the small, strictly defined SII and the adjacent somatosensory fields.

Anatomical studies in monkey showed that SII has connections with vPMC including F5, with area 7b, and with different sectors of the insula (Pandya & Kuypers, 1969; Muñson et al., 1981; Friedman et al., 1986; Matelli et al., 1986). Thus, SII conveys somatosensory...
information to motor areas on one side and to the limbic system on the other side.

Lesion studies showed that following ablation of SII, monkeys are severely impaired in tactile learning and retention of shapes (Ridley & Ettlinger, 1976, 1978; Murray & Mishkin, 1984), while their basic tactile sensory capacities remain intact (Ridley & Ettlinger, 1976, 1978; Garcha & Ettlinger, 1978). On the basis of these findings and other considerations, Mishkin (1979) proposed that SII plays a central role in tactile-affective associations, similar to that attributed to infero-temporal cortex in vision.

Both stimulation and lesion studies of SII are rare in humans. Cortical stimulation in awake patients typically causes simple sensory sensations (Lüders et al., 1985). Focal lesions of the parietal operculum that included SII produce tactile agnosia without loss of simple tactile sensation or motor control (Caselli, 1991, 1993). The deficit can include the inability to classify objects on the basis of their size or shape.

In the present study an activation of SII (and adjacent areas) was observed in all tasks of our experiment (Table 1,2). This activation was particularly strong in the condition in which complex object manipulation was compared to sphere manipulation. Because no concomitant, significant activation was found in SI in this last condition, what might appear at first glance the simplest explanation of this finding is rather unlikely: that the increase of activation in SII during the task was exclusively due to the different amount of somatosensory stimulation.

Once this explanation is discarded, what can be the reason for the increase of SII activity during complex object manipulation? If one considers the duality of efferent connections of SII, linking SII on one side with the insula and on the other with vPMC, two possibilities appear to be particularly plausible. The first is that the activation of SII is related to object discrimination. Although no overt object discrimination was required in our first experiment, it might be that this process was automatically triggered by the task. Against this interpretation are, however, the findings of Grafton et al. (1996a) and Faillenot et al. (1997) who reported an activation of SII in a grasping vs. pointing task in which no tactile object discrimination was present. An alternative possibility is that the somatosensory information conveyed by SII to vPMC was used to control and direct finger movement during object exploration in such a way as to adapt the finger grip to the object’s intrinsic features in absence of visual control. This interpretation is consistent with the notion that F5 needs a continuous flow of tactile information. This information is needed both for F5 ‘grasping’ neurons as a signal that the target has been reached and for F5 ‘holding’ neurons which discharge when a contact between finger and object is established. Our view is that SII provides this indispensable tactile input to vPMC.

Superior parietal lobule

In all primates, including the prosimians, the intraparietal sulcus divides the posterior part of the parietal lobe into two sectors, the superior parietal lobule and the inferior parietal lobule. According to Brodmann (1909) each parietal lobe is formed by two cytoarchitectonic areas: (i) the superior parietal lobule, formed by BA 5 and 7, and (ii) the inferior parietal lobule, formed by BA 39 and 40. In his map of monkey brain Brodmann considered the monkey superior parietal lobule to be constituted of an area homologous to human area 5 and the inferior parietal lobule of an area homologous to human area 7. This implies that, in evolution, the non-human area 7 had ‘jumped’ from its original location below the intraparietal sulcus to a location above it. This very surprising view was not confirmed by von Bonin & Bailey, (1947). Following von Economo (1929), they found in both humans and monkey a main cytoarchitectonic area in the superior parietal lobule called area PE, and two areas in the inferior parietal lobule, areas PF and PG.

Because of the popularity of Brodmann’s human cortical map, the homology proposed by Brodmann has been the source of considerable confusion and the properties of monkey area 7 were often attributed to human superior parietal lobule. In the following discussion we will use exclusively the homology of von Bonin and Bailey: only the data derived from the study of the monkey superior parietal lobule will be used in discussing the superior parietal lobule in humans.

In monkeys the superior parietal lobule is essentially related to the elaboration of proprioceptive information. Neurons from area PE, the area forming most of the superior parietal lobule cortical convexity, are active with passive joint rotation and deep tissue pressure as well as during active arm movements (Sakata et al., 1973; Mountcastle et al., 1975; Kalaska et al., 1985; Lacquaniti et al., 1995). Some of them combine proprioceptive information from different joints, possibly playing a role in a more global representation of body parts (Mountcastle et al., 1975), others put together tactile and joint information (Sakata et al., 1973). Recent evidence has shown that, while PE is exclusively related to somatosensory modalities, the posterior sectors of the superior parietal lobule (e.g. area V6 A, Galetti et al., 1996) have in addition visual functions (see references in Rizzolatti et al., 1997).

Is there a hand/finger representation in human superior parietal lobule? There are not many data on this point, most of the studies on the superior parietal lobule concerning global arm movements (e.g. Roland et al., 1980; Deiber et al., 1991; Grafton et al., 1992) rather than pure hand/finger movements. Evidence, however, in favour of such a representation has been reported by Seitz et al. (1991) who asked subjects to discriminate among a series of cuboids differing only in their length. The results showed an increase of cerebral blood flow in the primary sensory and motor areas, in premotor cortex, in the supplementary motor area and, most importantly for the present discussion, in the superior parietal lobule.

The presence of a hand/finger representation in the superior parietal lobule was demonstrated also by a clinical study in which patients with anterior parietal lesions were compared with patients with posterior parietal lesions mostly involving the superior parietal lobule (Pause et al., 1989). When the damage was anterior, the simple aspects of somaesthesia were strongly disturbed, while somaesthesia was preserved when the damage was located in the posterior parietal cortex. In the latter condition hemiparesis was only mild or absent, whereas exploratory and manipulative finger movements were severely impaired. Remarkably, the exploratory finger movements could be produced by imitation. Furthermore, hand shaping and target acquisition in visuomotor tasks were less disturbed than manipulative behaviour.

The presence of a hand/finger representation in the superior parietal lobule was confirmed by the present findings (Table 1,2). They also showed an intense activation of the superior parietal lobule during hand manipulation of three-dimensional objects.

Representations of manipulation in parietal cortex

The presence of two hand/finger representations, one in SII and in the other in the superior parietal lobule, both related to somatosensory modalities, raises the question of their relative contribution to manipulative behaviour. A clue for answering this question can be obtained (in addition to the data reported above) by the neuron properties of the two areas as reported in monkey studies. These
studies show that the large majority of SII neurons are responsive to tactile and not to joint stimulation (Robinson & Burton, 1980) while, in contrast, area PE is mostly related to proprioception, only a small number of neurons responding to tactile stimulation (see above). Our suggestion is therefore the following: both PE and SII are involved in controlling exploratory manipulation. Their role, however, is different. SII and the adjacent areas (SII stream) describe the objects in terms of their intrinsic (physical) properties. In contrast, PE and the adjacent areas (superior parietal stream) describe the objects in terms of hand postures necessary to interact with them. The functional role of SII is therefore to capture information from the external world, whereas that of PE is to describe the same objects from an internal (kinaesthetic) point of view. The AIP seems to play an intermediate role, as it processes information required for initiating hand–object interaction. Finally, although both streams cooperate in object manipulation, the greater sensitivity of the tactile modality with respect to the kinaesthetic modality (Roland, 1987), the anatomical connections of SII with the limbic system (see Mishkin, 1979), and the ablation experiments reviewed above, all indicate that the SII stream plays a major role in tactile object identification.

Acknowledgements

Comments from K. Amunts concerning anatomical locations of premotor activations are gratefully acknowledged. This study was supported by the Deutsche Forschungsgemeinschaft (SFB 194) and by a BioMed grant to G.R.

Abbreviations

AIP, anterior intraparietal area; BA, Brodmann’s area; dPMC, dorsal premotor cortex; fMRI, functional magnetic resonance imaging; FOV, field of view; mCing, cingulate motor cortex; MR, magnetic resonance; PET, positron emission tomography; PP, posterior part of the mCing, cingulate motor cortex; MI, primary motor cortex; MR, magnetic resonance; fMRI, functional magnetic resonance imaging; FOV, field of view; PE, primary somatosensory area; SII, secondary somatosensory area; SMA, supplementary motor area; SP, superior parietal lobule; TE, signal (echo)-gathering time; TR, sequence repetition time; vPMC, ventral premotor cortex.

References


