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Abstract

The translational and rotational diffusion of a series of gold nanorods with low aspect ratio
was investigated by dynamic light scattering (DLS). It is shown that the translational and the
rotational diffusion coefficient can be determined because the particle shape causes an anisotropy
of the polarizability. This gives rise to two clearly distinguishable relaxation modes in the time
correlation function of the scattered light. The particle length and aspect ratio were determined
independently by transmission electron microscopy (TEM). Using a hydrodynamic model, these
geometrical parameters were converted to diffusion constants, which agree well with the values
determined by DLS. Additionally it is possible to obtain an estimate of the particles aspect ratio

from the amplitude ratio of the two relaxation modes.



Introduction

Metal nanoparticles have received a great deal of attention since the early times of Col-
loid Science, when Michael Faraday first observed the range of different colours that gold
colloids display as a function of size [1]. Since then, a plethora of studies have dealt with
the production and characterization of noble metal colloids in a wide range of sizes [2-4],
and for a variety of applications, including catalysis [5], biolabelling [6], biosensing [7], op-
tical switches [8], among others. Only recently, variations in nanoparticle shape have been
recognized as having a strong impact on their properties, which has motivated the develop-
ment of synthetical methods for the preparation of particles with various geometries, such
as rods [9-13], wires [14-16], prisms [17-21], cubes [22-24] and other polyhedrons [25, 26].
Most of these methods are based on wet chemistry reactions involving the reduction of
metal salts and the adsorption of surfactants or other molecules, generally known as cap-
ping agents. The mechanisms directing the growth of particles with a particular geometry
are still a matter of debate for most systems, but what is general is that they involve the
growth of pre-existing nuclei in solution and this leads to a random process that implies that
all particles are different, even in the most monodisperse samples. The characterization of
the dimensions for such a variety of shapes is usually carried out using electron microscopy
(EM), which implies the measurement of a large number (typically >100) of particles fol-
lowed by averaging. This provides values for average dimensions and polydispersity (usually
as standard deviation), but still is only representative of a limited population within the
sample, and therefore may not provide the real size distribution of the whole sample. Addi-
tionally, EM measurements are carried out on dry samples, under vacuum and irradiating
the specimen with high energy electron beams, which very likely affect the morphology and

dimensions of the particles. We have been working on gold nanorods for several years now,



with the objective to understand the mechanism underlying their formation [13, 27, 28] as
well as to understand and manipulate their extremely interesting, surface plasmon-related
optical properties [29-31].

In this context, we have identified the need to apply alternative characterization tech-
niques which overcome the mentioned drawbacks, i.e. techniques which probe a larger
amount of particles, do not require solvent evaporation, and do not modify the particles
themselves. Such requirements are fulfilled by scattering methods, which have been widely
and successfully used for other colloidal systems. Among the various scattering techniques,
light scattering is the one requiring a simpler setup and therefore it is available at many
laboratories. However, its use to characterize metal colloids in general and gold nanorods in
particular has not been very popular because of heating problems derived from absorption
of the laser beam, limited applicability of the Rayleigh-Gans-Debye approximation, small
particle sizes, and because models to analyze data for non-spherical particles seemed compli-
cated. In the literature dealing with dynamic light scattering of rod like particles, very often
the limiting case of rods with negligible anisotropy of the polarizability is considered, where
different scenarios have to be applied depending on the rod length, L. For systems where
the product of the scattering vector magnitude and rod length QL < 5 a single-exponential
decay of the correlation function of the scattered intensity go(t) (ITCF) is expected, pro-
vided the rods are fairly monodisperse in length. In the case where QL > 10 additional
relaxation modes are observed in the correlation function. However, these cases are not
relevant for our systems, because (i) the anisotropy of the polarizability of gold nanorods is
not negligible, especially for particles with low aspect ratio [33], and (ii) the length of the
rods in our case lies typically in the 50 nm range, i. e. QL < 1. Nevertheless we clearly

observed two relaxation modes in the ITCF. To our knowledge, two relaxation modes in



the correlation function from rods smaller than 50 nm in length have been reported only
once [34], in a fluorescence correlation spectroscopy (FCS) experiment. However, in that
case the relaxation times of the relaxation mode which is ascribed to the translational dif-
fusion is larger by two orders of magnitude than in our case, even though the particles are
of comparable size. We therefore conjecture that long time diffusion has been observed in
that case, while we are investigating short time Brownian dynamics. Thus, the unexpected
appearance of two relaxation modes requires a thorough analysis.

An expression for the time auto correlation function for the scattered field can be ex-
tracted from the seminal work by Pecora [35], who showed that the spectral density of the
scattered light can be expressed as the sum of an isotropic and an anisotropic contribution.
Fourier transforming the spectral density gives the time dependence of the field auto corre-
lation function, from which g»(¢) can be calculated using the Siegert relation. By non-linear
least squares fitting of this expression to our experimental data we determined the averaged
translational, D, and the rotational, D,, diffusion coefficient of the Au-rods. Further we
could obtain an estimate of the particle aspect ratio from the relative amplitudes of the
ITCF. The paper is structured as follows. We describe the Au-rod synthesis, as well as the
data acquisition and analysis procedures in the experimental section, while the results from
dynamic light scattering are discussed and compared to transmission electron microscopy
(TEM) data in the results and discussion section. Finally we append a brief derivation of
the expression for the ITCF for the non-expert reader.

Experimental

Synthesis and characterization of Au-rods. A series of Au—nanorod samples (labelled as
Au-1 to Au-5) with different aspect ratios were prepared through a seeding growth method

first reported by Nikoobakht and El-Sayed [12] growing CTAB stabilized Au nanoparticle



seeds (<3 nm) by reduction of HAuCly with ascorbic acid in the presence of a BDAC/CTAB
mixture (in a 2.7 ratio) and a small amount of AgNOj. The aspect ratio was varied through
the amount of seed solution added (increasing from Au-1 to Au-5). Sample Au-6 was
synthesized according to the modification of the seeding growth method reported by Liu
and Guyot-Sionnest [32], where the reduction of HAuCly with ascorbic acid on the pre-
formed Au seeds in CTAB is carried out in the presence of HCI, to adjust the pH between 2
and 3. Tetrachloroauric acid (HAuCly-3H50), cetyltrimethylammonium bromide (CTAB),
benzyldimethylammonium chloride (BDAC), ascorbic acid, sodium borohydride (NaBHy),
AgNOj3 and hydrochloric acid (HCl) were purchased from Aldrich and used as received.
Milli-Q water with a resistivity higher than 18.2 M{2xcm was used in all of the preparations.

Optical characterization was carried out by UV-visible-NIR spectroscopy with a Cary
5000 UV-Vis-NIR spectrophotometer, using 10 mm path length quartz cuvettes. Transmis-
sion electron microscopy (TEM) images from all samples were obtained with a JEOL JEM
1010 transmission electron microscope operating at an acceleration voltage of 100 kV. In
the series from Au—1 through Au-5, the average aspect ratio of the particles was found to
increase from 4.2 to 5.5, as expected from the synthesis conditions. For the sample Au—6
the aspect ratio is 4.2 (see Table I).

Dynamic Light Scattering. Sample solutions for light scattering were prepared from the
original solution by repeated dilution steps with water, until the transmission of the solution
and that of water could not be distinguished any more at a wavelength of \y = 647nm. We
further checked that additional dilution by a factor of two did not change the relaxation
times of the time auto—correlation functions. In this case we may consider the solutions as
infinitely dilute.

Time—autocorrelation functions of the scattered intensity go(Q,t) were recorded with a



standard DLS apparatus equipped with a Kr—ion laser (A\g = 647nm) as a light source. The
scattering angle, 6, was varied from 40° to 130° in steps of 10°, accordingly the scattering
vector Q = 4mn,sin(6/2)/\y covered a range of 8.835 x 107°nm < @Q < 2.43 x 10~ ?nm.
The polarization state of incident and scattered light was controlled with a \/2-plate and
a polarizer in the primary beam and an analyzer (all polarzing optics from Bernhard Halle
Nachfl, Berlin Germany) in the scattered beam. The scattered light was collected with
a monomode optical fiber (OZ-Optics, Ottawa, Canada) and detected with a SOSIP dual
photomultiplier unit by ALV Laservertriebsgesellschft mbH, Langen, Germany. The TTL
output of the avalanche diode was processed in the cross-correlation mode of a multiple
tau correlator, ALV-5000. The shortest delay time which is reliably accessible with this
detector—correlator combination is &~ 100ns. For each sample, a complete angular set of
correlation functions was recorded in both vertical-vertical (VV') and vertical-horizontal
(V H) geometry.

Data analysis. For the particular case of small particles with cylindrical shape and non—
negligible anisotropy of the polaraizability, expressions for the normalized intensity auto—

correlation functions measured in the V H— and V'V -geometry are given by

aV(Q,t) —1=4 [AQ exp {—T't} +24Bexp {—(I' + A/2)t} + B?exp {—(I' + A)t}} (1)

95 1(Q,t) — 1= exp{—( +A)t} (2)

respectively. Here I' = 2DQ? and A = 12D,.,, while A 4+ B = 1 (see apendix for details).
The parameters 3 and 3’ describe the non—ideal dynamical contrast of the light scattering
set up, and are slightly less than unity. According to egs. 1 and 2 the standard procedure
to determine D and D, is to plot the relaxation rate of gy () — 1 vs. Q*. The intercept

of the resulting linear relation is 12D, and the slope is 2D. Furthermore, a plot of the



relaxation rate of g (¢t > 1/6D,) — 1 gives a linear relation with a slope of 2D and zero
intercept. We decided not to use this procedure for three reasons. First, the choice of
the threshold ¢t > 1/6D, could not be determined unambiguously from our data. Second,
as will turn out, the relaxation rate of gy (t) — 1 does not depend significantly on the
scattering vector. This implies that 6D, > D and that D cannot be determined with high
reliabilty from either of the two mentioned possibilities. Third, the determination of the
relaxation rates requires some kind of least squares fitting in any case. We therefore chose
to non-linear least squares fit the entire ITCFs by eqs. 2 and 1 to determine D, and D.
This has the further advantage that also the amplitudes of the two relaxation modes can
be determined, which carry information on the aspect ratio of the particles. To achieve
the highest possible reliability of the best fitting parameters, we applied a global fitting
algorithm, in which we analyzed the complete set of of correlation functions obtained from
one sample simultaneously. In his procedure A, D and D, were treated as global parameters,
while 8 and 3" were allowed to vary between different correlation functions.

Results and Discussion

The choice of samples for the measurements was based on a compromise among various
parameters. First, we intended to achieve a reasonably wide range of aspect ratios, and
whenever possible of particle size. However, in order to avoid excessive absorption of the
incident laser beam (647 nm), which would lead to significant local heating, the correspond-
ing transverse and longitudinal surface plasmon absorption bands should be located below
and above this wavelength, respectively. Another constraint was the need for the highest
monodispersity achievable in practice, which is mainly restricted to aspect ratios below 6.
Since low aspect ratios would involve high absorption at the wavelength of interest and high

aspect ratios lead to high polydispersity, we decided to concentrate on a relatively narrow



10° 10
t/ ms

FIG. 1: ITCF from the sample Au—1 recorded in the VV-geometry. Different symbols refer to
different scattering angles. For the sake of clarity only three out of ten curves are displayed, i. e.

40° (0OJ), 90° (O) and 130° (A). Full lines are non linear least squares fits according to eq. 1

range of aspect ratios between 4.2 and 5.5. As described in Table 1, for aspect ratios be-
tween 4.4 and 5.5, the nanorod average length was maintained approximately constant, with
a systematic variation of the width, while for aspect ratio 4.2, two relatively different dimen-
sions were selected. The UV-vis-NIR spectra for all samples are shown in the Supporting
Information, together with representative TEM images.

Intensity auto—correlation functions (ITCF) obtained from the sample Au—1 recorded in
VV—geometry are displayed in Fig. 1. For clarity we have plotted only the curves from
three different scattering angles, namely 40°, 90° and 130°. It can be clearly seen that at all
different angles there are two relaxation modes, one of which becomes faster with increasing
f, and one which is virtually independent of the scattering angle. Similarly the relaxation

times of the ITCF recorded in V H-geometry do not change with scattering angle. This is
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FIG. 2: ITCF from the sample Au-1 recorded in the V H-geometry. Different symbols refer to
different scattering angles. For the sake of clarity only three out of ten curves are displayed, i. e.

40° (0), 90° (O) and 130° (A). Full lines are non linear least squares fits according to eq. 2

shown for the sample Au—1 in Fig. 2. This behavior is not expected at first glance from
egs. 1 and 2, since all exponentials in these equations have relaxation rates which are linearly
proportional to @%. On the other hand, if DQ? < D, only the first term of eq. 1 depends
significantly on the scattering angle. This means that the slow relaxation mode in the V'V
correlation functions is related to the translational diffusion of the rods alone while the fast
mode and the relaxation rates of the V H correlation functions are dominated by rotational
diffusion. Global fitting of the experimental ITCF as described in the experimental section
yielded the parameters listed in Table I. In this table we also list the geometrical particle
parameters, L and L/D,s obtained from the analysis of TEM micrographs. The deviations
listed together with the data are reliability intervals from the fitting routine in case of the

diffusion coefficients. In the case of the parameters from TEM they represent standard



TABLE I: Mean translational, D, and rotational, D, diffusion coefficients measured by DLS of

gold rods in suspension, and rod lengths L as well as aspect ratios, L/d.s from TEM.

sample D D, L L/d.s

nm?/ms ms~! nm

Au-1 122004 200 23.24+ 0.6 45.9+6.3 4.2+1.1

Au-2 141004+ 400 29.7+ 0.3 38.2+5.9 4.4+0.9

Au-3 15200+ 600 36.5+ 1.2 38.4+5.0 4.6+1.0

Au-4 16300+ 600 47.3£ 0.9 37.54+5.4 5.2+1.1

Au-5 19000+ 500 52.6+ 0.3 37.3£5.7 5.5+1.2

Au-6 7100+ 400 8.3+ 0.7 60.6+10.4 4.2+0.8
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FIG. 3: TEM micrograph of sample Au—4.

deviation of the distribution of the corresponding parameter. As a representative example
we show a TEM-picture in Fig. 3

This micrograph shows that the rods have relatively narrow distribution both in length
and aspect ratio, which is confirmed by the standard deviations of the corresponding dis-
tributions, which are in the range of 15 % for the length and about 10% for the aspect

ratio. We also observe a small number of cubes, which is a general finding in these samples.



However, their relative amount is very low and thus they are not expected to contribute
significantly to the global scattering of the sample. Therefore we will consider the rods
to be monodisperse in the following discussion. A first approximation for the relation be-
tween geometrical parameters and diffusion constants of colloidal rods has been given by
Brgrsma [36, 37], which however is sufficiently accurate only for rods with In(L/d.s) > 2.
Since this requirement is not fulfilled for our Au-rods, we chose to apply the expression by
Ortega and de la Torre [38]

kpT(In (L/de) + C)

D =
3mnL
3kBT(1n (L/dcs) + Cr)
D, = .
L3 (3)

Here C and C, are second order polynomials in d, /L, the coefficients of which have been

determined by fitting of numerical data.

_ des des\
C = 0.312+ 0.5657 —0.100 (—)

L
C, = 0.662+0.917% _ .05 (% 2 (4)
= 0. OIT=" — 0.05 (77 )

These equations apply to our particles, because they were derived for the ranges of 2 <
L/d.s < 20. In Table II we compare the diffusion coefficients measured by DLS with those
calculated with eqs. 3 and 4. Reasonable agreement between the experimental and the
calculated values could only be achieved by considering a double-layer of CTAB around the
rods, which stabilizes the particles by exposing the charged ammonium groups to the polar
solvent [39, 40] The thickness of this bilayer was estimated to be ca. 4 nm according to the
standard rule of thumb for the contour length of an alkane chain, i. e. [, = n x 0.126 +
0.154 nm [41], where n is the number of carbon atoms in the chain. A similar effect was
observed by van der Zande et al [42] for long gold rods (typically L > 200 nm and L/d.; >

10) which were sterically stabilized by an adsorbed polymer layer. These authors found



TABLE II: Mean translational, D, and rotational, D,, diffusion coefficients measured by DLS,
and corresponding values, D" and Dy, calculated by using egs. 3 through 4 and the geometrical
parameter listed in Table I. In addition, a stabilizing surfactant layer of 4 nm thickness was

accounted for.

*

sample D D, D D*

T

nm?/ms ms~! nm?/ms ms~!

Au-1 12200 23.2 13900 19.4

Au-2 14100 29.7 16000 30.1

Au-3 15200 36.5 16200 30.4

Au-4 16300 47.3 17000 34.2

Au-5 19000 52.6 17300 35.4

Au-6 7100 83 11400 10.1

that the translational diffusion coefficients were up to a factor of four smaller than those
expected from the particles geometrical parameters. For the rotational diffusion coefficient
the discrepancy could even amount to almost an order of magnitude. This discrepancy was
assigned to the stabilizing polymer layer, which in this case had a thickness comparable to
the particles cross sectional diameter.

In the present study we find agreement between the calculated and the experimental
values within less than 20% for the rotational diffusion coefficient of the particles with an
aspect ratio smaller than 5. Only for the two samples with the largest aspect ratios the
discrepancy is ca. 30%. In the case of D the agreement is better than 15 % in most cases
with a slight tendency to decrease with increasing aspect ratio of the rods. This is probably

due to the fact that the theory by Ortega and Garcia de la Torre was devised for cylinders



with flat base areas while our gold rods are more of spherocylindrical shape, as can be seen
from Fig. 3. Intuitively one would expect this effect to become smaller with increasing aspect
ratio of the rods.

As mentioned above, it is possible to obtain information on the particle aspect ratio from
the ratio of the relative amplitudes A/B of the two relaxation modes measured in VV—
geometry. This will be discussed in detail in the following. According to Pecora [35] the

ratio of the amplitudes is related to the components of the polarizability tensor by

2
oy

((ar — o))

where || denotes the direction parallel to the rod’s long axis and L the direction normal
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to it. On the other hand, if the particle size is small compared to the wavelength, the
dipole approximation applies [43]. In this case Rayleigh’s theory [44] for the polarizability
of ellipsoids is commonly used to estimate the polarizability of the rods [45]. Applying this
approximation is necessary because there is no theoretical expression for rods available. Ac-
cording to Rayleigh, the polarizability of an ellipsoid in the direction of one of the symmetry

axes is

€— €
em + Lj(€ — €n)

o=V (5)

where V' is the volume of the ellipsoid, € = ¢ + 2¢” is the complex dielectric function of
the ellipsoid material at a given wavelength, ¢,, is the dielectric constant of the solvent and
j =|| or L denotes the axis of the ellipsoid. Note that the value of the dielectric function

is the same for all axes and any anisotropy of the polarization is a mere geometrical effect
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FIG. 4: Amplitude ratio of the relaxation modes in go(t) — 1 vs. aspect ratio. Symbols are

experimental points as determined by DLS and TEM. The full line was calculated using eq. 8

which is due to the factors

1—e? /1 1
LH :—6<—1H —|—6_1> (6)

L, = . (7)

for an ellipsoid of revolution, for which the two normal axes are equally long. The eccentricity
of the ellipsoid is e = /(1 — (b/a)?) where a is the length of the rotation axis and b the
length of the axis normal to that. To apply this formalism to approximate the properties of
rods b/a has to be replaced by d./L.

Thus,the amplitude ratio of the ITCF can be related directly to the aspect ratio and the

dielectric function of the particle. After some straight forward algebra one obtains

E_Z_l <MJ__N+M||>

A 54ML+2/\/’MHML+MH (8)

-1
Here M; = |(ey, + Li)? + L2" and N = 2|2 +ene (L + Ly) + L Ly + ™).
J J j m Il l



With this expression we calculated the dependence of A/B on the particle aspect ratio,
which is shown in Fig. 4, together with the experimental data for A/B. For the values for
the dielectric function of gold at A\g = 647 nm we used e/ = —12.789 and e/ = 1.116 [46]and
for the solvent we took the value of water ¢,, = n?> = 1.772. We find good qualitative
agreement between the calculated curve and the experimental data points. Generally the
theoretical curve is lying below the data points with an increasing deviation towards smaller
aspect ratios. This is probably due to the approximation of the rods’ polarizabilty, by that
of an ellipsoid. As the anisotropy of the polarizabilty is only due to the particle shape, this
approximation is expected to hold better for larger aspect ratios. Further, the single data
point which is lying below the theoretical curve corresponds to the sample Au—6, which is
significantly longer than the others. This might lead to reduction of A due to the influence
of the particle form factor P(Q).

Generally the above calculations show that the amplitude of the relaxation mode which
depends on the translational and the rotational diffusion coefficient, i. e. B become increas-
ingly dominating with respect to A, if the particle aspect ratio exceeds a value of 10. This
is obviously the reason why in the pioneering work by van der Zande et al [42] on dynamic
light scattering of gold rods, a single relaxation process of the ITCF was observed. These
authors had investigated only samples with L/d.s > 12 with dynamic light scattering. They
refrained from DLS measurements of the rods with smaller aspect ratios because of the high
polydispersity of their samples[47].

Conclusions

The auto—correlation function of the scattered intensity recorded in V'V -geometry from
gold rods with small aspect ratio shows two distinct relaxation processes. Applying Pecora’s

expression for the correlation function we determined the translational and rotational diffu-



sion coefficients as well as the amplitudes of the individual relaxation modes. The diffusion
coefficients are in good agreement with the values calculated from the geometrical parame-
ters of the rods, if the thickness of the stabilizing surfactant bilayer is taken into account.
Further, we presented a path to estimate the aspect ratio of the particles from the ratio of
the relative amplitudes of the correlation function.
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Appendix: Time auto—correlation function, g;(¢), of the scattered field.

In reference [35] Pecora showed that the spectral density of scattered light can be written

as the sum of an isotropic and an anisotropic contribution

[(Qa w) = [iso(Q7 CU) + [am'so(Q7 w) (9)
With
Li0o(Q,w) = %K? cos?(¢) sin®(0)a2P(Q) Siso (@, w) (10)
and
Ianiso(@a W) - ﬁ[(z (3 + COSQ(¢) Sin2(9)) Saniso(@? (.U) (11)

where p is the particle number density, K is an optical contrast factor and oy = (21 +¢y) /3.
The angle between the wave vector of the scattered light and the polarization vector of
the incident light is denoted 6, while ¢ is the angle between the polarizatoion vector of
the scattered light and the plane span by the wave vector of the scattered light and the

polarization vector of the incident light. Thus in V'V-geometry cos?(¢)sin?(d) = 1 and



cos?(¢) sin?(f) = 0 in V H-geometry. The isotropic contribution to the dynamic structure

factor is given by the Lorentzian

20°D

Sz‘so(Q,w) = W;

(12)

while the anisotropic contribution consists of a sum of five Lorentzians. For the particularly

simple case of particles with cylindrical symmetry the latter reduces to

((ar—)”)  2(Q*D +6D,)

Saniso(Q? w) = 3 w2 -+ (QQE + 6Dr>2’

(13)

According to the Wiener—Khinchin theorem, the time auto—correlation function of the scat-

tered light is related by a Fourier transformation to the spectral density, thus
91(1) = Siso(Q. 1) + Saniso(@. 1). (14)
Consequently, we get for the normalized field auto-correlation function in V'V —-geometry
9/ (t) = Aexp {—DQ’t} + Bexp {—(DQ*+6D,)}, (15)

with A = of/(a + ((aL — a||)2>) and B = -+((aL —oz”)2>/(oz% + ((ar —ocH)Q)). The

corresponding expression for V H-geometry is
91 (1) = exp {~(DQ* +6D,)} . (16)

Applying the Siegert—relation gives the final expressions of eqs. 1 and 2 which we used as

model functions for the analysis of our experimental data.
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