Colossal positive magnetoresistance in a doped nearly magnetic semiconductor

Rongwei Hu,1,2 K. J. Thomas,1,* Y. Lee,3 T. Vogt,1,† E. S. Choi,4 V. F. Mitrović,2 R. P. Hermann,5,‡ F. Grandjean,5
P. C. Canfield,6 J. W. Kim,6 A. I. Goldman,6 and C. Petrovic1

1Condensed Matter Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
2Physics Department, Brown University, Providence, Rhode Island 02912, USA
3Department of Earth System Sciences, Yonsei University, Seoul 120749, Korea
4NHMFL/Physics, Florida State University, Tallahassee, Florida 32310, USA
5Department of Physics, Université de Liège, B-4000 Liège, Belgium
6Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

(Received 15 October 2007; revised manuscript received 6 December 2007; published 27 February 2008)

We report on a positive colossal magnetoresistance (MR) induced by metallization of FeSb2, a nearly magnetic or “Kondo” semiconductor with 3d ions. We discuss the contribution of orbital MR and quantum interference to the enhanced magnetic field response of electrical resistivity.

DOI: 10.1103/PhysRevB.77.085212 PACS number(s): 75.47.Gk, 71.30.+h, 72.15.Rn, 75.50.Pp

There is at present considerable technological interest in the magnetoresistive effect that is central to the operation of devices in magnetic storage media and a wide variety of magnetic sensors. The desire to maximize this effect has raised interest in new materials and mechanisms associated with the large change in electrical resistance in magnetic field.1 FeSb2 is a narrow gap semiconductor whose magnetic properties strongly resemble nearly magnetic or “Kondo” insulator FeSi.2,3 The \(\text{ab initio} \) local density approximation plus \(U \) electronic calculations found that the ground state of FeSb2 is nearly ferromagnetic.4 Temperature induced paramagnetic moment for field applied parallel to \(\hat{b} \) axis coincides with increased conduction at high temperatures.2,3,5 Electrical transport measurements showed pronounced anisotropy and metallic conductivity above 40 K, and activated below that temperature for current applied along the \(\hat{b} \) axis. The exact temperature of metal-semiconductor crossover was found to be very sensitive to small current misalignment, implying a quasi-one-dimensional nature of electronic transport.2 Optical conductivity revealed anisotropic energy gap \(E_g \) in the spectral range between 100 and 350 cm\(^{-1}\) and negligible Drude weight of \(\sigma(\omega) \) at low frequencies, i.e., a true insulating state. In addition, a full recovery of spectral weight occurs only above 1 eV, suggesting a contribution of larger energy scales than in conventional metal-insulator transitions where thermal excitations of charge carriers through \(E_g \) brings about redistribution of the spectral weight just above the gap.6 Metal-insulator transitions in FeSi have been induced by band narrowing7 or by insertion of carriers,8 albeit with modest magnetoresistance. Unlike \(\text{Fe}_x\text{Co}_y\text{Si} \), colossal magnetoresistance (CMR) is observed for all \(x \leq 0.4 \) in \(\text{Fe}_{1-x}\text{Co}_x\text{Sb}_2 \).

\(\text{Fe}_{1-x}\text{Co}_x\text{Sb}_2 \) single crystals were grown from excess Sb flux.2 X-ray powder diffraction experiments and crystal orientation were performed at the beamlines X7A and X22C of the NSLS at the Brookhaven National Laboratory. Electrical transport and transverse magnetoresistance (MR) measurements were carried out in Quantum Design MPMS and PPMS instruments. For Hall resistivity \(\rho_{xy} \), the current was applied along the highly conducting \(\hat{b} \) axis and the voltage was picked up in the orthogonal (Hall) \([101]\) direction. To completely cancel out the longitudinal voltage contribution, magnetic field was swept from \(H=9 \) T to \(H=-9 \) T, and one-half of the voltage difference was taken as the Hall voltage. The high field transverse MR measurements were carried out at the NHMFL in Tallahassee, FL up to 300 kOe. The powder x-ray patterns show that the Co substitution on the Fe site uniformly contracts the unit cell volume, in agreement with Vegard’s law.5 The Mössbauer data indicate that there is no local magnetism on the Fe site and no visible subspectrum of impurities.

The application of a magnetic field of 90 kOe induces up to 2.5 orders of magnitude change in the resistivity in \(\text{Fe}_{1-x}\text{Co}_x\text{Sb}_2 \) \((x=0–0.4)\) and 30% of MR at room temperature for \(x=0.1 \) (Fig. 1). This is comparable to MR in the colossal magnetoresistive manganites.9 What could be the most likely cause of CMR in this system? The mechanism could involve a presence of charge carriers from different parts of the Fermi surface that have different scattering times or a breakdown of the semiclassical transport theory and relation between conductivity and scattering time \(\rho \sim 1/\tau \).10

Hall resistivity is shown as a nonlinear function of magnetic field in Fig. 2(b). The pronounced field dependence of Hall constant is reminiscent of the anomalous Hall effect. When there are magnetic moments involved, the Hall resistivity can be written as11

\[
\rho_{xy}(H) = R_0 H + R_s M(H),
\]

where \(R_0 \) and \(R_s \) are the normal and spontaneous Hall constants, and \(M \) is the sample magnetization. Fitting \(\rho_{xy} \), data by using the experimental values of \(M(H) \) [Fig. 2(a)], we found that the anomalous Hall effect is an unlikely cause of Hall resistivity nonlinearity. The nonlinearity of Hall resistivity in field and band structure calculations4 suggests that there are more than one band participating in the conduction (Fig. 3).

In what follows, we discuss the case when there are more than one type of carrier participating in the conduction. The Hall constant takes the general form12

\[
R_H = -\frac{1}{H} \frac{1}{\left(\sum \sigma_{xy}^2 \right)^2 + \left(\sum \sigma_{xy} \right)^2},
\]
within the same formalism for a two-carrier system is
where σ'_{xx} and σ'_{xy} are longitudinal and Hall conductivities of individual bands, and μ_1 is the band mobility. A matrix formalism for the Hall effect in multichannel semiconductor systems was devised and provided a closed form formula for two- or three-carrier systems. The magnetoresistance within the same formalism for a two-carrier system is

$$R_H = \rho_0 + \frac{\alpha_2 + \beta_2 H^2}{1 + \beta_2 H^2}, \quad MR_D = \frac{\alpha_2 H^2}{1 + \beta_2 H^2},$$

$$\alpha_2 = f_1 \mu_1 + f_2 \mu_2, \quad \beta_2 = (f_1 \mu_2 + f_2 \mu_1) \mu_1 \mu_2,$$

$$\beta_3 = \beta_D = (f_1 \mu_2 + f_2 \mu_1)^2, \quad \alpha_D = f_1 f_2 (\mu_1 - \mu_2)^2.$$

and for three-carrier systems,

$$R_H = \rho_0 + \frac{\alpha_2 + \beta_2 H^2 + \gamma_2 H^4}{1 + \beta_2 H^2 + \gamma_2 H^4},$$

$$MR_T = \frac{(\alpha_T + \gamma_T H^2)^2}{1 + (\beta_T + \delta_T H^2)^2},$$

$$\alpha_2 = f_1 \mu_1 + f_2 \mu_2 + f_3 \mu_3,$$

$$\beta_2 = f_1 \mu_1 (\mu_2^2 + \mu_3^2) + f_2 \mu_2 (\mu_1^2 + \mu_3^2) + f_3 \mu_3 (\mu_1^2 + \mu_2^2),$$

where β_3 is taken into account.

$\beta_3 = \beta_T = (f_1 \mu_2 + f_2 \mu_1)^2 + (f_3 \mu_1 + f_2 \mu_2)^2 + (f_1 \mu_3 + f_2 \mu_3)^2 + 2(f_1 \mu_3 f_2 \mu_3 + f_3 \mu_2 f_3 \mu_2),$

$$\gamma_2 = (f_1 \mu_2 \mu_3 + f_2 \mu_1 \mu_3 + f_3 \mu_1 \mu_2) \mu_1 \mu_2 \mu_3,$$

$$\gamma_3 = \delta_T = (f_1 \mu_1 \mu_3 + f_2 \mu_1 \mu_2 + f_3 \mu_2 \mu_3)^2,$$

$$\alpha_T = f_1 f_2 (\mu_1 - \mu_2)^2 + f_1 f_3 (\mu_1 - \mu_3)^2 + f_2 f_3 (\mu_2 - \mu_3)^2,$$

$\gamma_T = f_1 f_2 (\mu_1 - \mu_2)^2 + f_1 f_3 (\mu_1 - \mu_3)^2 + f_2 f_3 (\mu_2 - \mu_3)^2.$

where ρ_0 is the zero field resistivity, μ_i is the mobility of the ith carrier, and $f_i = |n_i \mu_i| / |\Sigma n_i \mu_i|$ is the f factor, with n_i as the carrier concentration, as defined in Ref. 13. The agreement with our experimental values of R_H was excellent as the solid lines shown in Fig. 3. FeSb$_2$ can be described well by a two-carrier model. Fe$_{1-x}$Co$_x$Sb$_2$ is best described within a three-carrier model since a two-carrier model cannot explain minima and maxima in $R_H = \rho_0 / H$; therefore, only three-carrier fits are shown in Figs. 3(b)–3(d). Using the obtained fitting parameters for the Hall constant, we can now solve numerically for mobilities of individual carriers and MR. We show the result in Fig. 4. The calculated orbital MR is approximately 4 orders of magnitude smaller than the observed MR for all x. This suggests that the conventional orbital mechanism cannot account for the large magnetoresistance in Fe$_{1-x}$Co$_x$Sb$_2$. A similar shape of calculated and measured
taken together with Fig. 3, argues in favor of the validity of the multiband electronic transport. In what follows, we show that the experimental MR is amplified by quantum interference effects.

Disordered metallic Fe\(_{1-x}\)Co\(_x\)Sb\(_2\) alloys are derived from an insulator with strong correlation effects. Therefore, a possible mechanism for enhanced positive MR could involve change of electronic structure induced by Co and quantum interference effects through the contribution of electron-electron interaction enhanced by disorder.\(^{15,16}\) Figure 5(a) shows qualitatively that the contribution of Coulomb interaction in the presence of random impurity scattering may be

![FIG. 3](https://example.com/fig3.png)

FIG. 3. (a) Hall constant \(R_H = \rho_{xy}/H\) of FeSb\(_2\) is well described by a two-carrier model. [(b)–(d)] For Fe\(_{1-x}\)Co\(_x\)Sb\(_2\) (0.1 \(\leq x \leq 0.4\)), the fits of the two carrier model to experimental data are rather unsatisfactory since it cannot account for maxima and minima in \(R_H(H)\). Co substitution in Fe\(_{1-x}\)Co\(_x\)Sb\(_2\) fills energy bands that are not involved in thermal excitation of carriers across the gap in FeSb\(_2\). \(R_H\) shows an excellent agreement with the three-carrier model for all \(x\); selected data are shown for clarity. Solid lines are fits to the multicarrier model.

MR, taken together with Fig. 3, argues in favor of the validity of the multiband electronic transport. In what follows, we show that the experimental MR is amplified by quantum interference effects.

Disordered metallic Fe\(_{1-x}\)Co\(_x\)Sb\(_2\) alloys are derived from an insulator with strong correlation effects.\(^4\) Therefore, a possible mechanism for enhanced positive MR could involve change of electronic structure induced by Co and quantum interference effects through the contribution of electron-electron interaction enhanced by disorder.\(^{15,16}\) Figure 5(a) shows qualitatively that the contribution of Coulomb interaction in the presence of random impurity scattering may be

![FIG. 4](https://example.com/fig4.png)

FIG. 4. Magnetoresistance calculated according to the multicarrier model for Fe\(_{1-x}\)Co\(_x\)Sb\(_2\) in 90 kOe shown in the low plot as linked symbols, compared to the observed MR shown as the scattered symbols.

![FIG. 5](https://example.com/fig5.png)

FIG. 5. (a) Magnetoconductivity of Fe\(_{1-x}\)Co\(_x\)Sb\(_2\). Conductivity change \(\Delta\sigma = \sigma(H,T) - \sigma(H,0)\), with \(\sigma(H,0)\) determined from fits of data to a \(T^{1/2}\) dependence at \(H = 90\) kOe. (b) Quasi-1D weak localization fits to MR at \(T = 1.8\) K for Fe\(_{1-x}\)Co\(_x\)Sb\(_2\). Data for \(x=0\) are shown at \(T=100\) K in the metallic quasi-1D regime of the \(\hat{b}\)-axis conductivity.
TABLE I. Parameters of the fits to quantum correction of magnetoresistance. aF is the proportional parameter in the Coulomb interaction contribution. L_f is the phase coherence length, b is the 1D conduction channel width, and c is the coefficient of the classical quadratic term.

<table>
<thead>
<tr>
<th>x</th>
<th>αF</th>
<th>L_f (nm)</th>
<th>b (nm)</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.2×10^{-9}</td>
<td>162</td>
<td>1.6</td>
<td>0.001</td>
</tr>
<tr>
<td>0.1</td>
<td>6.2×10^{-7}</td>
<td>1463</td>
<td>0.2</td>
<td>0.055</td>
</tr>
<tr>
<td>0.2</td>
<td>5.1×10^{-9}</td>
<td>534</td>
<td>2.8</td>
<td>0.004</td>
</tr>
<tr>
<td>0.3</td>
<td>7.3×10^{-9}</td>
<td>188</td>
<td>4.0</td>
<td>0.002</td>
</tr>
<tr>
<td>0.4</td>
<td>9.9×10^{-9}</td>
<td>128</td>
<td>5.1</td>
<td>0.001</td>
</tr>
</tbody>
</table>

important. More information is obtained from the magnetic field dependence of positive MR isotherms taken at 1.8 K [shown in Fig. 5(b)]. In the limit of strong spin-orbit scattering, the correction to quadratic MR along the high conductivity axis in Fe$_{1-x}$Co$_x$Sb$_2$ is expressed by

$$MR = \frac{1}{\rho_0}0.77\alpha F(\mu_{B}/kb)^{1/2}H^{1/2}$$

$$\times \left[\left(1 + \frac{b^2L^2_f}{12L^4_B} \right)^{-1/2} - 1 \right] + cH^2,$$

where L_f is the phase coherence length, $L_B = \sqrt{\hbar/2eB}$ is the magnetic length, b is the width of the quasi-one-dimensional (quasi-1D) channel, and F is from Hartree interaction. The first term is the contribution of the Coulomb interaction, and the second term is the contribution of the weak localization of quasi-1D model.

The fitting parameters are listed in Table I. As we can see, the contribution of the Coulomb interaction to MR is of the order of several percent, and the weak localization is dominant. Two inequalities justify our quasi-1D model: (1) The fitting parameters satisfy the criterion for the interference correction to be of a 1D character: $b < L_f$ and (2) in a field of 9 T, the magnetic length L_B is about 6 nm. Therefore, $b < L_B$ is satisfied; otherwise, the system should behave as three dimensional. The calculated MR agrees well with the observed MR. At $T=1.8$ K, the calculated MR in an $H=90$ kOe field is about 34 300% for Fe$_{0.6}$Co$_{0.4}$Sb$_2$, as compared to the observed values of 36 088%. The value is derived using a measured carrier concentration $n=8.5 \times 10^{19}$ cm$^{-3}$ and a residual resistivity $\rho_0=1.0 \times 10^{-5}$ Ω cm of Fe$_{0.6}$Co$_{0.4}$Sb$_2$, and $L_f \approx 240L_B$. The width of the quasi-1D channel b is of the order of the unit cell. Quasi-1D localization effects are observed in pure FeSb$_2$ at 100 K [Fig. 5(b)]. It implies that the electronic transport is dominated by the singular corrections at the density of states at unusually high temperatures, apparently without the usual cutoff by thermal effects, probably due to the high spin-orbit scattering rate $1/x$. A similar situation has been observed in Ta$_3$Te$_5$Si at 15 K (Ref. 22) and Si nanowires at 27 K.

In conclusion, we have shown CMR effect in doped nearly magnetic semiconductor FeSb$_2$. The application of magnetic fields up to 350 kOe results in 103 100% increase in the resistivity at 1.8 K and 124% increase at room temperature. Our results suggest a contribution of multiple electronic bands to electrical conduction. Quantum interference arising from Coulomb interactions and weak localization in the presence of strong spin-orbit scattering is the dominant mechanism of CMR.

We thank Maxim Dzero, Sergey Bud’ko, Zachary Fisk, and T. Maurice Rice for useful communication. This work was carried out at the Brookhaven National Laboratory, which is operated for the U.S. Department of Energy by Brookhaven Science Associates (DE-AC02-98CH10886). A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-0084173, by the State of Florida, and by the U.S. Department of Energy. This work was also supported in part by the National Science Foundation Grant No. DMR-0547938 (V.F.M.).

*Present address: Nature Publishing Group, London, UK.
†Present address: Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
‡Present address: Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
9 Myron B. Salamon and Marcelo Jaime, Rev. Mod. Phys. 73, 583 (2001).
20 A. I. Yakimov and A. V. Dvorechenskii, JETP Lett. 69, 202 (1999).