BeeGFS in the DEEP/-ER Project

Cristina Manzano, Jülich Supercomputing Centre
EU-Exascale projects
20 partners
Total budget: 28,3 M€
EU-funding: 14,5 M€
Nov 2011 – Sept 2016

Visit us @ ISC’16, Frankfurt (Germany)
20.-22.06.2016
-Booth
-BoF
-Workshop
What are the projects about?

DEEP
- Cluster-Booster archit.
- Software stack
- Programming environ.
- Energy efficiency

- Applications:
 - Co-design
 - Evaluation/demonstration
 - Code modernisation

DEEP-ER
- Extend memory hierarchy
- High-performance I/O
- Scalable resiliency

- Applications:
 - Co-design
 - Evaluation/demonstration
 - Code modernisation
“Standard” heterogeneity

Flat topology
Simple management of resources

Static assignment of accelerators to CPUs
Accelerators cannot act autonomously
Flexible assignment of resources (CPUs, accelerators)
Direct communication between accelerators
“Offload” of large and complex parts of applications
DEEP System

- Installed at JSC
- 1,5 racks
- 500 TFlop/s peak perf.
- 3.5 GFlop/s/W
- Water cooled

Cluster (128 Xeon Sandy Bridge)

Booster (384 Xeon Phi KNC)
DEEP System

File Servers (6 Xeon Sandy Bridge)

- `/work` file system
- ~2000 MB/s write/read BW*

JBOD 2245 (45x 2TB disks)

* Measured with IOR benchmark.
DEEP Storage servers
 • 6x DELL PowerEdge R520 storage servers (deep-fs01 – deep-fs06)

SAS switch
 • 1x LSI 6140 SAS switch connecting the storage servers with the JBOD

JBOD
 • 1x SGI JBOD 2245 with 45x 2TB disks

Storage space on each server

<table>
<thead>
<tr>
<th>Server</th>
<th>RAID Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>deep-fs01</td>
<td>RAID1: 2x mirrored disks</td>
</tr>
<tr>
<td>deep-fs02</td>
<td>RAID1: 2x mirrored disks</td>
</tr>
<tr>
<td>deep-fs03</td>
<td>RAID6: 10x disks</td>
</tr>
<tr>
<td>deep-fs04</td>
<td>RAID6: 10x disks</td>
</tr>
<tr>
<td>deep-fs05</td>
<td>RAID6: 10x disks</td>
</tr>
<tr>
<td>deep-fs06</td>
<td>RAID6: 10x disks</td>
</tr>
</tbody>
</table>
BeeGFS configuration

<table>
<thead>
<tr>
<th>Node</th>
<th>Description</th>
<th>BeeGFS roles</th>
<th>BeeGFS services</th>
</tr>
</thead>
<tbody>
<tr>
<td>deep-fs01</td>
<td>Storage node</td>
<td>Management, Metadata, Administration, Monitoring, Helper</td>
<td>beegfs-mgmtd, beegfs-meta, beegfs-admon, beegfs-helperd</td>
</tr>
<tr>
<td>deep-fs02</td>
<td>Storage node</td>
<td>Metadata, Helper</td>
<td>beegfs-meta, beegfs-helperd</td>
</tr>
<tr>
<td>deep-fs0[3-6]</td>
<td>Storage nodes</td>
<td>Storage, Helper</td>
<td>beegfs-storage, beegfs-helperd</td>
</tr>
<tr>
<td>deep[1-128]</td>
<td>Compute nodes</td>
<td>Client, Helper</td>
<td>beegfs-client, beegfs-helperd</td>
</tr>
<tr>
<td>deepm</td>
<td>Administration (master) node</td>
<td>Client, Helper</td>
<td>beegfs-client, beegfs-helperd</td>
</tr>
<tr>
<td>deepl</td>
<td>Login node</td>
<td>Client, Helper</td>
<td>beegfs-client, beegfs-helperd</td>
</tr>
</tbody>
</table>
What are the projects about?

DEEP
- Cluster-Booster archit.
- Software stack
- Programming environ.
- Energy efficiency
- Applications:
 - Co-design
 - Evaluation/demonstration
 - Code modernisation

DEEP-ER
- Extend memory hierarchy
- High-performance I/O
- Scalable resiliency
- Applications:
 - Co-design
 - Evaluation/demonstration
 - Code modernisation
What are the projects about?

DEEP
- **Cluster-Booster archit.**
- Software stack
- Programming environ.
- Energy efficiency

- Applications:
 - Co-design
 - Evaluation/demonstration
 - Code modernisation

DEEP-ER
- Extend memory hierarchy
- High-performance I/O
- Scalable resiliency

- Applications:
 - Co-design
 - Evaluation/demonstration
 - Code modernisation
Legend:
CN: Cluster Node
BN: Booster Node
NIC: Network Interface Card
NAM: Network Attached Memory
NVM: Non Volatile Memory

Enhance DEEP architecture

BeeGFS User Meeting – May 18-19, 2016
Software Development Vehicle (SDV)

- /sdv-work file system
- ~1500 MB/s write/read BW*

* Measured with BeeGFS benchmark. IOR benchmarking ongoing work.
DEEP-ER Storage servers
• 3x DELL PowerEdge R530 storage servers (deeper-fs01 – deeper-fs03)

Metadata
• 2x internal SSD disks

RAID System
• 1x EUROstor ES-6600 with 4 x 8Gbit FC connector
• 24x 6 TB SAS Nearline (RAID6)
• 4x 31500.0GB Volumes (2 unused for future expansion of the storage system)

Storage space on each server

<table>
<thead>
<tr>
<th>Server</th>
<th>RAID Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>deeper-fs01</td>
<td>RAID1: 2x internal SSD disks (mirrored)</td>
</tr>
<tr>
<td>deeper-fs02</td>
<td>1x 31500.0GB Volume</td>
</tr>
<tr>
<td>deeper-fs03</td>
<td>1x 31500.0GB Volume</td>
</tr>
</tbody>
</table>

BeeGFS @ DEEP-ER
BeeGFS configuration

<table>
<thead>
<tr>
<th>Node</th>
<th>Description</th>
<th>BeeGFS roles</th>
<th>BeeGFS services</th>
</tr>
</thead>
<tbody>
<tr>
<td>deeper-fs01</td>
<td>Storage node</td>
<td>Management, Metadata, Administration, Monitoring, Helper</td>
<td>beegfs-mgmd, beegfs-meta, beegfs-admon, beegfs-helperd</td>
</tr>
<tr>
<td>deeper-fs0[2-3]</td>
<td>Storage node</td>
<td>Storage, Helper</td>
<td>beegfs-storage, beegfs-helperd</td>
</tr>
<tr>
<td>deeper-sdv[01-16]</td>
<td>Compute nodes</td>
<td>Client, Helper</td>
<td>beegfs-client, beegfs-helperd</td>
</tr>
<tr>
<td>deepm</td>
<td>Administration (master) node</td>
<td>Client, Helper</td>
<td>beegfs-client, beegfs-helperd</td>
</tr>
<tr>
<td>deepl</td>
<td>Login node</td>
<td>Client, Helper</td>
<td>beegfs-client, beegfs-helperd</td>
</tr>
</tbody>
</table>
I/O and Resiliency in DEEP-ER

Optimized I/O

- Hierarchical global FS
 - Fast caches (NVMe)
- SIONlib & E10
 - Address the “small I/O” problem

Enhanced resiliency

- Enhanced SCR
 - Built on top of the optimized I/O
- Task-based resiliency
NVMe SSD devices

- NVM component: Intel DC P3700
 - 20nm MLC NAND Flash technology
 - PCI Express generation 3 × 4
- 1 NVMe with 400 GB attached to each node in Cluster and Booster
- 1 BeeOND instance running on each NVMe device
- BeeGFS cache layer
 - Local tier in a multi-tier storage environment
 - Burst buffer for temporary storage (like checkpointing)
- More about this in Frank’s talk later today!
Performance NVMe ext4 vs. BeeOND running on NVMe:

BeeGFS User Meeting – May 18-19, 2016
<table>
<thead>
<tr>
<th>testdir</th>
<th>itemsperTask</th>
<th>filesperdir</th>
<th>FCreateMax [ops/sec]</th>
<th>FRemoveMax [ops/sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>/nvme/tmp/</td>
<td>41666</td>
<td>651</td>
<td>127.947,63</td>
<td>58.818,83</td>
</tr>
<tr>
<td>/mnt/beeond/</td>
<td>41666</td>
<td>651</td>
<td>12.158,12</td>
<td>16.653,14</td>
</tr>
</tbody>
</table>

BeeGFS User Meeting – May 18-19, 2016
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>/nvme/tmp/</td>
<td>POSIX</td>
<td>file-per-process</td>
<td>10GB</td>
<td>16MB</td>
<td>240 GiB</td>
<td>1026,68</td>
<td>2174,92</td>
</tr>
<tr>
<td>/mnt/beeond/</td>
<td>POSIX</td>
<td>file-per-process</td>
<td>10GB</td>
<td>16MB</td>
<td>240 GiB</td>
<td>979,76</td>
<td>2347,14</td>
</tr>
<tr>
<td>/nvme/tmp/</td>
<td>MPIIO</td>
<td>file-per-process</td>
<td>10GB</td>
<td>16MB</td>
<td>240 GiB</td>
<td>1121,32</td>
<td>1755,51</td>
</tr>
<tr>
<td>/mnt/beeond/</td>
<td>MPIIO</td>
<td>file-per-process</td>
<td>10GB</td>
<td>16MB</td>
<td>240 GiB</td>
<td>1118,76</td>
<td>1797,49</td>
</tr>
<tr>
<td>/nvme/tmp/</td>
<td>POSIX</td>
<td>single-shared-file</td>
<td>10GB</td>
<td>16MB</td>
<td>240 GiB</td>
<td>816,07</td>
<td>3001,10</td>
</tr>
<tr>
<td>/mnt/beeond/</td>
<td>POSIX</td>
<td>single-shared-file</td>
<td>10GB</td>
<td>16MB</td>
<td>240 GiB</td>
<td>406,95</td>
<td>2168,83</td>
</tr>
<tr>
<td>/nvme/tmp/</td>
<td>MPIIO</td>
<td>single-shared-file</td>
<td>10GB</td>
<td>16MB</td>
<td>240 GiB</td>
<td>842,01</td>
<td>2490,83</td>
</tr>
<tr>
<td>/mnt/beeond/</td>
<td>MPIIO</td>
<td>single-shared-file</td>
<td>10GB</td>
<td>16MB</td>
<td>240 GiB</td>
<td>425,52</td>
<td>2039,94</td>
</tr>
</tbody>
</table>
Some lessons learned

- BeeGFS is really easy to update also between major releases
 -> Script provided for updating between 2014 (FhGFS) and 2015 (BeeGFS)
- BeeGFS runs really stable
- Don’t underestimate the use of extended attributes!
 -> Gain factor of 50 (from 130 to 6300 files/second with an mdtest)
- Some users want to be able to change the stripping settings
 -> New feature in a future BeeGFS release?
- Managing BeeOND instances: clean cache after each job, start/stop services, …
 -> Developing scripts and integrating them in the ParaStation cluster management tools
- BeeGFS Client on Xeon Phi
 -> We need to provide access to the work file system also on the Booster nodes
Future challenges

- Improve performance of BeeGFS over EXTOLL
 -> Our colleagues in Fraunhofer already working in developing native EXTOLL support
- BeeOND on the NVMe in the Booster
 -> Besides the client, other services need to be installed and configured on the Xeon Phi: beegfs-mgmtd, beegfs-meta, beegfs-storage, …
BACKUP
Interested?

Contact us!

DEEP
pmt@deep-project.eu

LinkedIn
http://linkd.in/1KiBe3y

DEEP-ER
pmt@deep-er.eu

Twitter
@DEEPprojects

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 287530 and n° 610476
GreenICE system

Alternative Booster implementation
• Interconnect EXTOLL ASIC “Tourmalet”
• 32 KNC-node system
• Implement 4×4×2 topology, with Z dimension open

Experiment 2-phase immersion cooling
• NOVEC liquid from 3M
• Evaporates at about 50 degrees
• Condensates again in a water cooling pipe
• Allows very high-density integration
Interconnect

<table>
<thead>
<tr>
<th>EXTOLL</th>
<th>Intel True Scale</th>
<th>Mellanox IBAN</th>
<th>PLX Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tourmalet</td>
<td>QDR</td>
<td>QDR 80</td>
<td>EDR</td>
</tr>
<tr>
<td>Switches</td>
<td>None</td>
<td>IBAN</td>
<td>IBAN</td>
</tr>
<tr>
<td>Topologies</td>
<td>(\leq 7) direct connections</td>
<td>Switched, any, 1 rail</td>
<td>Switched, any, 2 rails</td>
</tr>
<tr>
<td># Links per NIC</td>
<td>7</td>
<td>1 or 2</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Link BW</td>
<td>120 Gbit/s</td>
<td>40 Gbit/s</td>
<td>80 Gbit/s</td>
</tr>
<tr>
<td># contexts</td>
<td>256</td>
<td>64</td>
<td>2*64</td>
</tr>
<tr>
<td>SR-IOV support</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Drivers & Firmware</td>
<td>Adaptable</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>Driver I/F</td>
<td>VEU, SMFU, OFED</td>
<td>OFED, PSM</td>
<td>ODEF, PSM</td>
</tr>
</tbody>
</table>
Main EXTOLL characteristics
- Direct network: no switches required
- Integrates network interface controller
- Supports 6+1 links
- Capable of tunneling PCIe (allows remote-booting KNC from the network)

Current version of EXTOLL ASIC
- 270 million transistors
- Link bandwidth: 100 G
- MPI latency: 850 ns
- MPI bandwidth: 8.5 GB/s
- Message rate: 70 million mgs/sec
- PCIe Gen3 x16