Experimental Test of a New Technique to Overcome Spin-Depolarizing Resonances

V. S. Morozov,1 A. W. Chao,1,* A. D. Krisch,1 M. A. Leonova,1 R. S. Raymond,1 D. W. Sivers,1 V. K. Wong,1 A. Garishvili,2,4 R. Gebel,2 A. Lehrach,2 B. Lorentz,2 R. Maier,2 D. Prasuhn,2 H. Stockhorst,2 D. Welsch,2 F. Hinterberger,3 and A. M. Kondratenko4

1Spin Physics Center; University of Michigan, Ann Arbor, Michigan 48109-1040, USA
2Forschungszentrum Jülich, Institut für Kernphysik, Postfach 1913, D-52425 Jülich, Germany
3Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn, Germany
4GOO Zaryad, Russkaya St. 41, Novosibirsk, 630058 Russia

(Rceived 13 November 2008; published 16 June 2009)

We recently tested a new spin resonance crossing technique, Kondratenko Crossing (KC), by sweeping an rf-solenoid’s frequency through an rf-induced spin resonance with both the KC and traditional fast crossing (FC) patterns. Using both rf bunched and unbunched 1.85 GeV/c polarized deuterons stored in COSY, we varied the parameters of both crossing patterns. Compared to FC with the same crossing speed, KC reduced the depolarization by measured factors of 4.7 ± 0.3 and 19±12 for unbunched and bunched beams, respectively. This clearly showed the large potential benefit of Kondratenko Crossing over fast crossing.

DOI: 10.1103/PhysRevLett.102.244801 PACS numbers: 29.27.Bd, 29.27.Hj, 41.75.Ak

Polarized hadron and lepton beams are used to study the spin dependence of hadronic interactions in the multi-GeV/c region. These experiments [1–5] need high beam polarization for good precision. Thus, one must efficiently overcome spin-depolarizing resonances [6].

Siberian snakes [7] were first shown to work for protons and electrons near 1 GeV [8–11] and then above 100 GeV [12,13]. They are especially important at high beam polarization for good precision. Thus, one must overcome medium strength depolarizing resonances. It involves crossing each resonance using the Kondratenko Crossing (KC) pattern; a typical pattern is shown in Fig. 1 and discussed below. This Letter describes a test of KC with the pattern shown in Fig. 1. The KC parameters were not yet optimized.

In flat circular rings, each beam particle’s spin precesses around the vertical fields of the ring’s dipole magnets, except near a spin resonance. The spin tune \(\nu_s \) (the number of spin precessions during one turn around the ring) is proportional to the particle’s energy: \(\nu_s = G \gamma \), where \(G = (g - 2)/2 \) is its gyromagnetic anomaly and \(\gamma \) is its Lorentz energy factor. The vertical polarization can be perturbed by any horizontal magnetic field [6,22–29]. RF magnetic fields can induce rf spin resonances. A deuteron’s rf-induced spin resonance’s frequency is

\[
f_r = f_c (k \pm G_d \gamma), \tag{1}
\]

where \(f_c \) is the deuteron’s circulation frequency, \(k \) is an integer, and its \(G_d \) value is \(-0.142 \, 987 \).

Ramping an rf magnet’s frequency \(f \) through a spin resonance with resonance strength \(e \), can change a stored beam’s polarization. When \(f \) is ramped at a constant rate, during a ramp time \(\Delta t \), by a range \(\Delta f \), from far below to far above a resonance, the Froissart-Stora equation [22] can relate the beam’s initial vector polarization \(P_i \) and its polarization \(P_f \) after crossing the resonance,

\[
P_f = P_i \left\{ 2 \exp \left[-\frac{(\pi e f_c)^2}{\Delta f/\Delta t} \right] - 1 \right\}. \tag{2}
\]

We recently tested KC with the pattern shown in Fig. 1. We used the Chao matrix formalism [30–32] to calculate analytically the polarization for this pattern.

We ramped the frequency \(f \) of a new rf solenoid [30] through the \(\Delta f \) ranges in times \(\Delta t \) to produce the KC pattern shown in Fig. 1. The rf solenoid was a 25-turn air-core water-cooled copper coil, of length 57.5 cm and

![Diagram](image-url)
average diameter 21 cm. Its inductance was 41 ± 3 μH. It was part of an RLC resonant circuit, which operated near 917 kHz, typically at an rf voltage of 5.7 kV rms. Its longitudinal rf magnetic field at its center was about 1.17 mT rms, giving an rf integral of 0.67 ± 0.03 T mm rms.

The other apparatus for this experiment, including the COSY storage ring [33–36], the EDDA polarimeter [37,38], the electron cooler [39], the low energy polarimeter [40], the injector cyclotron, and the polarized ion source [41–43] were shown in Fig. 4 of Ref. [32]. The beam from the polarized D+ ion source was accelerated by the cyclotron to 75.7 MeV and then strip-injected into COSY. The low energy polarimeter measured the D+ beam’s polarization before injection into COSY to monitor the cyclotron’s and ion source’s stability.

In COSY, the deuterons’ average circulation frequency \(f_c\) was 1.14743 MHz at 1.850 GeV/c, where their Lorentz energy factor was \(\gamma = 1.4046\). For these parameters, the spin tune \(\nu_s = G\gamma\) was \(-0.20084\). Thus, Eq. (1) implies that the \((1 + G\gamma)\) spin resonance’s central frequency should be at \(f_c = (1 + G\gamma)f_c = 917.0\) kHz.

To minimize the beam’s momentum spread \(\Delta p/p\), the 20.6 keV electron cooler was tuned carefully. It cooled the deuterons’ emittances both longitudinally and transversely for 14 s. This reduced the spin resonance frequency spread \(\delta f\) to 23 Hz FWHM to better satisfy the KC conditions [44] with our rf solenoid. The deuterons were then accelerated to 1.85 GeV/c, where the rf acceleration cavity was either off during COSY’s flat-top giving an “unbunched” beam, or on giving a “bunched” beam.

The EDDA polarimeter [37,38] measured the beam’s polarization in COSY. We reduced its systematic errors by repeatedly cycling the polarized deuteron ion source beam through five spin states with nominal vector \(P_V\) and tensor \(P_T\) vertical polarizations:

\[(P_V, P_T) = (0, 0), (+1, +1), \left(-\frac{1}{\sqrt{2}}, -1\right), \left(-\frac{2}{\sqrt{3}}, 0\right), (-1, +1).\]

The measured (0, 0) state polarization was subtracted from each other measured polarization to correct for detector efficiencies and beam motion asymmetries.

We first obtained the rf-solenoid’s resonance strength \(\varepsilon\) by measuring the polarization \(P_V\) after ramping the rf frequency through the resonance with various ramp times \(\Delta t\), while the frequency range \(\Delta f\) and voltage were both fixed; these data are shown in Fig. 2. We fit these data to Eq. (2), the Froissart-Stora equation, to obtain the measured \(\varepsilon\) of \((1.067 \pm 0.003) \times 10^{-5}\).

We then used Kondratenko’s procedure [44] to calculate the optimal values of the KC pattern’s parameters (see Fig. 1), with the link and fast slopes equal, by using the above measured \(\varepsilon\) and the earlier measured [30] \(\delta f\) of 23 ± 1 Hz FWHM. We used these parameters and the Chao matrix formalism [30–32] to predict the polarization’s behavior. The rf-solenoid’s frequency was then programmed to form the KC pattern using these parameters. Then we tested this predicted behavior experimentally by varying each parameter around its predicted value; the resulting data are shown in Figs. 3–6.

To check that the KC pattern was centered at the rf resonance’s center, we varied its central frequency \(f_{KC}\) and then measured, after the crossing, the deuterons’ vector polarization in all five \((P_V, P_T)\) states. The resulting vertical polarization data are plotted in Fig. 3 for both bunched and unbunched beams and for both KC and fast crossing (FC). For bunched KC, the rf cavity shifted the peak’s central frequency by 5 Hz relative to unbunched KC; moreover, the bunched KC data have a broad flat-top. The unbunched beam’s \(P_V/P_V^0\) ratio, measured at the KC resonance, averaged for all nonzero spin states, plotted vs the KC pattern’s center frequency \(f_{KC}\). The resonance strength \(\varepsilon\) was \(1.067 \times 10^{-5}\); \(\Delta f_{fast}\) was 185 Hz; \(\Delta t_{fast}\) was 12 ms; \(\Delta f_{slow}\) was 400 Hz; and \(\Delta t_{slow}\) was 160 ms. The KC unbunched solid curve is the Chao formalism prediction for these parameters; the long-dashed line through these unbunched points is a Chao formalism fit with parameters \(f_c\) and \(\delta f\). The KC bunched solid curve is an empirical 2nd order Lorentzian fit; the horizontal dashed line fit to the five highest points gives the peak KC bunched value of 0.990 ± 0.002. The \(P_V/P_V^0\) errors in all figures are less than 1%. In all later figures, \(f_{KC}\) was set at 917.000 and 916.995 Hz for unbunched and bunched beams, respectively.
respectively. Thus, KC reduced the depolarization far more than FC, by factors of 4.7 ± 0.3 and 19±12 for the unbunched and bunched beams, respectively.

In summary, we tested Kondratenko’s Crossing proposal to avoid most polarization loss when crossing a spin resonance. Using stored 1.85 GeV/c vertically polarized deuterons, we ramped an rf-solenoid’s frequency through the KC pattern while crossing an rf depolarizing resonance. The unbunched beam data agree with the predicted KC behavior. With its optimal parameters, KC gave measured polarization losses of 3.3 ± 0.2% and 0.8 ± 0.3% with unbunched and bunched beams, respectively, while fast crossing, at the same crossing rate, gave measured losses of 15.6 ± 0.2% and 15.0 ± 0.3%, respectively.

While the Chao formalism cannot yet calculate the KC behavior for bunched beams, the ~20-fold measured depolarization advantage of KC over FC, at the same crossing rate, shows that Kondratenko Crossing may be quite valuable for the bunched beams used in most accelerators and colliders.
TABLE I. Summary of KC and FC polarization and depolarization ratios at KC peak in Figs. 3–6 for the indicated parameters.

<table>
<thead>
<tr>
<th>Figure number</th>
<th>Parameter varied</th>
<th>f_{KC}</th>
<th>Δf_{fast}</th>
<th>Δf_{slow}</th>
<th>$P_{\gamma}/P_{\gamma}^{\prime}$</th>
<th>$(1 - P_{\gamma}/P_{\gamma}^{\prime})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KC (unbunched)</td>
<td>96.6 ± 0.4%</td>
<td>96.5 ± 0.4%</td>
<td>96.7 ± 0.4%</td>
<td>96.8 ± 0.3%</td>
<td>96.6 ± 0.4%</td>
</tr>
<tr>
<td></td>
<td>FC (unbunched)</td>
<td>83.9 ± 0.5%</td>
<td>84.4 ± 0.3%</td>
<td>84.7 ± 0.4%</td>
<td>84.5 ± 0.5%</td>
<td>84.4 ± 0.4%</td>
</tr>
<tr>
<td></td>
<td>KC (bunched)</td>
<td>99.0 ± 0.2%</td>
<td>100.5 ± 0.7%</td>
<td>99.6 ± 0.6%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>FC (bunched)</td>
<td>84.8 ± 0.3%</td>
<td>85.2 ± 0.6%</td>
<td>86.0 ± 0.7%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

We thank the COSY staff for the successful operation of COSY with its injector cyclotron and polarized ion source. We are grateful to E. D. Courant, Ya. S. Derbenev, D. Eversheim, G. Fidecaro, W. Haebeler, H. Huang, Yu. F. Orlov, H. Rohdjeß, T. Roser, H. Sato, W. Scobel, E. J. Stephenson, K. Ulbrich, K. Yonehara, and others for their help and advice. This research was supported by grants from the German BMBF Science Ministry, its FFE program at COSY, and the Helmholtz Association through funds provided to the virtual institute “Spin and strong QCD” (VH-VI-231).

*Also at SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
†Also at Erlangen-Nürnberg Universität, D-91058 Erlangen, Germany.