Strain development of *Gluconobacter oxydans*: Complementation of non-functional metabolic pathways and increase of carbon flux

Ines Kiefler
Strain development of *Gluconobacter oxydans*: Complementation of non-functional metabolic pathways and increase of carbon flux

Ines Kiefler
Niemand weiß, was er kann, bis er es probiert hat.
Results described in this dissertation have been published in the following original publications:

Table of contents

Table of contents .. I

Abbreviations .. III

1. Abstract .. 1

1. Zusammenfassung .. 2

2. Introduction ... 4

2.1 The organism *Gluconobacter oxydans* ... 4

2.2 Biotechnological relevance of *G. oxydans* ... 5

2.3 Periplasmic sugar metabolism .. 6

2.3.1 Mannitol metabolism ... 6

2.3.2 Glucose metabolism ... 9

2.4 Cytoplasmic sugar metabolism .. 11

2.4.1 Pentose phosphate pathway and Enter-Doudoroff pathway 11

2.4.2 Incomplete pathways and consequences: Embden-Meyerhof-Parnas pathway and
 tricarboxylic acid cycle ... 12

2.4.2.1 Embden-Meyerhof Parnas pathway .. 12

2.4.2.2 The tricarboxylic acid cycle .. 12

2.4.2.2.1 Succinyl-CoA synthetase ... 13

2.4.2.2.2 Succinate dehydrogenase ... 14

2.5 Respiratory chain of *G. oxydans* ... 15

2.6 Aims of this thesis ... 17

3. Results .. 19

3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans* 20

3.2 Increased cell yield of *G. oxydans* on glucose .. 35

3.3 Impact of expression of functions for glucose uptake and intracellular carbon
 flux on growth of *G. oxydans* ... 65

4. Discussion .. 83

4.1. Synthesis of a heterologous succinate dehydrogenase in *G. oxydans* 84

4.2 Impact of an additional NADH dehydrogenase .. 86

4.3 Consequences of the absence of membrane-bound glucose dehydrogenase and
 introduction of a heterologous succinyl-CoA synthetase to provide all enzymes for
 a functional TCA cycle ... 87
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4 Plasmid-based expression of genes encoding glucose facilitator,</td>
<td>88</td>
</tr>
<tr>
<td>glucokinase phosphofructokinase and pyruvate dehydrogenase complex</td>
<td></td>
</tr>
<tr>
<td>4.5 Conclusions and outlook</td>
<td>89</td>
</tr>
<tr>
<td>5. Literature</td>
<td>91</td>
</tr>
<tr>
<td>6. Appendix</td>
<td>101</td>
</tr>
</tbody>
</table>
Abbreviations

Δ Deletion
ATP Adenosine triphosphate
cdw Cell dry weight
CoA Coenzyme A
DCPIP 2,6-dichlorophenolindophenol
DO Dissolved oxygen
EDP Entner-Doudoroff Pathway
EMP Embden-Meyerhof-Parnas pathway
FAD Flavin adenine dinucleotide
GTP Guanosine triphosphate
HPLC High Performance Liquid Chromatography
et al. et alii
NAD/NADH Nicotinamide adenine dinucleotide, oxidized/reduced
NADP/NADPH Nicotinamide adenine dinucleotide phosphate, oxidized/reduced
OD$_{600}$ Optical density at 600 nm
PPP Pentose phosphate pathway
PQQ Pyrroloquinoline quinone
TCA cycle Tricarboxylic acid cycle
UQ Ubiquinone

Further abbreviations not included in this section are according to International Standards, as for example listed in the author guidelines of the FEBS Journal.
1. Abstract

The acetic acid bacterium *Gluconobacter oxydans* possesses outstanding metabolic characteristics that are favorable for biotechnological applications in oxidative whole-cell biotransformations. The key feature is the rapid and incomplete regio- and stereoselective oxidation of sugars, sugar alcohols, and other carbon sources in the periplasm by a versatile set of membrane-bound dehydrogenases. Beside the beneficial attributes, the unusual metabolism of *G. oxydans* also poses a problem, which is the low cell yield resulting in high costs for biomass production. This study aimed at an increase of the cell yield of *G. oxydans* on glucose in order to improve its application potential. For this purpose, prevention of incomplete glucose oxidation to gluconate and ketogluconates and complementation of the incomplete tricarboxylic acid (TCA) cycle were selected as promising targets and implemented by construction and characterization of several integration/deletion mutants:

The succinate dehydrogenase from *Acetobacter pasteurianus* was introduced into *G. oxydans*, which naturally lacks this TCA cycle enzyme in addition to succinyl-CoA synthetase. Plasmid-based expression of the structural genes *sdhCDAB* together with the *sdhE* gene encoding a flavinylation factor led to a strain with high succinate dehydrogenase activity, showing functional synthesis of this complex membrane protein containing FAD, three iron-sulfur clusters and heme as prosthetic groups. Genomic integration of the *sdhCDABE* genes with simultaneous deletion of the *gdhS* gene for the cytosolic glucose dehydrogenase led to strain IK001 with considerable succinate dehydrogenase activity.

To improve the NADH oxidation capacity that might be required to handle an increased NADH formation rate resulting from an increased cytoplasmic glucose catabolism, a second NADH dehydrogenase gene *ndh* from *G. oxydans* strain DSM3504 was genomically introduced into strain IK001 with simultaneous deletion of the *pdc* gene encoding pyruvate decarboxylase. The resulting strain IK002.1 also showed an increased cell yield of 12 % compared to the reference strain and secreted pyruvate instead of acetate.

In order to complete the TCA cycle of strain IK002.1 and prevent periplasmic glucose oxidation to gluconate, the succinyl-CoA synthetase genes *sucCD* of *Gluconacetobacter diazotrophicus* were genomically integrated with simultaneous deletion of the *gdhM* gene encoding the membrane-bound glucose dehydrogenase. The resulting strain IK003.1 did not secrete gluconate or 2-ketogluconate anymore, but formed twice as much carbon dioxide as the reference strain, either via the cyclic pentose phosphate cycle or via the TCA cycle. The initial glucose consumption rate was much slower and growth was delayed, but the cell yield was increased by 60 %. Therefore, *G. oxydans* IK003.1 represents a promising strain for industry due to its increased cell yield and a basis for further strain development.
1. Zusammenfassung

Um die Kapazität der NADH-Oxidation zu verbessern, die wahrscheinlich benötigt wird um eine gesteigerte NADH-Bildung zu kompensieren die aus einem erhöhten cytoplasmatischen Glucose-Katabolismus resultiert, wurde ein zweites NADH-Dehydrogenase Gen *ndh* aus *G. oxydans* DSM3504 genomisch in Stamm IK001 integriert und gleichzeitig das *pdc*-Gen, das die Pyruvatdecarboxylase kodiert, deletiert. Der daraus resultierende Stamm IK002.1 zeigte eine verbesserte Zellausbeute von 12 % im Vergleich zum Referenzstamm und sekretierte Pyruvat anstatt Acetat.

Um den Tricarbonsäurezyklus des Stammes IK002.1 zu vervollständigen und die periplasmatische Glucoseoxidation zu Gluconat zu verhindern, wurden die Succinyl-CoA Synthetase Gene *sucCD* von *Gluconacetobacter diazotrophicus* genomisch integriert mit der
simultanen Deletion des *gdhM*-Gens, welches die membrangebundene Glucose-Dehydrogenase kodiert. Der daraus resultierende Stamm IK003.1 sekretierte kein Gluconat oder 2-Ketogluconat mehr, aber bildete zweimal so viel Kohlenstoffdioxid wie der Referenzstamm, entweder über den zyklischen Pentosephosphat-Weg oder den Tricarbonsäurezyklus. Die anfängliche Glucoseverbrauchsrate war wesentlich langsamer und das Wachstum verzögert, aber die finale Zelldichte wurde um 72 % und die Zellausbeute um 60 % gesteigert. Somit repräsentiert *G. oxydans* IK003.1 aufgrund der erhöhten Zellausbeute einen vielversprechenden Stamm für die Industrie und eine Basis für die weitere Stammentwicklung.
2. Introduction

2.1 The organism *Gluconobacter oxydans*

The genus *Gluconobacter* is member of the *Acetobacteraceae* family belonging to the class of α-Proteobacteria (Asai 1935; Kersters et al. 2006). Acetic acid bacteria are Gram-negative, obligately aerobic, ellipsoidal to rod-shaped organisms (De Ley et al. 1984). The family *Acetobacteraceae* includes the genera *Acetobacter*, *Acidomonas*, *Ameyamaea*, *Asaia*, *Gluconacetobacter*, *Gluconobacter*, *Granulibacter*, *Kozakia*, *Komagataeibacter*, *Neoasaia*, *Neokomagataea*, *Saccharibacter*, *Swaminathania* and *Tanticharoenia* (Yamada and Yukphan 2008; Saichana et al. 2015). The different genera are classified into two physiological groups based on the ability to oxidize acetate. Members of *Acetobacter*, *Acidomonas*, *Asaia*, *Gluconacetobacter*, and *Kozakia* possess the genetic requirements for oxidation of acetate and lactate to CO$_2$. Because of an incomplete tricarboxylic acid (TCA) cycle and the lack of the anaplerotic glyoxylate shunt, *Gluconobacter* is unable to oxidize acetate (Greenfield and Claus 1972; Prust et al. 2005). A distinct differentiation of *Acetobacter* and *Gluconobacter* was first given by 16S rRNA sequence analysis (Sievers et al. 1995). The genus *Gluconobacter* was recommended for biotechnological application already in 1933 due to the ability to rapidly oxidize glucose to gluconic acid without the oxidation of acetate (Asai 1935; Reichstein 1934). The five species *G. oxydans*, *G. frateurii*, *G. cerinus*, *G. albidus* and *G. thailandicus* are counted among the genus *Gluconobacter* (Yamada et al. 1999; Euzeby 2005). Cells of *G. oxydans* are ellipsoidal to rod-shaped and have a growth-depending size of 0.5-0.8 x 0.9-4.2 μm (Fig. 1).

![Fig.1: Electron microscopic pictures of *G. oxydans*.](image)

The pictures were kindly provided by M. Hoppert, Department of General Microbiology, Institute of Microbiology and Genetics, University of Göttingen.
Gluconobacter strains are usually thought to be non-pathogenic towards humans or animals, however, there are recent reports on pathogenic Gluconobacter strains (Bassetti et al. 2013). Furthermore, the bacteria can cause a bacterial rot of pears and apples (De Ley et al. 1984). The occurrence of this chemoorganotrophic bacterium is mainly in sugary, alcoholic and acidic environments like flowers, fruits, beer and wine. The best substrates for growth of Gluconobacter species are the sugars and sugar alcohols D-mannitol, D-sorbitol, glycerol, D-fructose and D-glucose in descending order (De Ley et al. 1984; Kersters et al. 2006; Gupta et al. 2001). Beside the carbon source, Gluconobacter requires yeast extract to achieve higher cell densities, due to the fact that growth on defined media is weak (Olije and Kok 1979a; Raspor and Goranović 2008). Gluconobacter is acidophilic and able to grow at pH 3.6; however, the pH optimum is between 5.5 and 6. The preferred growth temperature is between 25 and 30 °C (De Ley et al. 1984; Olije and Kok 1979b).

In 2005, the genome sequence of G. oxydans 621H was published revealing some special characteristics of this organism (Prust et al. 2005). The total size of the genome amounts to 2.9 Mbp, split into a circular chromosome of 2.7 Mbp and five plasmids (pGOX1-5), ranging from 2.7 kb to 163 kb. The GC content of α-Proteobacteria ranges from 27.5 % (Ehrlichia ruminantium) to 65 % (Rhodopseudomonas palustris) (Lightfield et al. 2011). With 60.8 %, the GC content of the genomic DNA of G. oxydans is in the upper range of this spectrum (Prust et al. 2005; De Ley et al. 1984). Other acetic acid bacteria like Acetobacter and Gluconacetobacter possess a GC content of 53-63 % and 55-65 %, respectively (Hutkins 2008). In the genome of G. oxydans, 2,664 protein-encoding open reading frames (ORFs) were identified. Furthermore, 82 insertion sequences (IS) and 103 transposase genes were found explaining the genetic instability and variability of G. oxydans (Kondo and Horinouchi 1997; Prust et al. 2005). Another special characteristic of this organism is the large and diverse number of membrane-bound dehydrogenases and intracellular oxidoreductases (Prust et al. 2005).

2.2 Biotechnological relevance of G. oxydans

G. oxydans is distinguished by a multiplicity of membrane-bound and respiratory chain-linked dehydrogenases. Thus, the organism has the favorable ability to rapidly and incompletely oxidize sugars and sugar alcohols regio- and stereoselectively. The catalytic centers of the membrane-integral dehydrogenases are located in the periplasm. Consequently, the uptake of the substrates into the cell is not required and the oxidation products accumulate in large amounts in the media after diffusion through porins in the outer membrane (Matsushita et al. 1994; Kulhanek 1989). Based on these special characteristics, G. oxydans is used since the 1930s for industrial applications requiring regio- and
stereoselective oxidations, which would be impossible to perform by classical organic chemistry or result only in poor yields (Gupta et al. 2001; Deppenmeier et al. 2002). The most prominent utilization of the acetic acid bacterium is the oxidation of D-sorbitol to L-sorbose in the Reichstein-Grüssner synthesis of vitamin C. Further major biotechnological applications are: (i) synthesis of the tanning agent dihydroxyacetone via the oxidation of glycerol, (ii) production of 6-amino-L-sorbose from 1-amino-D-sorbitol as a key intermediate in miglitol (anti-diabetic drug) synthesis, and (iii) synthesis of shikimate and 3-dehydroshikimate from quinate (Deppenmeier et al. 2002; Gupta et al. 2001; Macauley et al. 2001; Raspor and Goranović 2008; Adachi et al. 2003a; Nishikura-Imamura et al. 2014; Mamlouk and Gullo 2013; Pappenberger and Hohmann 2014; Saichana et al. 2015; Schedel 2000). *G. oxydans* whole cells as well as isolated enzymes have found use as biosensors for the analysis of alcohols, sugars or biological oxygen demand (Svitel et al. 2006). The potential of this bacterium for biotechnological applications is not yet exhausted, since genome sequencing revealed a great number of putative dehydrogenases/oxidoreductases of unknown functions (Prust et al. 2005).

2.3 Periplasmic sugar metabolism

Aerobic microorganisms usually oxidize energy sources to CO$_2$ and water. The generation of energy and precursors for biosynthesis occur during this process. An incomplete oxidation is carried out only under special environmental circumstances (Deppenmeier et al. 2002). Acetic acid bacteria like *G. oxydans* are distinguished by a rapid and incomplete oxidation of sugars and sugar alcohols. The periplasmic oxidation is of high importance for energy generation and carried out by a broad range of membrane-bound dehydrogenases. The resulting oxidation products accumulate near-quantitatively in the medium, often causing acidification of the medium (Olijve and Kok 1979b). Only a small percentage of the carbon source is taken up by the cells for biomass formation resulting in very low growth yields compared to other aerobic bacteria (Olijve and Kok 1979a; Hanke et al. 2013). For example *G. oxydans* strain IFO3293 achieves a value of 0.09 g$\text{cdw}/g\text{glucose}$, whereas *E. coli* reaches a cell yield of 0.49 g$\text{cdw}/g\text{glucose}$ and Bacillus subtilis of 0.32 g$\text{cdw}/g\text{glucose}$ (Olijve and Kok 1979a; Hanke et al. 2013; Krajewski et al. 2010; Dauner et al. 2002; Soini et al. 2008).

2.3.1 Mannitol metabolism

The sugar alcohol mannitol is known to be one of the preferred carbon source for biomass production of *G. oxydans* and therefore often used for growth characterization (Gossele et al. 1981). Figure 2 illustrates a scheme of the mannitol catabolism in *G. oxydans*. In growth phase I, mannitol is completely oxidized to fructose by the membrane-bound major polyol dehydrogenase SldAB (GOX0854, sldA and GOX0855, sldB) in the periplasm. Only a small
amount of the carbon source is taken up into the cytoplasm via a putative mannitol/sorbitol transporter (GOX2182-2185) (Prust et al. 2005). Although the presence of an NADP-dependent mannitol dehydrogenase converting mannitol to fructose was reported (Deppenmeier et al. 2002; Adachi 1999), there is recent evidence that intracellular mannitol is not oxidized. On the one hand mannitol was shown to serve as a compatible solute and on the other hand mannitol did not promote growth of a *sldAB* deletion mutant (Peters et al. 2013b; Zahid et al. 2015). In the second growth phase fructose is converted to 5-ketofructose, accompanied by a reduced growth rate in comparison to phase I. In *G. japonicus*, a membrane-bound fructose dehydrogenase was identified catalyzing this oxidation, however a gene encoding this enzyme is absent in *G. oxydans*, suggesting that an intracellular enzyme is responsible for 5-ketofructose synthesis (Kawai et al. 2013). Part of the fructose enters the cytoplasm via an unknown transporter, followed by the fructose kinase (GOX0284, *frkA*) mediated activation to fructose 6-phosphate. The precursor entering the pentose phosphate pathway (PPP) or the Embden-Meyerhof-Parnas (EDP) pathway is glucose 6-phosphate formed by the conversion of fructose 6-phosphate via glucose 6-phosphate isomerase (GOX1704, *pgi*).
Fig. 2: Scheme of mannitol metabolism by *G. oxydans.*
2.3.2 Glucose metabolism

The glucose metabolism of \textit{G. oxydans} is of great interest since glucose is a favorable carbon source in industry. Thus, in recent years studies were made concerning the growth behavior and physiology of this organism on glucose. An overview of the central carbon metabolism of \textit{G. oxydans} on the substrate glucose is presented in Figure 3. Glucose catabolism in \textit{G. oxydans} proceeds mainly via the PPP, while the EDP only plays a minor role (Richhardt et al. 2013a; Hanke et al. 2013). Growth on glucose is divided into two different metabolic phases, phase I and II. In phase I, the major amount of glucose, almost 90\%, is oxidized in the periplasm to gluconate by the PQQ-dependent membrane-bound glucose dehydrogenase (GOX0265, \textit{gdhM}); consequently gluconate accumulates in the media. The remaining 10\% of glucose is taken up by the cells via an unknown transport system. The presence of an incomplete PEP: carbohydrate phosphotransferase system (PTS) lacking the EIIC and EIIB components suggests a regulatory function rather than a transporter function (Zhang et al. 2014). In the cytoplasm, glucose is mainly oxidized to gluconate by a soluble NADP-linked glucose dehydrogenase (GOX2015, \textit{gdhS}). A small fraction of the intracellular glucose is phosphorylated to glucose-6-phosphate by glucokinase (GOX1182, \textit{glkA} and GOX2419, \textit{glkB}) and predominantly metabolized via the PPP. The first phase is characterized by high growth rates accompanied by high oxygen consumption and low CO$_2$ production (Levering et al. 1988; Pronk et al. 1989; Hanke et al. 2013; Prust et al. 2005; Olijve and Kok 1979a). At the start of the second growth phase glucose is almost completely oxidized to gluconate. Gluconate is then either taken up into the cells or periplasmatically converted to ketogluconates. During growth on glucose at pH values below 5, gluconate is mainly oxidized in the periplasm to 5-ketogluconate (5-KGA) by the membrane-bound PQQ-dependent sorbitol dehydrogenase (GOX0854-0855, \textit{sldAB}) (Ano et al. 2011). At pH 6 gluconate is converted to 2-ketogluconate (2-KGA) by the membrane-bound flavoprotein gluconate-2-dehydrogenase (GOX1230-1232, \textit{gndSLC}) (Weenk et al. 1984; Hölscher et al. 2009; Prust et al. 2005). Gluconate is taken up into the cytoplasm by a permease (GOX2188, \textit{gntP}) and is either oxidized to 5-ketogluconate by an NADP-dependent gluconate-5-dehydrogenase (GOX2187, \textit{gno}) or phosphorylated by gluconate kinase (GOX1709, \textit{gntK}) to 6-phosphogluconate, which is catabolized via the PPP and the EDP (Pronk et al. 1989; Prust et al. 2005; Klasen et al. 1995; Hanke et al. 2013; Merfort et al. 2006a). The second growth phase is accompanied by a reduced biomass formation, an increase of CO$_2$ formation and a reduced requirement for oxygen (Hanke et al. 2013).
Fig. 3: Scheme of glucose metabolism by *G. oxydans*.
2.4 Cytoplasmic sugar metabolism

2.4.1 Pentose phosphate pathway and Enter-Doudoroff pathway

Genome annotation of *G. oxydans* revealed the presence of all genes for the oxidative pentose phosphate pathway (PPP) and the Entner-Doudoroff pathway (EDP). However, the Embden-Meyerhof-Parnas (EMP) pathway is non-functional due to the absence of a gene for phosphofructokinase and the TCA cycle is incomplete as it lacks the genes for succinyl-CoA synthetase and succinate dehydrogenase (Greenfield and Claus 1972; Prust et al. 2005). Consequently the PPP and EDP are the only pathways for intracellular sugar metabolism in *G. oxydans* sharing 6-phosphogluconate as the common substrate (Prust et al. 2005; Deppenmeier et al. 2002; Kersters and De Ley 1968). Part of the intracellular carbon source is converted to acetate accumulating in the medium. Acetate is produced by the decarboxylation of pyruvate to acetaldehyde via pyruvate decarboxylase (GOX1081, *pdc*) followed by the oxidation to acetate by NADP-dependent acetaldehyde dehydrogenases (GOX1122 and GOX 2018, *aldA* and *aldB*) (Krajewski et al. 2010; Peters et al. 2013a; Prust et al. 2005).

In 1955, the presence of all enzymes of the PPP was already demonstrated and genome annotation confirmed the existence of the corresponding genes (Prust et al. 2005; Hauge et al. 1955). Due to the absence of phosphofructokinase, the PPP proceeds cyclic (Hanke et al. 2013). Fructose 6-phosphate formed by either glucose 6-phosphate isomerase/transaldolase (GOX1704, *pgi/tal*) or transketolase (GOX1703, *tkt*) is converted to glucose 6-phosphate, entering the oxidative PPP again (Prust et al. 2005; Hanke et al. 2013; Siedler et al. 2012). Glucose 6-phosphate isomerase (Pgi) and transaldolase (Tal) form a bifunctional enzyme in *G. oxydans* (Sugiyama et al. 2003). The PPP key enzymes glucose 6-phosphate dehydrogenase (GOX0145, *zwf*) and 6-phosphogluconate dehydrogenase (GOX1705, *gnd*) were shown to have dual coenzyme specificities in vitro (Tonouchi et al. 2003). In vivo, these enzymes depend on NADP⁺ and NAD⁺, respectively (Rauch et al. 2010). The oxidative PPP represents the most important way for the phosphorylative degradation of sugars and polyols to CO₂ (Richhardt et al. 2012, 2013a; Hanke et al. 2013).

In 1968, it was shown that the EDP is active in *G. oxydans* (Kersters and De Ley 1968). In accordance, genome sequencing revealed the existence of the genes encoding the key enzymes 6-phosphogluconate dehydratase (GOX0431, *edd*) and 2-dehydro-3-deoxy-6-phosphogluconate (KDPG) aldolase (GOX0430, *eda*) (Prust et al. 2005). However, various experiments demonstrated that the EDP is less important than the PPP and even dispensable in *G. oxydans* (Hanke et al. 2013; Richhardt et al. 2012, 2013a). The PPP and EDP pathways differ with respect to energetic efficiency and formation of reduction equivalents. The cyclic PPP (1) yields 7 mol NAD(P)H and the EDP (2) only 2 mol NAD(P)H.
2. Introduction

when catabolizing 1 mol glucose 6-phosphate (Kruger and von Schaewen 2003).

1) 1 glucose 6-phosphate + 2 ADP + 7 NAD(P) + Pi → 1 pyruvate + 3 CO₂ + 7 NAD(P)H + 2 ATP

2) 1 glucose 6-phosphate + 2 ADP + 2 NAD(P) + Pi → 2 pyruvate + 2 NAD(P)H + 2 ATP

2.4.2 Incomplete pathways and consequences: Embden-Meyerhof-Parnas pathway and tricarboxylic acid cycle

2.4.2.1 Embden-Meyerhof Parnas pathway

The EMP pathway (glycolysis) is a central metabolic pathway of glucose degradation to pyruvate taking place in the cytosol. The complete pathway was elucidated in 1940 and consists of 10 reaction steps. As mentioned above, the EMP pathway in G. oxydans is non-functional due to the absence of a pfk gene (Prust et al. 2005) resulting only in the supply of precursor metabolites for biosynthesis. Pfk catalyzes the irreversible ATP-dependent phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate. In E. coli it was shown that Pfk activity is allosterically stimulated by AMP and ADP and allosterically inhibited by phosphoenolpyruvate (PEP) and ATP (Lau and Fersht 1987; Blangy et al. 1968). Although Pfk is a key enzyme in the EMP pathway, it is lacking in many obligately aerobic organisms (Baart et al. 2010). Nevertheless, G. oxydans possesses the other 9 essential genes of the EMP pathway which are listed in Table 1.

2.4.2.2 The tricarboxylic acid cycle

The tricarboxylic acid (TCA) cycle is an ubiquitous metabolic pathway in aerobic organisms by which acetyl-CoA is completely decarboxylated to CO₂. The TCA cycle has two functions: first the generation of energy via the oxidation of acetyl-CoA to CO₂ under formation of NADH, NADPH and FADH₂ and second the supply of 2-oxoglutarate and oxaloacetate as precursors for biosynthesis of amino acids belonging to the glutamate and aspartate family. The TCA cycle is composed of eight enzymes, of which G. oxydans possesses only six (Table 1), resulting in an incomplete pathway only providing precursor metabolites for biosynthesis. Genome sequencing revealed a gene for a type II citrate synthase (GOX1999, gltA). Acetobacter aceti contains a citrate synthase (G-15977, aarA) which is insensitive to NADH (Duckworth et al. 2013). Based on a 73 % amino acid sequence identity of the citrate synthases from A. aceti and G. oxydans, an insensitivity to NADH of G. oxydans citrate synthase appears likely. Furthermore, genes coding for an
aconitase (GOX1335, \textit{acn}) of family II, isocitrate dehydrogenase (GOX1336, \textit{icd}), 2-oxoglutarate dehydrogenase (GOX0882, \textit{odhA}; GOX1073, \textit{odhB}; GOX2292, \textit{lpdA}), a class II fumarase (GOX1643, \textit{fumC}), and malate: quinone oxidoreductase (GOX2070, \textit{mqo}) were identified. Genes coding for succinyl-CoA synthetase (\textit{sucCD}) and succinate dehydrogenase (\textit{sdh}) are absent in the genome of \textit{G. oxydans} \cite{Prust2005, Greenfield1972}. Based on the importance of the TCA cycle complementation via heterologous expression of \textit{sucCD} and \textit{sdh} genes in \textit{G. oxydans} in the present work, the next two sections deal with a brief overview of succinyl-CoA synthetase (Scs) and succinate dehydrogenase (Sdh).

Table 1: Enzymes and genes of the EMP pathway and the TCA cycle present in \textit{G. oxydans}

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>GOX number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP pathway</td>
<td></td>
</tr>
<tr>
<td>Glucokinase</td>
<td>(GOX1182, \textit{glkA})*, GOX2419 (\textit{glkB})</td>
</tr>
<tr>
<td>Glucose-6-phosphate isomerase</td>
<td>GOX1704 (\textit{pgi})</td>
</tr>
<tr>
<td>Fructose-bisphosphate aldolase</td>
<td>GOX0780 (\textit{fba})</td>
</tr>
<tr>
<td>Triosephosphate isomerase</td>
<td>GOX2217, (GOX2284)* (\textit{tpi})</td>
</tr>
<tr>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
<td>GOX0508 (\textit{gap})</td>
</tr>
<tr>
<td>Phosphoglycerate kinase</td>
<td>GOX0507 (\textit{pgk})</td>
</tr>
<tr>
<td>Phosphoglycerate mutase</td>
<td>GOX0330, (GOX0965)* (\textit{gpm})</td>
</tr>
<tr>
<td>Enolase</td>
<td>GOX2279 (\textit{eno})</td>
</tr>
<tr>
<td>Pyruvate kinase</td>
<td>GOX2250 (\textit{pyk})</td>
</tr>
<tr>
<td>TCA cycle</td>
<td></td>
</tr>
<tr>
<td>Citrate synthase</td>
<td>GOX1999 (\textit{gltA})</td>
</tr>
<tr>
<td>Aconitase</td>
<td>GOX1335 (\textit{acn})</td>
</tr>
<tr>
<td>Isocitrate dehydrogenase</td>
<td>GOX1336 (\textit{icd})</td>
</tr>
<tr>
<td>2-Oxoglutarate dehydrogenase</td>
<td>GOX0882 (\textit{odhA})</td>
</tr>
<tr>
<td></td>
<td>GOX1073 (\textit{odhB})</td>
</tr>
<tr>
<td></td>
<td>GOX2292 (\textit{lpdA})</td>
</tr>
<tr>
<td>Fumarase</td>
<td>GOX1643 (\textit{fumC})</td>
</tr>
<tr>
<td>Malate: quinone oxidoreductase</td>
<td>GOX2070 (\textit{mqo})</td>
</tr>
</tbody>
</table>

* Brackets symbolize genes probably encoding the corresponding enzyme.

2.4.2.2.1 Succinyl-CoA synthetase

Succinyl-CoA synthetase (Scs) occurs in prokaryotes as well as in eukaryotes. The enzyme catalyzes the only substrate-level phosphorylation in the TCA cycle \cite{Bridger1974, Nishimura1986}. Thereby, succinyl-CoA conversion to succinate leads to nucleoside
triphosphate formation during aerobic metabolism. The reaction of succinyl-CoA synthetase is reversible and particularly during anaerobic growth, succinyl-CoA is provided for ketone catabolism and heme biosynthesis (Park et al. 1997). Scs consists of α (SucD) and β (SucC) subunits. Gram-positive bacteria and higher organisms possess αβ-heterodimers, whereas (αβ)₄-tetramers usually occur in Gram-negative bacteria (Bridger 1971; Wolodko et al. 1986). The nucleotide specificity of Scs differs; Gram-negative bacteria like *E. coli* tend to use ATP and GTP as coenzymes, with a preference for ATP. In eukaryotes, such as *Saccharomyces cerevisiae*, the enzyme is only specific for ATP (Bridger 1974; Przybyla-Zawislak et al. 1998). The CoA binds to the α-subunit of the enzyme, comprising the active reaction site with a conserved histidine residue which is transiently phosphorylated during enzymatic catalysis. Substitution of the histidine residue by another amino acid yields an inactive enzyme (Bridger 1974; Wolodko et al. 1986; Majumdar et al. 1991). The β-subunit represents the nucleotide binding site and determines the nucleotide specificity (Johnson et al. 1998; Joyce et al. 1999).

2.4.2.2.1 Succinate dehydrogenase

Succinate dehydrogenase (Sdh) is found in aerobic organisms and is part of the TCA cycle. Additionally the enzyme represents complex II of the respiratory chain and is therefore also called succinate:quinone oxidoreductase (Sqr). Sdh catalyzes the oxidation of succinate to fumarate in the TCA cycle and the reduction of ubiquinone in the membrane. The enzyme is decisive for intermediary metabolism as well as energy production in bacteria and eukaryotes under aerobic conditions (Hägerhäll 1997; Hederstedt 2003). Many bacterial and eukaryotic SdhS consist of two hydrophilic subunits, a flavoprotein (SdhA) and iron-sulfur protein (SdhB) and two hydrophobic membrane-anchored subunits SdhC and SdhD, containing a heme b and the binding site for ubiquinone (Fig. 4). However, most Gram-positive bacteria possess only three subunits due to an apparent fusion of subunit C and D to a single membrane-anchored polypeptide (Hederstedt 2003; Hägerhäll and Hederstedt 1996; Hederstedt 1999; Lancaster et al. 1999).
According to Hägerhäll, Sqrs can be divided into three functional classes due to the quinone substrate and in vivo function of the enzyme. Class I Sqrs catalyze the oxidation of succinate and the reduction of a high potential quinone like ubiquinone. Enzymes of class I are common and are found in mammalian mitochondria and many pro- and eukaryotes. All quinol:fumarate reductases (Qfr) so far investigated belong to class II, as they oxidize a low potential quinol such as menaquinol and reduce fumarate. Class III Sqrs are found in Gram-positive bacteria and archaebacteria. This class of enzyme catalyzes the oxidation of succinate and the reduction of a low potential quinone like menaquinone (Hägerhäll 1997).

2.5 Respiratory chain of G. oxydans

A characteristic feature of G. oxydans is the large and diverse number of membrane-bound dehydrogenases transferring electrons directly to ubiquinone of the respiratory chain (Prust et al. 2005). PQQ, FAD as well as heme c serve as cofactors of the dehydrogenases (Shinagawa et al. 1990; Matsushita et al. 2003; Matsushita et al. 1994). Figure 5 shows a scheme of the core components of the respiratory chain of G. oxydans. The organism G. oxydans possesses a type II monomeric non-proton-pumping NADH dehydrogenase (ndh) transferring electrons from NADH to the ubiquinone pool, whereas a proton-translocating NADH:ubiquinone oxidoreductase (complex I) is absent (Prust et al. 2005). From the ubiquinone pool onwards, the respiratory chain of G. oxydans is branched due to two terminal ubiquinol oxidases, cytochrome bo₃ oxidase and cytochrome bd oxidase. Based on the cyanide insensitivity of G. oxydans cytochrome bd, Matsushita and coworkers designated this enzyme as cyanide-insensitive oxidase CIO and the corresponding genes cioA and cioB instead of cydA and cydB (Mogi et al. 2009; Miura et al. 2013). The two terminal oxidases catalyze the transfer of the electrons from ubiquinol to molecular oxygen.
2. Introduction

(Matsushita et al. 1987; Matsushita et al. 1989; Prust et al. 2005; Ameyama et al. 1987; Miura et al. 2013). The \textit{bo}_3 oxidase is encoded by the 	extit{cyoBACD} genes (GOX1911-1914) and belongs to the superfamily of heme-copper oxygen reductases, with heme \textit{b}, heme \textit{o} and a copper ion as cofactors (Matsushita et al. 1987; Prust et al. 2005). The reaction catalyzed by \textit{bo}_3 oxidase participates in the generation of proton motive force in two ways. On the one hand via the oxidation of ubiquinol at the periplasmic site of the membrane, with the release of protons from the cytoplasm in the periplasm and the transfer of electrons to the \textit{o}_3-\textit{Cu} center. On the other hand proton motive force is established by using free energy associated with electron transfer from ubiquinol to dioxygen for proton-pumping across the membrane (Puustinen et al. 1989; Verkhovskaya et al. 1997). It is assumed that cytochrome \textit{bo}_3 oxidase is the main component for proton extrusion via the respiratory chain (Richhardt et al. 2013b). The cyanide-insensitive oxidase CIO possesses heme \textit{b}_{558}, \textit{b}_{595} and heme \textit{d} as prosthetic groups (Prust et al. 2005; Mogi et al. 2009; Miura et al. 2013). In contrast to \textit{bo}_3 oxidase, the CIO is non-proton-pumping and generates proton motive force only by ubiquinol oxidation at the periplasmic site (Miller and Gennis 1985). The level of CIO increases by a pH change from 6 to 4, suggesting an impact at low pH values (Matsushita et al. 1989; Hanke et al. 2012). In \textit{E. coli} it was demonstrated that the \textit{bo}_3 oxidase is synthetized maximally under high oxygen conditions, whereas \textit{bd} oxidase is predominantly abundant under microaerobic conditions (D'mello et al. 1996; Georgiou et al. 1988). In \textit{G. oxydans} \textit{bo}_3 oxidase possesses a high oxygen affinity contrary to CIO exhibiting a low oxygen affinity. However, the \textit{K}_M value for oxygen of \textit{G. oxydans} CIO is 10-fold higher than the one for \textit{bd} oxidase of \textit{E. coli} (Richhardt et al. 2013b; Miura et al. 2013). Interestingly, \textit{G. oxydans} also possesses genes encoding a cytochrome \textit{bc}_1 complex (GOX0565-0567), containing a heme \textit{c}, two heme \textit{b} and one \textit{[Fe-S]}-cluster as prosthetic groups. Furthermore, genome sequencing revealed a gene for a soluble cytochrome \textit{c}_{552} (GOX0258). However, genes for subunits I, II and III of cytochrome \textit{c} oxidase are absent in the genome of \textit{G. oxydans}, raising the question of the function of the cytochrome \textit{bc}_1 complex, because reduced cytochrome \textit{c}_{552} cannot be reoxidized by complex IV (Prust et al. 2005; Matsutani et al. 2014; Hanke et al. 2012). The electron transport chain builds up an electrochemical proton gradient which is used to generate ATP via two \textit{F}_1\textit{F}_0-type ATP synthases. The corresponding genes are organized in three clusters located at different positions on the chromosome. The hydrophobic membrane-bound subunits of the first ATP-synthase are encoded by cluster I (GOX1110-1113), whereas cluster II (GOX1310-1314) encodes the hydrophilic enzyme part. The \textit{H}^+ dependent ATP synthase represents an ortholog of the ATP synthases of \textit{Acetobacter pasteurianus} IFO 3283-01, \textit{Glucanacetobacter diazotrophicus} PAI 5 and other \textit{α}-proteobacteria. Custer III (GOX2167-2175) encodes the second ATP synthase, which might use sodium as coupling ion (Prust et al. 2005; Hanke et al. 2012; Dibrova et al. 2010).
2. Introduction

Since \textit{G. oxydans} produces NADPH via the PPP by glucose 6-phosphate dehydrogenase (GOX0145, \textit{zwf}) as well as via the incomplete cytoplasmic oxidations by the soluble NADP-linked glucose dehydrogenase (GOX2015, \textit{gdhS}) and gluconate-5 dehydrogenase (GOX2187, \textit{gno}), it is assumed that the organism generates NADPH efficiently; NADP regeneration however is likely to be problematic. Genome annotation of \textit{G. oxydans} revealed genes for a proton-translocating nicotinamide adenine dinucleotide transhydrogenase (GOX0310-0312, \textit{pntA1A2B}) (Prust et al. 2005). In bacteria and many animal mitochondria, the reversible hydride transfer between NADPH + H+ and NAD+ is coupled by such transhydrogenases to translocate protons across the membrane (Cotton et al. 2001; Bizouarn et al. 2002). Thus, transhydrogenase is probably involved in (i) regeneration of NADP and (ii) the translocation of protons from the cytoplasm in the periplasm, thereby participating in the formation of the electrochemical proton gradient (Deppenmeier and Ehrenreich 2009; Prust et al. 2005).

![Fig. 5: Scheme of the core components of the respiratory chain of \textit{G. oxydans}.](image)

2.6 Aims of this thesis

The biotechnological interest in \textit{G. oxydans} is mainly based on the rapid and incomplete oxidation of sugars and sugar alcohols in the periplasm by various membrane-integral dehydrogenases. Caused by the periplasmic oxidation of the major part of the carbon source and the incompleteness of the TCA cycle, biomass formation and cell yields of \textit{G. oxydans} are very low, leading to increased costs of biotechnological processes with this species. In this work, the main focus is the optimization of biomass production leading to increased cell yields of \textit{G. oxydans} on the favorable substrate glucose, thereby decreasing the costs for biomass synthesis and improving/enabling industrial applications. To this end, prevention of glucose oxidation to gluconate by deletion of genes encoding the membrane-bound dehydrogenase (GOX0265, \textit{gdhM}) and the cytosolic glucose dehydrogenase (GOX2015, \textit{gdhS}) is necessary. Glucose uptake should be improved by the heterologous expression of
the glucose facilitator gene (*glf*). Through the heterologous expression of a phosphofructokinase gene (*pfkA*), intracellular glucose degradation via the EMP pathway should be enabled, thereby avoiding carbon loss through usage of the PPP or the EDP. Furthermore, the pyruvate decarboxylase gene (GOX1081, *pdc*) should be deleted to prevent acetaldehyde formation and consequently acetate production. Additionally, the overexpression of the homologous pyruvate dehydrogenase complex genes (GOX2289, *aceEα*; GOX2290, *aceEβ*; GOX2291, *aceF*; GOX2292, *lpd*) should allow increased rates of oxidative decarboxylation of pyruvate to acetyl-CoA. Through the genomic integration of heterologous genes encoding succinyl-CoA synthetase (*sucCD*) and succinate dehydrogenase (*sdhCDABE*) a complete oxidation of acetyl-CoA via the TCA cycle should be enabled. As complete glucose oxidation via glycolysis and the TCA cycle leads to an increased NADH formation rate and the necessity for increased NADH reoxidation rates, a second *ndh* gene coding for NADH dehydrogenase should be integrated into the genome of *G. oxydans*. The metabolically engineered strains should be characterized with respect to their growth behavior, substrate consumption, product formation, and the activities of the enzymes encoded by the genomically integrated or plasmid-based homologous and heterologous genes. Furthermore, the activities of the TCA cycle enzymes already present in the parent strain should be measured to determine possible carbon flux limitations in the TCA cycle that need to be removed.
3. Results

Gluconobacter oxydans is an acetic acid bacterium that is used industrially in oxidative biotransformations due to its exceptional capability for regio- and stereoselective oxidations of a variety of carbohydrates in the periplasm. The incomplete periplasmic oxidations and a restricted cytoplasmic catabolism caused by the absence of a functional glycolysis and tricarboxylic acid cycle lead to a very low cell yield that increases the costs for biomass production. This thesis aimed at an increased cell yield from glucose by metabolic engineering of *G. oxydans* 621H.

The publication “SdhE-dependent formation of a functional *Acetobacter pasteurianus* succinate dehydrogenase in *Gluconobacter oxydans* - a first step toward a complete tricarboxylic acid cycle” (Applied Microbiology and Biotechnology, vol. 99, pp. 9147–9160) describes the successful plasmid-based synthesis of a heterologous succinate dehydrogenase in *G. oxydans*. The work revealed the necessity and sufficiency of the accessory protein SdhE for synthesis of an active *A. pasteurianus* Sdh in *G. oxydans*. Furthermore, it was demonstrated that the γ-proteobacterial *Serratia* SdhE protein is able to activate an α-proteobacterial *A. pasteurianus* Sdh in *G. oxydans*.

In the second manuscript “Metabolic engineering of *Gluconobacter oxydans* 621H for improved growth yield on glucose by prevention of gluconate and acetate formation and completion of the tricarboxylic acid cycle” a series of *G. oxydans* strains were constructed by chromosomal integration of genes for succinate dehydrogenase, succinyl-CoA synthetase, and a second NADH dehydrogenase with simultaneous deletion of the genes for periplasmic and cytoplasmic glucose dehydrogenase and pyruvate decarboxylase. The strains were characterized with respect to growth, substrate consumption, product formation, and enzyme activities. The final strain IK003.1 showed a 60 % improved cell yield.

The third manuscript entitled “Impact of plasmid-based expression of functions for glucose uptake and phosphorylation, glycolysis, and pyruvate oxidation to acetyl-CoA on growth of *Gluconobacter oxydans* IK003.1” describes studies aimed at a further improvement of the growth properties and the cell yield of strain IK003.1 by plasmid-based expression of genes for a glucose facilitator and glucokinase, phosphofructokinase, and the pyruvate dehydrogenase complex. Despite the functional synthesis of pyruvate dehydrogenase complex and phosphofructokinase, neither growth nor the cell yield of the recombinant *G. oxydans* strains could be enhanced.
3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans*

Own contribution to this publication: about 70 %. I performed all experimental work described in the publication and wrote a draft of the manuscript. I am first author of the publication.

Published in Applied Microbiology and Biotechnology; DOI 10.1007/s00253-015-6972-8

Impact factor: 3.337
SdhE-dependent formation of a functional *Acetobacter pasteurianus* succinate dehydrogenase in *Glucobacter oxydans*—a first step toward a complete tricarboxylic acid cycle

Ines Kiefer, Stephanie Bringer, Michael Bott

Abstract The obligate aerobic α-proteobacterium *Glucobacter oxydans* 621H possesses an unusual metabolism in which the majority of the carbohydrate substrates are incompletely oxidized in the periplasm and only a small fraction is metabolized in the cytoplasm. The cytoplasmic oxidation capabilities are limited due to an incomplete tricarboxylic acid (TCA) cycle caused by the lack of succinate dehydrogenase (Sdh) and succinyl-CoA synthetase. As a first step to test the consequences of a functional TCA cycle for growth, metabolism, and bioenergetics of *G. oxydans*, we attempted to establish a heterologous Sdh in this species. Expression of *Acetobacter pasteurianus* sdhCDAB in *G. oxydans* did not yield an active succinate dehydrogenase. Co-expression of a putative *sdhE* gene from *A. pasteurianus*, which was assumed to encode an assembly factor for covalent attachment of flavin adenine dinucleotide (FAD) to SdhA, stimulated Sdh activity up to 400-fold to 4.0 ± 0.4 U (mg membrane protein)⁻¹. The succinate/oxygen reductase activity of membranes was 0.68 ± 0.04 U (mg membrane protein)⁻¹, indicating the formation of functional Sdh complex capable of transferring electrons from succinate to ubiquinone. *A. pasteurianus* SdhE could be functionally replaced by SdhE from the γ-proteobacterium *Serratia* sp. According to these results, the accessory protein SdhE was necessary and sufficient for heterologous synthesis of an active *A. pasteurianus* Sdh in *G. oxydans*. Studies with the Sdh-positive *G. oxydans* strain provided evidence for a limited functionality of the TCA cycle despite the absence of succinyl-CoA synthetase.

Keywords Glucobacter oxydans · Citrate cycle · Succinate dehydrogenase

Introduction

Glucobacter oxydans is an α-proteobacterial species that is exceptionally suited for oxidative biotransformations due to its many membrane-bound dehydrogenases, which oxidize a large variety of substrates in the periplasm regio- and stereoselectively. It is used industrially for several purposes, the most prominent being vitamin C production (Deppenmeier et al. 2002; Adachi et al. 2003; Pappenberger and Hohmann 2014; Gupta et al. 2001; Macauley et al. 2001; Raspor and Goranovic 2008). A handicap for a broader use of *G. oxydans* is its low biomass yield, which is caused by a number of metabolic peculiarities. The carbohydrates serving as energy and carbon sources are incompletely oxidized in the periplasm, leading to partially oxidized products that remain unmetabolized in the medium. For example, glucose is oxidized to about 90 % in the periplasm to the end products gluconate and ketogluconate and less than 10 % is metabolized in the cytoplasm (Hanke et al. 2013). Similarly, mannitol is periplasmatically oxidized to fructose and 5-ketofructose (Richhardt et al. 2012). The cytoplasmic oxidation capabilities are restricted because several enzymes of central metabolic pathways are absent. *G. oxydans* 621H is deficient in glycolysis due to the absence of a gene for phosphofructokinase and a functional tricarboxylic acid (TCA) cycle due to the absence of genes for Sdh and succinyl-CoA synthetase (Prust et al.
3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans*

2005). Sugars and sugar alcohols are metabolized primarily via the pentose phosphate pathway (PPP), which runs partially cyclic, and to some extent by the Entner–Doudoroff pathway (Hinke et al. 2013). Due to the incomplete TCA cycle, pyruvate cannot be oxidized completely via this pathway. Instead, a significant fraction of pyruvate is converted to acetate by the action of pyruvate decarboxylase and acetate/ethyldehydrogenase (Krajewski et al. 2010).

In order to elucidate the impact on bioenergetics and in particular on the biomass yield, we initiated studies to redirect glucose oxidation from the periplasm to the cytoplasm and allow a complete cytoplasmic oxidation of pyruvate by restoring glycolysis and the TCA cycle. As a first step in this direction, we attempted to introduce a heterologous Sdh complex (EC 1.3.5.1), also known as complex II or succinate/quinone oxidoreductase. The rationale for choosing this starting point was that the risk of failure was considered as particularly high, as Sdh is a membrane protein complex composed of at least three subunits containing a covalently linked flavin adenine dinucleotide (FAD) prosthetic group in the flavoprotein subunit SdhA, three iron–sulfur clusters in the iron–sulfur protein subunit SdhB, and a cytochrome b in subunit(s) C or C and D.

Thus, formation of an active heterologous Sdh enzyme presumably requires additional proteins besides the Sdh structural proteins. Using genes from *Acetobacter pasteurianus*, we were able to functionally synthesize a heterologous Sdh complex in *G. oxydans*.

Materials and methods

Materials

Chemicals were obtained from Sigma-Aldrich (Taufkirchen, Germany), Qiagen (Hilden, Germany), Merck (Darmstadt, Germany), and Roche Diagnostics (Mannheim, Germany).

Bacterial strains, plasmids, media, and growth conditions

Genomic DNA of *Serratia* sp. ATCC39006 was purchased from LGC Standards, Wesel, Germany. The bacterial strains and plasmids used in this study are listed in Table 1. The *Escherichia coli* strains were cultivated in lysogeny broth (LB) medium or on LB agar plates at 37 °C (Bertani 1951, 2004). When required, kanamycin was added to a final concentration of 50 μg mL⁻¹. *Corynebacterium glutamicum* ATCC13032 was precultured in brain heart infusion medium (BHI, Difco, Detroit, USA) overnight at 30 °C and 120 rpm. Main cultures were grown in CGXII minimal medium containing 30 μg protocatechuic acid L⁻¹ (Keilhauer et al. 1993) with 4% (w/v) glucose. *A. pasteurianus* (DSM3509 = NBRC3191) was precultured in 20 mL tomato juice medium (Chen et al. 2011) in 100 mL baffled shaking flasks at 30 °C and 140 rpm. Main cultures were grown in basic medium (Chen et al. 2011) containing 10 g L⁻¹ yeast extract, 10 g L⁻¹ peptone, 2 g L⁻¹ K₂HPO₄, and 4 g L⁻¹ glucose supplemented with 4% ethanol at 30 °C and 140 rpm.

Genomic data were taken from the genome sequence of *A. pasteurianus* IFO 3233.01 (Azuma et al. 2009). *G. oxydans* ATCC 621H Δ*upp* (ATCC 621H is identical to DSM2343), which lacks the *upp* gene for uracil phosphoribosyltransferase (Peters et al. 2013), was obtained from Dr. Armin Ehrenreich (Technical University of Munich, Germany). This strain was used as reference strain and will be referred to as *G. oxydans* in the following text. The strain was cultivated on mannitol medium containing 220 mM (4% w/v) mannitol, 5 g L⁻¹ yeast extract, 2.5 g L⁻¹ MgSO₄ ⋅ 7 H₂O, 1 g L⁻¹ (NH₄)₂SO₄, 1 g L⁻¹ KH₂PO₄, and 10 μM thymidine. The initial pH value of the medium was 6.0. *G. oxydans* possesses a natural resistance toward cefoxitin; as a precaution to prevent bacterial contaminations, cefoxitin was added to the media at a concentration of 50 μg mL⁻¹. When required for plasmid maintenance, 50 μg mL⁻¹ kanamycin was added. Precultures were grown in baffled shaking flasks at 30 °C and 140 rpm. Main cultures were grown in 500 mL baffled shaking flasks containing 100 mL mannitol medium. Incubation was at 140 rpm and 30 °C in an Infors shaker (Basel, Switzerland).

Cultivations under controlled conditions of pH and oxygen were performed in 250 mL mannitol medium using a bioreactor system (DASGIP, Jülich, Germany) composed of four 400-mL vessels, each equipped with electrodes for measuring dissolved oxygen concentration (DO) and the pH. The system allows to constantly control these two parameters. The carbon dioxide concentration in the exhaust gas was measured continuously by an infrared spectrometer and the oxygen concentration by a zirconium dioxide sensor. The pH was kept at pH 6.0 by automatic titration of 2 M NaOH and 2 M HCl. The oxygen availability was kept constant at 15% DO by mixing air, O₂, and N₂. Calibration was performed by gassing with air (100% DO) and N₂ (0% DO). The agitation speed was kept constant at 900 rpm. Control and recording of all data was carried out by the software "Fedbatch Pro" (DASGIP, Jülich, Germany).

Cloning and DNA techniques

DNA manipulation was performed by standard methods as described by Sambrook and Russel (Sambrook and Russell 2001). Competent cells of *E. coli* were prepared with CaCl₂ and transformed as described by Hanahan (Hanahan et al. 1991). DNA sequencing was performed by Eurofins MWG Operon (Ebersberg, Germany). Oligonucleotides were synthesized by Biologeo (Nijmegen, Netherlands) and are listed in Table 1.
3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans*

Table 1 Bacterial strains, plasmids, and oligonucleotides used in this work

<table>
<thead>
<tr>
<th>Strain or plasmid or oligonucleotide</th>
<th>Description or primer sequence (5' → 3')</th>
<th>Source, reference, or restriction site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli TOP10</td>
<td>F mecA Δ(mev-hsdRMS-merBC)</td>
<td>Invitrogen, Darmstadt, Germany</td>
</tr>
<tr>
<td></td>
<td>ΦΦΦlacZAM15 ΔlacX74 recA1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>araD139 Δ araI E. coli-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>galK rpsL (StrR) endA1 supE44, Δthr-1, tea</td>
<td></td>
</tr>
<tr>
<td>E. coli S17-1</td>
<td>ΔrecA, endA1, adaR17, supF44,</td>
<td>Simoe et al. 1983</td>
</tr>
<tr>
<td></td>
<td>Δthr-1, tea</td>
<td></td>
</tr>
<tr>
<td>G. oxydans Δsup*</td>
<td>G. oxydans 621H derivative with a deletion of GOX0327 coding for uncol phosphoribosyl-translocase</td>
<td>Peters et al. 2013</td>
</tr>
<tr>
<td>C. glutamicum ATCC1302</td>
<td>ATCC1302, wild-type strain</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>A. pasteurianus DS3509</td>
<td>DS3509, wild-type strain</td>
<td>DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany</td>
</tr>
<tr>
<td>Plasmid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBBR1p384</td>
<td>KanR, pBBR1MCS-2 derivative containing the 5′-UTR of GOX0384</td>
<td>U. Deppe, Deppe (Bepp University); (Kovach et al. 1995)</td>
</tr>
<tr>
<td>pBBR1p384-sdh</td>
<td>KanR, pBBR1p384-derivative expressing sdhCDAB (APA01_00310-00340) from A. pasteurianus</td>
<td>This work</td>
</tr>
<tr>
<td>pBBR1p384-sdh-sdhE<sub>3.4</sub></td>
<td>KanR, pBBR1p384-derivative expressing sdhCDAB (APA01_00310-00340) and sdhE (APA01_0011050) from A. pasteurianus</td>
<td>This work</td>
</tr>
<tr>
<td>pBBR1p384-sdh-sdhE<sub>E4.4</sub></td>
<td>KanR, pBBR1p384-derivative expressing sdhCDAB (APA01_00310-00340) and sdhE (APA01_0011050) from A. pasteurianus</td>
<td>This work</td>
</tr>
<tr>
<td>pBBR1p384-sdh-p<sub>M</sub>sdhE<sub>E4.4</sub></td>
<td>KanR, pBBR1p384-derivative expressing sdhCDAB (APA01_00310-00340) and 5′-UTR sdhE (Ser39006 1161) from Streptomyces sp. ATCC39906</td>
<td>This work</td>
</tr>
<tr>
<td>Oligonucleotide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sdh<sub>forward</sub> HindIII</td>
<td>GTATATAAGCTTGGACGCGGATACGA</td>
<td>HindIII</td>
</tr>
<tr>
<td>sdh<sub>reverse</sub> Clai</td>
<td>GCCGGCTATCGATTCTCCTGGG</td>
<td>Clai</td>
</tr>
<tr>
<td>p384_seq_forward</td>
<td>AGAACCAGCGGAGATTGAG</td>
<td></td>
</tr>
<tr>
<td>p384_seq_reverse</td>
<td>CCTCGCGCTGATGTGATG</td>
<td></td>
</tr>
<tr>
<td>pnt11050_seq_forward_Sall</td>
<td>GGAATTGTCGACGGCCCTGGGCTGGT</td>
<td>Sall</td>
</tr>
<tr>
<td>11050_rev_Xhol</td>
<td>GCCGTAGCTGGGACTGCTGTCGTA</td>
<td>Xhol</td>
</tr>
<tr>
<td>11050_forward_Xhol</td>
<td>TCCCGTGAT</td>
<td>Xhol</td>
</tr>
<tr>
<td>11050_seq_Apal</td>
<td>CTATATGGCTGCCCTGGGCTGGT</td>
<td>Apal</td>
</tr>
<tr>
<td>pnt11161.forward_Xhol</td>
<td>CAAATTCGCGGCGGTGTTAAGGCA</td>
<td>Xhol</td>
</tr>
<tr>
<td>1161_seq_KpnI</td>
<td>CTATATGGTACAAATGGTACCAGCGC</td>
<td>KpnI</td>
</tr>
</tbody>
</table>

23
3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans*

Plasmid-based expression of *sdhCDAB* and *sdhE*

For expression of the *sdh* genes of *A. pasteurianus* in *G. oxydans*, the broad-host-range plasmid pBBR1p384 (Kallnik et al. 2010) was used. The genes *sdhCDAB* (APA01_00310-00340) were amplified from genomic DNA of *A. pasteurianus* using the oligonucleotides *sdh* _forw_ HindIII and *sdh* _rev_ Clal and Phusion DNA polymerase (Finnzymes, Thermo Scientific, Vantaa, Finland). The 3763 bp PCR product was phosphorylated with T4 polynucleotide kinase and cloned into dephosphorylated Smal-restricted pUC18. From one of the recombinant clones giving a 3.76-kbp product after colony PCR with *sdh* _forw_ HindIII and *sdh* _rev_ Clal, pUC18-sdh was isolated. The *sdhCDAB* insert was excised with Clal and HindIII and subsequently cloned with a 20-bp 5' UTR containing the 5'-ACGAGG-3' ribosome binding site into the Clal/HindIII-linearized vector pBBR1p384. After verification of positive clones by colony PCR with oligonucleotides p384_seq_forw and p384_seq_rev, the *sdh* genes of the resulting plasmid pBBR1p384-sdh were sequenced in order to exclude unwanted mutations. Subsequently, pBBR1p384-sdh was transferred by conjugation into *G. oxydans* using *E. coli* S17-1 as donor (Richardt et al. 2012). Positive clones were selected by their kanamycin resistance.

For construction of the expression plasmids pBBR1p384-sdh-sdhEAC and pBBR1p384-sdh-pan-sdhEAC, the putative *sdhE* gene (APA01_11050) of *A. pasteurianus* was amplified by PCR with Phusion DNA polymerase from genomic DNA either without its putative promoter using oligonucleotides 11050_forw_Xhol and 11050_rev_Apal or with its assumed native promoter using oligonucleotides pn11050_forw_SalI and 11050_rev_Xhol. The 464-bp PCR product without promoter was digested with Apal/Xhol and cloned into pBBR1p384-sdh restricted with Apal and Xhol. The 714-bp PCR product including the putative native promoter was cut with Sall/Xhol and cloned into pBBR1p384-sdh cut with Sall and Xhol. Construction of plasmid pBBR1p384-sdh-pan-sdhEAC carrying the *sdhE* gene (Ser39006 1161) of *Serratia* sp. ATCC39006 with its assumed native promoter was performed analogously using oligonucleotides pn1161-forw-Xhol/1161-rev-KpnI. The 664-bp PCR product was cut with KpnI/Xhol and cloned into pBBR1p384-sdh cut with KpnI/Xhol. The resulting plasmids pBBR1p384-sdh-sdhEAC, pBBR1p384-pan-sdhEAC, and pBBR1p384-pan-sdhEAC were transferred by conjugation into *G. oxydans* as described previously (Richardt et al. 2012). Positive clones were selected by their kanamycin resistance.

Membrane isolation for Sdh assay

For membrane preparation, *G. oxydans* cells were cultivated in 500 mL mannitol medium and *C. glutamicum* cells in 500 mL CGXII minimal medium with 4 % (w/v) glucose at 30 °C and 100 rpm (Infors shaker, Basel, Switzerland). *A. pasteurianus* was cultivated in 500 mL basic medium (Chen et al. 2011) supplemented with 4 % (w/v) ethanol at 30 °C and 100 rpm. After 16 h *G. oxydans* (OD600 1.5–3.2) and *A. pasteurianus* (OD600 1.2–1.5) cells were harvested by centrifugation (20 min, ~6500*g, 4 °C). *C. glutamicum* cells were harvested in the exponential growth phase at an OD600 of 5. Subsequently, the cells were washed with 25 mL 100 mM potassium phosphate buffer pH 7.5 and centrifuged for 5 min at ~10,500*g, 4 °C. The cells were resuspended in 10 mL of the same buffer supplemented with Complete Protease Inhibitor Cocktail (Invitrogen, Darmstadt, Germany). *C. glutamicum* cell suspensions were additionally incubated for 30 min at 37 °C with lysozyme (10 mg mL⁻¹). After cell disruption by five passages at 1500 psi through a French pressure cell (SLM Amino), cell debris was removed by centrifugation (30 min, 16,000*g, 4 °C) and the supernatant (cell-free extract) was subjected to ultracentrifugation for 60 min at 230,000*g and 4 °C. The membrane pellet was washed in 1 mL 100 mM potassium phosphate buffer pH 7.5 and again subjected to ultracentrifugation (60 min, 230,000*g, 4 °C). Then, washed membrane pellet was resuspended in 1 mL of the same buffer and stored at 70 °C until use. Protein concentrations were determined with the bicinchoninic acid (BCA) protein assay (Smith et al. 1985) (Intermach, Montluçon, France) using bovine serum albumin (BSA) as standard. Dilutions of membrane protein suspensions contained 1 mg mL⁻¹ BSA to stabilize the membrane protein (Finn et al. 2012).

Enzyme assays

Succinate/DCPIP reductase activity was determined using a method described by Spencer and Guest (Spencer and Guest 1973). The reaction mixture contained 60 mM potassium phosphate buffer, pH 7.5 (buffer A), 2,6-dichlorophenol indophenol (DCPIP, 0.23 mM), N-methylphénylénazé methosulfate (PMS, 2.18 mM), and membrane protein. The reaction was started by addition of disodium succinate (10 mM) to a final volume of 1 mL. Reduction of DCPIP (extinction coefficient at 600 nm is 21 mM⁻¹ cm⁻¹) was monitored at 600 nm and 30 °C. One molecule DCPIP is reduced by one molecule of succinate. One unit (U) is defined as 1 μmol DCPIP reduced per min. Succinate/oxygen reductase activity of membrane fractions was determined with a Clark-type oxygen electrode in an oxygen electrode chamber (Oxygraph, Hansatech Instruments, Germany). Oxygen consumption rates of the isolated membranes were measured using a thermostatically controlled, magnetically stirred 2 mL chamber at 30 °C and the Oxygraph Plus software. The electrode was calibrated with air-saturated buffer A (100 % oxygen saturation), and dithionite was added for setting the 0 % oxygen saturation
3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans*

value. The membrane preparations were diluted with air-saturated buffer A, and the chamber was filled with 500 µL air-saturated membrane dilution. Oxygen consumption was followed after adding 5 µL of a 1 M disodium succinate stock solution in buffer A. One molecule O₂ is reduced by two molecules succinate. One unit (U) is defined as 0.5 µmol O₂ reduced to H₂O per min.

Determination of substrates and products by HPLC analysis

One milliliter culture was centrifuged for 2 min at 16,000 × g, and the supernatant was filtered through a 0.2 µm filter (Millipore, MA, USA) prior to HPLC analysis. Mannitol, fructose, and 5-ketofructose were quantified with a Rezex RCM-Monosaccharide 300 × 7.8 mm column (Phenomenex, Aschaffenburg, Germany) at 60 °C using H₂O as the eluent at a flow rate of 0.6 mL min⁻¹. Substances were detected by a refractive index detector. Retention times for 5-ketofructose, fructose, and mannitol were 13.57, 15.31, and 19.98 min, respectively. Calibration curves were made using a series of standards ranging from 5.5 to 28 mM mannitol, fructose or 5-ketofructose. Acetate and fumarate concentrations were measured with an Organic Acid Resin 300 × 8 mm column (CS Chromatographie Service, Langerwehe, Germany) at 25 °C using 8 mM H₂SO₄ as the eluent at a flow rate of 0.6 mL min⁻¹. Acetate and fumarate were detected with an UV detector at 215 nm, and the retention times were 18.15 and 20.42 min, respectively. Calibration curves were made using a series of standards ranging from 1 to 10 mM acetate or fumarate.

Protein identification by mass spectrometry and detection of FAD fluorescence

Ten microgram protein of membrane fractions per lane were separated by SDS-PAGE (4–12 % polyacrylamide gels using a buffer composed of 50 mM MOPS (3-(N-morpholino)propanesulfonic acid), 50 mM Tris base, 0.1 % SDS, 1 mM EDTA, pH 7.7). Identification of proteins from gels stained with PageBlue Protein Staining Solution (Thermo Scientific, Schwerte, Germany) was performed by peptide mass fingerprinting of tryptic digests as described (Schafer et al. 2001), except that peptides were extracted by the addition of 0.2 % (v/v) trifluoroacetic acid in 30 % (v/v) acetonitrile. MALDI-TOF-MS was performed with an Ultraflex III TOF/TOF mass spectrometer (Bruker Daltonics, Bremen, Germany). Mascot software (Perkins et al. 1999) was used to compare the peptide mass patterns obtained with those of all proteins from the theoretical *A. pasteurianus* proteome. The molecular weight search (MOWSE) scoring scheme (Pappin et al. 1993) with a cutoff value of 50 was used for unequivocal identification of proteins.

For detection of fluorescent protein bands in SDS-polyacrylamide gels, proteins were fixed after electrophoresis in 10 % (vol/vol) acetic acid for 1 h. Gels were inspected and photographed on an UV-transilluminator system at 312 nm (PEQLAB Biotechnologie GmbH, Erlangen, Germany). Upon illumination with UV light, subunit A of Sdh was visible because of the fluorescence of the covalently bound flavin (Bafanno et al. 2004).

Results

Expression of the *sdhCDAB* genes from *A. pasteurianus* in *G. oxydans*

For the synthesis of a heterologous Sdh in *G. oxydans*, the *sdhCDAB* genes from *A. pasteurianus* were chosen (Azuma et al. 2009). Like *G. oxydans*, this species is a member of the family *Acetobacteraceae* within the α-proteobacteria and a close phylogenetic relationship might be favorable for functional expression. According to the classification scheme of Hägerhäll, the *sdhCDAB* genes of *A. pasteurianus* encode a succinate/quinone oxidoreductase belonging to class 1, as they reduce the high potential quinone ubiquinone and with respect to the membrane anchor to type C, which is composed of two polypeptides, with three transmembrane helices each, and contain one proteoheme IX molecule (Hägerhäll 1997).

In order to express the *A. pasteurianus* *sdhCDAB* genes in *G. oxydans*, they were amplified from chromosomal DNA and cloned into the expression vector pBBR1p384, in which genes are expressed under control of the promoter of the ribosomal protein gene *rpsL* (GOX0384) (Fig. 1). The resulting plasmid pBBR1p384-sdh was transferred into *G. oxydans* by conjugation, and the membrane fraction of the recombinant strain was tested for succinate/DCPIP reductase activity. Membrane preparations of *G. oxydans* and of *G. oxydans*/pBBR1p384 were used as negative controls, and membrane preparations of *A. pasteurianus* and *C. glutamicum* as positive controls (Bussmann et al. 2009; Azuma et al. 2009). The results of these enzymatic assays are shown in Table 2. As expected, no activity was measured for the two *G. oxydans* negative controls and activities of 0.12 and 3.85 U (mg membrane protein) were determined for the *A. pasteurianus* and *C. glutamicum* positive controls. The recombinant *G. oxydans* strain carrying the *A. pasteurianus* *sdhCDAB* genes showed an extremely low succinate/DCPIP reductase activity of 0.01 U (mg membrane protein), which is close to the detection limit of the assay, suggesting that expression of the structural genes was weak or that additional genes are required to form an active Sdh complex. SDS-PAGE of the membrane
3.1 Insertion of a functional succinate dehydrogenase in G. oxydans

fraction of G. oxydans with plasmid pBR1p384-sdh revealed a faint band at 67 kDa that was presumed to represent the flavoprotein subunit SdhA (Fig. 2).

Identification of an SdhE homolog in A. pasteurianus

Hederstedt et al. reported the lack of covalently bound flavin in the Bacillus subtilis Sdh when heterologously produced in E. coli and discussed the necessity of host-specific factors that allow FAD attachment (Hederstedt et al. 1987). Recently, McNeil and coworkers identified a novel accessory protein of Sdh in γ-proteobacteria. The SdhE protein promotes covalent FAD attachment to complex II-type enzymes (i.e., Sdh and fumarate reductase) (McNeil et al. 2012; McNeil and Fineman 2013b; McNeil et al. 2014). In order to identify putative SdhE homologs in A. pasteurianus, a BlastP search (Altschul et al. 1990) was performed using the SdhE protein of Serratia sp. ATCC39006 as query sequence. The 12.2 kDa protein (109 amino acid residues) encoded by the gene with the locus tag APA01_11050 was identified as putative SdhE homolog of A. pasteurianus. It showed 27% sequence identity in a 74 amino acid overlap and differed from Serratia sp. SdhE by an N-terminal extension of 20 amino acid residues including eight serine residues. The GXGxxE motif containing residues essential for the flavinylation activity of SdhE from Serratia was conserved in the APA01_11050 protein. The chromosomal localization of APA01_11050 upstream of the transcription repair factor gene mfsI and divergent to recG was reported to be the typical position of sdhE genes in α-proteobacteria (McNeil et al. 2012; McNeil and Fineman 2013a).

In order to test its influence on the formation of an active A. pasteurianus Sdh complex in G. oxydans, we amplified the APA01_11050 gene and cloned it into pBR1p384-sdh in two different ways. In pBR1p384-sdh-sdhE_{ex}, the APA01_11050 gene including its native ribosome binding

| Strain^a | Succinate/DCPIP reductase activity^b [U (mg membrane protein)^c] | Succinate/oxygen reductase activity^d [U (mg membrane protein)^c]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C. glutamicum ATCC1302</td>
<td>3.85 ± 0.42</td>
<td>0.084 ± 0.005</td>
</tr>
<tr>
<td>A. pasteurianus DSM3509</td>
<td>0.12 ± 0.09</td>
<td>0.012 ± 0.005</td>
</tr>
<tr>
<td>G. oxydans</td>
<td><0.01 ± 0.00</td>
<td>n.d.</td>
</tr>
<tr>
<td>G. oxydans/pBR1p384</td>
<td><0.01 ± 0.00</td>
<td><0.002 ± 0.000</td>
</tr>
<tr>
<td>G. oxydans/pBR1p384-sdh</td>
<td>0.01 ± 0.00</td>
<td>0.002 ± 0.000<sup>e</sup></td>
</tr>
<tr>
<td>G. oxydans/pBR1p384-sdh<sub>ex</sub></td>
<td>0.43 ± 0.07</td>
<td>0.060 ± 0.010</td>
</tr>
<tr>
<td>G. oxydans/pBR1p384-sdh<sub>ex</sub>-p<sub>x</sub>-sdhE<sub>ex</sub></td>
<td>3.99 ± 0.40</td>
<td>0.080 ± 0.040</td>
</tr>
<tr>
<td>G. oxydans/pBR1p384-sdh<sub>ex</sub>-p<sub>x</sub>-sdhE<sub>ex</sub>-p<sub>x</sub>-mfsI<sub>ex</sub></td>
<td>0.92 ± 0.15</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

^aC. glutamicum and A. pasteurianus served as positive controls, and G. oxydans and G. oxydans/pBR1p384 served as negative controls.
^bMean values and standard deviation from three biological replicates are given.
^cIncubation of the membrane fraction of strain G. oxydans/pBR1p384-sdh with 0.1 mM FAD at 30 °C for 30 min prior to the Sdh activity test resulted in a weak stimulation of succinate/oxygen reductase activity to 0.006 ± 0.000 U (mg membrane protein)"
3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans*

![Image](image.png)

Site, but not its native promoter, was cloned behind *sdhCDAB*, resulting in the artificial operon *sdhCDABE* controlled by the p384 promoter. In the *pBR1p384-sdh-puat-sdhEocr* plasmid, the APA01_11050 gene including its native ribosome binding site and its presumed native promoter was cloned downstream of *sdhCDAB* (Fig. 1). The plasmids were transferred to *G. oxydans* by conjugation, and membrane fractions of the recombinant strains were tested for succinate/DCPIP reductase activity. The strain carrying *pBR1p384-sdh-sdhEocr* showed an activity of 0.43 U (mg membrane protein)^-1^ and the one carrying *pBR1p384-sdh-puat-sdhEocr* one of 4.0 U (mg membrane protein)^-1^ (Table 2). Consequently, the co-expression of *sdhEocr* with *sdhCDAB* was sufficient to allow formation of an Sdh enzyme with succinate/DCPIP reductase activity. The tenfold difference in Sdh activity between the two strains is most likely caused by strongly differing expression levels of *sdhEocr* (see subsequent paragraphs).

Use of *Serratia* SdhE for synthesis of a functional *A. pasteurianus* Sdh in *G. oxydans*

In view of the differences in the amino acid sequences of *Serratia* SdhE and the *A. pasteurianus* Sdh homolog (APA01_11050), we wanted to determine whether *SdhEocr* was also able to serve as assembly factor for *A. pasteurianus* Sdh. To this end, we cloned the *sdhEocr* gene (locus tag Ser39006_1161) including its native ribosome binding site and its presumed native promoter behind the *sdhCDAB* genes in plasmid *pBR1p384-sdh* (Fig. 1). Transfer of the resulting plasmid *pBR1p384-sdh-puat-sdhEocr* into *G. oxydans* resulted in a recombinant strain with a succinate/DCPIP reductase activity of 0.92 U (mg membrane protein)^-1^ (Table 2). Thus, also *SdhEocr* is able to promote covalent FAD attachment to *A. pasteurianus* Sdh and thus functionality of the enzyme.

Analysis of the membrane fraction of the recombinant strains*

The membrane proteins of the recombinant *G. oxydans* strains were analyzed by SDS-PAGE (Fig. 2) and subsequent MS analysis (Table 3) in order to test for the presence of the heterologous Sdh subunits and for covalent FAD linkage to SdhA. As shown in Fig. 2a (lane 5, marked with arrow 5.1a), a prominent band with an apparent mass of about 67 kDa became visible in *G. oxydans* carrying *pBR1p384-sdh-puat-sdhEocr*, which was identified as SdhA (predicted mass of apo-SdhA 65.9 kDa) by peptide mass fingerprinting (Table 3). SdhA was also identified in the *G. oxydans* strains carrying *pBR1p384-sdh* and *pBR1p384-sdhEocr* and also in the membrane fraction of wild type *A. pasteurianus* (Fig. 2a, lanes 3, 4, and 6, protein bands marked as 3.1, 4.1, and 6.1), but was present in much lower quantities. Besides SdhA, also SdhB (calculated mass 29.3 kDa) could be unequivocally identified in *G. oxydans/pBR1p384-sdh-puat-sdhEocr*. In the case of SdhC (calculated mass 16.8 kDa) and SdhD (calculated mass 14.7 kDa), one and two peptides could be identified by MALDI-TOF-MS, respectively. Along with the high enzyme activity, these data suggest that all *A. pasteurianus* Sdh subunits were formed in *G. oxydans*.

In order to test the assumed function of *SdhEocr* as a protein required for the covalent attachment of FAD to SdhA, the membrane fractions separated by SDS-PAGE were analyzed for FAD-dependent fluorescence by transillumination at 312 nm. As shown in Fig. 2b, a clear band at about 67 kDa was detected in *G. oxydans/pBR1p384-sdh-puat-sdhEocr*. MS analysis of tryptic digests of this band confirmed that it represents SdhA (Table 3). The peptide SHTVAAQGGIGSLGNAEDNRH with the flavinylation site H56 was not detectable in the MS spectra, either in the unflavinylated (m/z 2342) or in the flavinylated state (m/z = 3128). Weak SdhA fluorescence was also observed for strain *G. oxydans/pBR1p384-sdh-sdhEocr*, but not for *G. oxydans/pBR1p384-sdh*. These results are in agreement with a requirement of SdhE for flavinylation of SdhA, as described for *Serratia* SdhE (see “Discussion”).

Succinate/oxygen reductase activities

As the succinate/DCPIP reductase assay does not detect the entire reaction catalyzed by Sdh, i.e., the reduction of
3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans*

<table>
<thead>
<tr>
<th>No. score</th>
<th>Protein (Accession)</th>
<th>Predicted mass (kDa)</th>
<th>No. of peptides</th>
<th>Sequence coverage (%)</th>
<th>MOWSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>APA01_00330 (SdhA)</td>
<td>67</td>
<td>13</td>
<td>32</td>
<td>86</td>
</tr>
<tr>
<td>3.2</td>
<td>GOX1902 (GroEL)</td>
<td>58</td>
<td>30</td>
<td>53</td>
<td>132</td>
</tr>
<tr>
<td>4.1</td>
<td>APA01_00330 (SdhA)</td>
<td>67</td>
<td>15</td>
<td>29</td>
<td>84</td>
</tr>
<tr>
<td>5.1a</td>
<td>APA01_00330 (SdhA)</td>
<td>67</td>
<td>22</td>
<td>33</td>
<td>97</td>
</tr>
<tr>
<td>5.1b</td>
<td>APA01_00330 (SdhA)</td>
<td>67</td>
<td>17</td>
<td>31</td>
<td>101</td>
</tr>
<tr>
<td>5.2</td>
<td>APA01_00340 (SdhB)</td>
<td>29</td>
<td>7</td>
<td>24</td>
<td>50</td>
</tr>
<tr>
<td>5.3</td>
<td>APA01_00310 (SdhC)</td>
<td>17</td>
<td>1</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>5.4</td>
<td>APA01_00320 (SdhB)</td>
<td>15</td>
<td>2</td>
<td>34</td>
<td>13</td>
</tr>
<tr>
<td>6.1</td>
<td>APA01_00330 (SdhA)</td>
<td>67</td>
<td>4</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

5.1a shows the results for the Coomassie-stained gel and 5.1b those for the gel analyzed by FAD-UV

ubiquinone by succinate, we also determined the succinate/oxygen reductase activity of membrane preparations with a Clark-type oxygen electrode. In this assay, ubiquinol is reoxidized by one of the terminal quinol oxidases of *G. oxydans*, cytochrome *b* oxidase (Richhardt et al., 2013) or the cyanide-insensitive cytochrome *b* oxidase ClO (Miura et al., 2013). Significant oxygen consumption rates were measured in strains also possessing succinate/DCPIP reductase activity, whereas no activity was detectable in the *G. oxydans* negative controls (Table 2). Although the succinate/oxygen reductase activities were only 14–17% of the succinate/DCPIP reductase activities, they confirm that in the presence of SDHE, the *A. pasteurianus* Sdh complex was functionally integrated into the cytoplasmic membrane of *G. oxydans* and transferred the electrons from succinate to ubiquinone. Consequently, it has to be assumed that at least a part of the Sdh population was correctly assembled and fully functional.

Impact of an active Sdh on the metabolism of *G. oxydans*

In order to test the influence of an active Sdh complex on metabolism, the *G. oxydans* strains carrying pBBR1p384, pBBR1p384-4dh, or pBBR1p384-dh-pnat-sdhE*-E* showed similar profiles of growth, mannitol consumption, and product formation as the reference strain/pBBR1p384 (Fig. 3a, b). However, acetate formed during growth was partially recycled by the Sdh-positive strain, but not by the reference strain (Fig. 3c). Acetate recombination suggests that despite the absence of succinyl-CoA synthetase, the other enzymes of TCA cycle including the heterologous Sdh allow oxidation of acetate to CO₂. Moreover, the Sdh-positive strain, but not the reference strain, transiently excreted low concentrations of fumarate (about 30 μM). In the case of *G. oxydans* with pBBR1p384-dh-pnat-sdhE*-E*, which exhibits a tenfold higher Sdh activity than pBBR1p384-dh-sdhE*-E*, growth ceased after mannitol had been completely oxidized to fructose (Fig. 3d, e). The reduced growth correlated with a reduced fructose oxidation to ketofructose in the second growth phase (Fig. 3c). As observed for *G. oxydans* pBBR1p384-dh-sdhE*-E*, acetate formation was lower than for the reference strain and about 70 μM fumarate was excreted after 28 h (Fig. 3f). The excretion of fumarate points to a limited fumarase activity in the Sdh-positive strain. As discussed below, we assume that succinate, the substrate for Sdh and the precursor of fumarate, is formed by spontaneous hydrolysis of instable succinyl-CoA.

Discussion

G. oxydans lacks the genes for 1-phosphofructokinase, succinyl-CoA synthetase, and succinate dehydrogenase, and therefore, both glycolysis and the TCA cycle are interrupted. In a study on the phylogenetic distribution of 1-phosphofructokinase, it was found that the corresponding gene is missing in most of the analyzed α-proteobacteria (Baert et al., 2010) and its absence in *G. oxydans* is thus not surprising. In contrast, metabolic pathway reconstructions made through comparative genomics by Koonin and Galperin predicted that either Sdh or fumarate reductase is present in the vast majority of organisms, with the exception of pyrococci, spirochetes, and mycoplasmas (Koonin and Galperin, 2003). The absence of Sdh and fumarate reductase in *G. oxydans* and the other *Glucobacter* species with known genome sequence (*G. oxydans* DSM3504, *Glucobacter thailandicus*, *Glucobacter frateurii*) thus may be regarded as a rare example of a genus having lost this function. Genes for succinyl-CoA synthetase are also missing in the genome of *G. oxydans* (Prust et al., 2005). Although alternative pathways for succinate formation have been described, e.g., via succinate semialdehyde dehydrogenase or succinyl-coenzyme A (CoA)/
3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans*

Acetate CoA-transferase (Schweiger et al. 2007; Green et al. 2000; Huynen et al. 1999; Mullins et al. 2008; Yuan et al. 2013), the corresponding genes are not annotated in the *G. oxydans* 621H genome (Prust et al. 2005). The genes for the residual six enzymes of the TCA cycle, i.e., citrate synthase (GOX1899), aconitase (GOX1335), isocitrate dehydrogenase (GOX1336), 2-oxoglutarate dehydrogenase (GOX0882, GOX1072, GOX2292), fumarase (GOX1643), and malate quinone oxidoreductase (GOX2070), are present in *G. oxydans*. However, except for malate/quinone oxidoreductase, the specific activities of these enzymes in cell extracts have not yet been determined. Malate/DCPIP reductase activity in membrane preparations was found to be 0.020 ± 0.008 U (mg membrane protein)\(^{-1}\) (data not shown).

As a first step to study the consequences of a functional TCA cycle on biomass yield and growth physiology of *G. oxydans*, we introduced a heterologous Sdh complex, which requires a covalently bound FAD, three iron–sulfur clusters, and a heme group for activity. The covalent binding of FAD is essential for Sdh activity, as it increases its redox potential by about 100 mV and thereby allows electron transfer from succinate to FAD (Cheng et al. 2015). In eukaryotes, where Sdh is located in the inner mitochondrial membrane, four Sdh-specific assembly factors have been identified and characterized (for a recent review see Van Vranken et al. (2015)). Sdh5 of *Saccharomyces cerevisiae* specifically binds to apo-Sdh1 (flavoprotein) and is required for covalent flavinylation by a yet unknown mechanism. Sdh8 binds to flavinylated Sdh1 and is assumed to protect the FAD cofactor from undesired oxidation reactions. Sdh6 and Sdh7 are involved in Sdh2 (iron–sulfur protein) maturation. In addition, biogenesis of the three iron–sulfur clusters of Sdh2 requires
3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans*

S. *cerevisiae* 5Ah5
S. *cerevisiae* 5Ah6
A. *pasteurianus* 5Ah4
A. *lipoflavum* 5Ah6
G. *bethea* 5Ah4
Ga. *diazotrophicus* 5Ah3
K. *medellinenis* 5Ah8
K. *xylinus* 5Ah8
S. *cerevisiae* 5Ah5
S. *cerevisiae* 5Ah6
A. *pasteurianus* 5Ah4
A. *lipoflavum* 5Ah6
G. *bethea* 5Ah4
Ga. *diazotrophicus* 5Ah3
K. *medellinenis* 5Ah8
K. *xylinus* 5Ah8

Fig. 4 Multiple sequence alignment of SdH/SdE proteins from *Saccharomyces cerevisiae* (YOL071W), *Serraria* sp. ATCC 39006 (Ser39006_11050), *Aspergillus lipoflavum* (AHO1_1466), *Acreobacter pasteurianus* FFO33283 (AP01_11050), *Granulibacter bethesdae* (GSCGDN10_0835), *Gluconacetobacter diazotrophicus* PAI 5 (GD11885), *Komagataeibacter medellinenis* NIBRC 3288 (GLX_05520), and *Komagataeibacter xylinus* E25 (H845_1665). A cluster of eight serine residues in SdH of *A. pasteurianus* is highlighted in light grey and a cluster of four consecutive arginine or lysine residues in the α-proteobacterial SdE proteins in dark grey. The conserved RGGX motif characteristic of SdH proteins is highlighted in black. *Asterisks* indicate identical amino acids, and *points* indicate conservative substitutions.

the ISU and ISA complexes (Van Vranken et al. 2015). In bacteria, much less is known on the maturation of the SdH protein. Recently, McNeil and coworkers demonstrated that the YgY protein of *Serraria* strain ATCC 39006 (a DUF339/COG2938 protein) is required for the covalent attachment of FAD to the flavoprotein subunit SdH and renamed the protein SdH (McNeil et al. 2012). They showed that SdH purified from *Serraria* wild type contained a detectable FAD cofactor, whereas SdH purified from a Δsde mutant lacked FAD. Furthermore, purified SdH from apo-SdH in cell extracts of the Δsde mutant to holo-SdH when supplemented with FAD (McNeil et al. 2012).

Table 4 Iron-sulfur cluster biosynthesis genes in *G. oxydans* 621H and *A. pasteurianus* FFO3283-01

<table>
<thead>
<tr>
<th>Gene</th>
<th>Function</th>
<th>G. oxydans locus tag</th>
<th>A. pasteurianus locus tag</th>
<th>% Amino acid sequence identity (identical aa/total aa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sufB</td>
<td>FeS assembly SufB/CD complex, SU B, scaffold protein</td>
<td>GOX0098</td>
<td>APA01_16620</td>
<td>86 (428/496)</td>
</tr>
<tr>
<td>sufC</td>
<td>FeS assembly SufB/CD complex, SU C, ABC-type ATPase</td>
<td>GOX0097</td>
<td>APA01_16610</td>
<td>81 (208/256)</td>
</tr>
<tr>
<td>sufD</td>
<td>FeS assembly SufB/CD complex, SU D</td>
<td>GOX0096</td>
<td>APA01_16660</td>
<td>50 (189/380)</td>
</tr>
<tr>
<td>sufS</td>
<td>SufS complex; cysteine desulfurase; provides sulfur from 1-cysteine and relays sulfur from SU to scaffold</td>
<td>GOX0258</td>
<td>APA01_10250</td>
<td>75 (107/143)</td>
</tr>
<tr>
<td>sufE</td>
<td>SufE complex; cysteine desulfurase; provides sulfur from 1-cysteine and relays sulfur from SU to scaffold</td>
<td>GOX1358</td>
<td>APA01_26020</td>
<td>56 (204/364)</td>
</tr>
<tr>
<td>sufR</td>
<td>HesR, iron-sulfur Fe cluster assembly protein</td>
<td>GOX1369</td>
<td>APA01_26010</td>
<td>61 (169/279)</td>
</tr>
</tbody>
</table>

Functions were in part assigned according to Roche et al. (2013), SU, subunit.

30
3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans*

SdhE homologs are present in the α-, β-, and γ-proteobacteria and in eukaryotes including humans (McNeil et al. 2012; McNeil and Firan 2013b; Van Vranken et al. 2015; McNeil and Firan 2013a). SdhE of *Serratia* is a small soluble protein of 88 amino acids including the highly conserved R64xE motif (Fig. 4). The mutations G16R and E19A within this motif impaired the activation of Sdh (McNeil and Firan 2013a). There are a number of interesting differences between SdhE of *Serratia* and Sdh5 of *S. cerevisiae*. Whereas there is evidence for FAD-binding by SdhE (reviewed in McNeil and Firan 2013b), NMR studies with Sdh5 argue against FAD binding (Eletsky et al. 2012). Moreover, Sdh5 (Hao et al. 2009), but not SdhE (McNeil et al. 2012), was required for Sdh stability and assembly. Furthermore, *Serratia* Sdh retained about 10% residual activity in the absence of SdhE (McNeil and Firan 2013a), whereas Sdh5 was strictly required in yeast for maintaining Sdh activity (Van Vranken et al. 2015). These and additional data led to different models of Sdh assembly in *Serratia* and yeast (Van Vranken et al. 2015; McNeil et al. 2012). Our results show that SdhE is required for activation of Sdh not only in γ-proteobacteria but also in α-proteobacteria. We identified the SdhE homolog of *A. pasteurianus* and showed that it is essential for functional synthesis of the *A. pasteurianus* Sdh in the heterologous host *G. oxydans*. Flavinylation of *A. pasteurianus* SdhA was only detected in the presence of SdhE when analyzed by UV-induced fluorescence (Fig. 2b). In contrast to *Serratia*, the residual activity of *A. pasteurianus* Sdh in the absence of SdhE was negligible, resembling the essentiality of SdhE for Sdh activity in yeast.

A. pasteurianus SdhE shows only 27% sequence identity to SdhE of *Serratia* and contains an N-terminal extension of 23 amino acids, which includes the striking sequence motif SSSPSSSSSAS (Fig. 4). The function of the N-terminal region is not known yet, but the fact that the SdhE protein of *Serratia* was also able to activate the *A. pasteurianus* Sdh in *G. oxydans* shows that it is not essential for interaction with SdhA and flavinylation. Moreover, this experiment showed for the first time that a γ-proteobacterial SdhE is able to activate an α-proteobacterial Sdh. The functionality of this chimeric combination of Sdh core proteins and flavinylation chaperone is presumably due to the conserved surface region of SdhE/Sdh5 (Lim et al. 2005), which includes the functionally important residues G16 and E19 (SdhE numbering) (McNeil and Firan 2013b) and therefore is key for interaction with SdhA. Compared to SdhE proteins, SdhA proteins are highly conserved, with the flavinylated histidine residue (H56 in the case of *A. pasteurianus* SdhA) and the conserved FAD-binding motif GXGXXG being located in the N-terminal region (Dym and Eisenberg 2001). In a recent study with *E. coli* Sdh, it was shown that SdhA-R286 plays an essential role in the mechanism of covalent flavinylation and that SdhA-H242 plays a role in its efficiency and completeness (Cheng et al. 2015). Exchange of either R286 or H242 reduced covalent FAD binding by >95% and about 70%, respectively (Cheng et al. 2015). Both residues are conserved in *A. pasteurianus* SdhA (H253, R297). Flavinylation of the yeast Sdh1 subunit was reported to be dependent on two spatially close C-terminal arginine residues that are distant from the FAD-binding site, Arg582 and Arg638 (Kim et al. 2012). Also, these residues are conserved in *A. pasteurianus* SdhA (R547, R601), indicating that many steps of flavin attachment are conserved in eukaryotes and proteobacteria.

The result that co-expression of *sdhE* was sufficient to obtain an active *A. pasteurianus* Sdh complex with succinate/oxygen reductase activity of the *G. oxydans* membrane fraction indicates that a holo-complex was formed that is able to transfer the electrons from succinate via FAD in SdhA and the three iron–sulphur clusters in SdhB to the ubiquinone binding site at the membrane-bound SdhCD subunits. Thus, the systems for iron–sulphur cluster formation in *G. oxydans* are apparently able to recognize apo-SdhB and to correctly insert the [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters into a protein which is naturally absent in the cell. Although the presence of the clusters still needs to be confirmed by a more direct approach, the process of holo-SdhB formation presumably does not require any additional specific assembly proteins. *G. oxydans* and *A. pasteurianus* both possess the Suf and the Nif systems for iron–sulphur cluster biogenesis (Roche et al. 2013; Prust et al. 2005; Deppenmeier and Ehrenreich 2009), and the homologous proteins show 50–92% amino acid sequence identity (Table 4).

G. oxydans possesses at least eight FAD-dependent membrane-bound dehydrogenases. In other *Glucobacter* species, four homologous enzymes were purified and shown to contain covalently bound FAD/gluconate dehydrogenase from *Glucobacter diazoyacetonicus* IFO 3271 (Shinagawa et al. 1984; Toyama et al. 2007), 2-keto-gluconate dehydrogenase from *Glucobacter melanogenus* IFO 3293 (Shinagawa et al. 1981; McIntire et al. 1985), sorbitol dehydrogenase from *G. fraterii* (Toyama et al. 2005), and fructose dehydrogenase from *Glucobacter japonicus* (Kawai et al. 2013). The mechanism by which FAD is covalently attached to the large subunits of these heterotrimeric membrane proteins is as yet unknown. If it does not occur autocatalytically, other flavinylation proteins without sequence similarity to SdhE await their discovery.

The presence of an active Sdh complex in *G. oxydans* did not lead to improved growth on mannitol. On the contrary, the strain with the highest Sdh activity of 4 U (mg membrane protein)−1 even showed growth inhibition in the second phase of cultivation on mannitol, where fructose is slowly oxidized to 5-keto-fructose (Richhardt et al. 2012). The low energy availability under these conditions in combination with the metabolic burden of strong Sdh overexpression might be
3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans*

3.1 Insertion of a functional succinate dehydrogenase in *G. oxydans*

3.1 Insertion of a functional succinate dehydrogenase in G. oxydans

3.2 Increased cell yield of *G. oxydans* on glucose

Own contribution to this publication: about 70%. I performed all experimental work described in the publication and wrote a draft of the manuscript. I am first author of the publication.

To be submitted
Metabolic engineering of *Gluconobacter oxydans* 621H for improved growth yield on glucose by prevention of gluconate and acetate formation and completion of the tricarboxylic acid cycle

Abstract

The obligatory aerobic acetic acid bacterium *Gluconobacter oxydans* rapidly oxidizes diverse carbon sources regio- and stereoselectively in the periplasm. The products mainly remain in the medium without being further oxidized. These features are favorable for oxidative biotransformations, e. g. in vitamin C production, but they are unfavorable for biomass formation, as only a small fraction of the carbon sources enter the cytoplasm. Cytoplasmic carbon metabolism is characterized by an interrupted glycolysis and an incomplete tricarboxylic acid (TCA) cycle due to the lack of phosphofructokinase, succinyl-CoA synthetase, and succinate dehydrogenase. Excess pyruvate is converted to acetate via pyruvate decarboxylase and NADP-dependent acetaldehyde dehydrogenase. In order to increase the cell yield on glucose, we sequentially replaced (i) *gdhS* encoding the cytoplasmic NADP-dependent glucose dehydrogenase by the *Acetobacter pasteurianus sdhCDABE* genes for succinate dehydrogenase and the flavinylation factor SdhE (strain IK001), (ii) *pdc* encoding pyruvate decarboxylase by a second *ndh* gene encoding a type II NADH dehydrogenase (strain IK002.1), and (iii) *gdhM* encoding the membrane-bound PQQ-dependent glucose dehydrogenase by *sucCD* from *Gluconacetobacter diazotrophicus* encoding succinyl-CoA synthetase (strain IK003.1). Analysis under controlled cultivation conditions in bioreactors revealed that formation of gluconate, 2-ketogluconate, and acetate was eliminated for IK003.1. The strain excreted some 5-ketogluconate and pyruvate instead of acetate. CO$_2$ formation was more than doubled compared to the reference strain. Growth of IK003.1 was retarded, but the cell yield was improved by 60 %, allowing a significant reduction of the glucose costs for biomass formation. Furthermore, IK003.1 serves as a suitable host for further metabolic engineering addressing bottlenecks in pyruvate and acetyl-CoA oxidation that were identified by enzyme activity measurements.
3.2 Increased cell yield of \textit{G. oxydans} on glucose

\textit{Introduction}

\textit{Gluconobacter oxydans} is a Gram-negative, strictly aerobic acetic acid bacterium belonging to the \(\alpha\)-proteobacteria. Since the 1930s it is in industrial use for vitamin C production and later also for several other oxidative biotransformations. The organism possesses a variety of membrane-bound dehydrogenases facing with their catalytic centers the periplasm and oxidizing monosaccharides and alcohols regio- and stereoselectively (Deppenmeier et al. 2002; Adachi et al. 2003b; Mamlouk and Gullo 2013; Nishikura-Imamura et al. 2014; Macauley et al. 2001; Raspor and Goranović 2008).

When cultivated on glucose, more than 90 \% of the substrate is converted to gluconate, mainly by the membrane-bound PQQ-dependent glucose dehydrogenase and to a lesser extent by the cytoplasmic NADP-dependent glucose dehydrogenase (Hanke et al. 2013). Up to now, the transporter(s) responsible for glucose uptake are not known for \textit{G. oxydans}. The presence of an incomplete PEP: carbohydrate phosphotransferase system (PTS) lacking the EIIC and EIIB components suggests a regulatory rather than a transporter function (Prust et al. 2005). Beside these PTS components, the genome of \textit{G. oxydans} lacks several genes for central metabolic enzymes, such as phosphofructokinase, phosphotransacetylase, acetate kinase, succinyl-CoA synthetase, succinate dehydrogenase, isocitrate lyase, and malate synthase. This results in non-functionality or absence of glycolysis, the tricarboxylic acid (TCA) cycle, and the glyoxylate shunt (Prust et al. 2005) and the inability to utilize acetate as carbon source. Excess pyruvate formed either via the pentose phosphate pathway or the Entner-Doudoroff pathway (Richhardt et al. 2012, 2013a) is converted to acetate via pyruvate decarboxylase and acetaldehyde dehydrogenase with acetaldehyde as intermediate (Krajewski et al. 2010). The aerobic respiratory chain involves two terminal ubiquinol oxidases, cytochrome \(b_03\) oxidase and a cyanide-insensitive cytochrome \(bd\)-type oxidase termed CIO (Richhardt et al. 2013b; Miura et al. 2013; Matsushita et al. 1987). The \(b_03\) oxidase was shown to be of prime importance for energy generation (Richhardt et al. 2013b).

The incomplete periplasmic oxidation of glucose to gluconate and ketogluconates and the restricted intracellular catabolism cause a very low cell yield in the range of 0.1 g cell dry weight (cdw) per g glucose. This makes industrial biomass production for oxidative biotransformations costly. As a first step to establish a functional TCA cycle in \textit{G. oxydans}, we recently described the plasmid-based synthesis of succinate dehydrogenase from \textit{Acetobacter pasteurianus} in \textit{G. oxydans} (Kiefler et al. 2015). This membrane-bound enzyme is composed of four subunits and contains covalently bound FAD, three iron-sulfur clusters, and one heme \(b\) moiety. Functional expression of the \(A. pasteurianus\ sdhCDAB\) genes was dependent on the co-expression of the \(sdhE\) gene encoding an assembly factor involved in flavinylation of SdhA. Despite high succinate dehydrogenase activity of up to 4 \(\mu\)mol min\(^{-1}\).
3.2 Increased cell yield of *G. oxydans* on glucose

(mg protein)\(^{-1}\), the recombinant *G. oxydans* strain did not reach a higher cell yield than the reference strain (Kiefler et al. 2015).

The aim of the current study was to increase the cell yield of *G. oxydans* 621H from glucose by preventing periplasmic and cytoplasmic glucose oxidation to gluconate as well acetaldehyde and acetate formation from pyruvate and by completion of the TCA cycle. In this way, glucose should be completely metabolized in the cytoplasm allowing for an increased precursor supply for biomass synthesis and the possibility of a complete oxidation of glucose to CO\(_2\) via the TCA cycle.

Materials and methods

2.1. **Materials**

Chemicals were obtained from Sigma-Aldrich (Taufkirchen, Germany), Qiagen (Hilden, Germany), Merck (Darmstadt, Germany) and Roche Diagnostics (Mannheim, Germany).

2.2. **Bacterial strains, plasmids, media and growth conditions**

The bacterial strains and plasmids used in this study are listed in Table 1. The *E. coli* strains were cultivated in lysogeny broth (LB) medium or on LB agar plates at 37 °C (Bertani 1951, 2004). When required, kanamycin was added to a final concentration of 50 µg mL\(^{-1}\). *A. pasteurianus* (DSM3509 = NBRC3191) was precultured as described previously (Kiefler et al. 2015). Genomic data were taken from the genome sequence of *A. pasteurianus* IFO 3283_01 (Azuma et al. 2009). *Gluconacetobacter diazotrophicus* DSM5601 was cultivated on 220 mM (4 % w/v) mannitol, 5 g L\(^{-1}\) yeast extract, 2.5 g L\(^{-1}\) MgSO\(_4\) x 7 H\(_2\)O, 1 g L\(^{-1}\) (NH\(_4\))\(_2\)SO\(_4\), 1 g L\(^{-1}\) KH\(_2\)PO\(_4\), pH 6 at 28 °C and 140 rpm. *G. oxydans* ATCC 621H Δ*upp* (ATCC 621H is identical to DSM2343), which lacks the *upp* gene for uracil phosphoribosyltransferase, was kindly obtained from Dr. Armin Ehrenreich (Technical University of Munich, Germany). This strain and *G. oxydans* DSM3504 were cultivated on medium containing 220 mM (4 % w/v) mannitol or 110 mM (2 % w/v) glucose, 5 g L\(^{-1}\) yeast extract, 2.5 g L\(^{-1}\) MgSO\(_4\) x 7 H\(_2\)O, 1 g L\(^{-1}\) (NH\(_4\))\(_2\)SO\(_4\), 1 g L\(^{-1}\) KH\(_2\)PO\(_4\) and 10 µM thymidine. The initial pH value of the medium was 6.0. *G. oxydans* possesses a natural resistance towards cefoxitin; as a precaution to prevent bacterial contaminations, cefoxitin was added to the media at a concentration of 50 µg mL\(^{-1}\). When required, kanamycin (50 µg mL\(^{-1}\)) was added. Precultures were grown in baffled shaking flasks at 30 °C and 140 rpm. Main cultures were grown in 500 mL baffled shake flasks containing 100 mL medium with the carbon source indicated in the text. Incubation was at 140 rpm and 30 °C in an Infors shaker (Basel,
3.2 Increased cell yield of *G. oxydans* on glucose

Switzerland) (Kiefler et al. 2015). For the determination of growth parameters with glucose as carbon source, the strains were cultivated in 250 mL of the same medium in a bioreactor system (DASGIP, Jülich, Germany) as described previously (Kiefler et al. 2015).

2.3. Cloning and DNA techniques

DNA manipulation was performed by standard methods as described by Green and Sambrook (Green and Sambrook 2012). For PCR reactions, genomic DNA served as template for the amplification. Competent cells of *E. coli* were prepared with CaCl$_2$ and transformed as described previously (Hanahan et al. 1991). DNA sequencing was performed by Eurofins MWG Operon (Ebersberg, Germany). Oligonucleotides were synthesized by Biolegio (Nijmegen, Netherlands) and are listed in Table 1. Conjugation of *G. oxydans* was performed by using *E. coli* S17-1 as donor strain. *G. oxydans* and *E. coli* main cultures were inoculated to an OD$_{600}$ of 0.15-0.2 and harvested at an OD$_{600}$ of 0.5-0.8. The cultures (50 mL) were centrifuged (10,414 x g, 3 min, 4 °C), resuspended in 25 mL 0.9 % NaCl and the procedure was repeated twice. The pellets were resuspended in 0.9 % NaCl and mixed. Cell suspension was dropped on a mannitol plate without antibiotics and incubated over night at 30 °C. Subsequently the cells were scraped from the agar plate and resuspended in 1 mL of mannitol medium. This cell suspension was plated in different dilutions on mannitol plates containing cefoxitin and kanamycin, thereby selecting for *G. oxydans* exconjugants.

2.4. Construction of expression plasmids for succinate dehydrogenase and succinyl-CoA synthetase

For the construction of expression plasmid pBBR1p264-sdhPnat-sdhE amplification of insert sdhCDAB-Pnat-sdhE was obtained as described previously (Kiefler et al. 2015). The HindIII/XhoI restricted insert was ligated into the HindIII/XhoI linearized vector pBBR1p264 resulting in the *sdhCDABE* expression plasmid. Expression plasmid pBBR1p264-sucCD was constructed via amplification of the *sucCD* genes from genomic DNA of *G. diazotrophicus* with oligonucleotide pair sucCD_forw_EcoRI/ sucCD_rev_HindIII_2. The insert was restricted with EcoRI/HindIII and cloned into vector pBBR1p264 also restricted with EcoRI/HindIII. These plasmids later served for construction of pAJ63a derivatives.

2.5. Genomic integration of *sdhCDABE*, *sucCD* and *ndh*

For construction of the integration plasmid pAJ63a-sdhCDAB-Pnat-sdhE-gdhS the upstream and downstream regions (500 bp each) of the *gdhS* gene (cytoplasmic glucose dehydrogenase, GOX2015) were amplified with the oligonucleotide pairs gdhS-forward-FIA/gdhS-reverse-FIA and gdhS-forward-FIB/gdhS-reverse-FIB and fused by overlap extension PCR with the oligonucleotide pair gdhS-forward-FIA/gdhS-reverse-FIB. Subsequently, the DNA fragment
3.2 Increased cell yield of *G. oxydans* on glucose

(FLAB) was cloned into the Smal-restricted vector pAJ63a. The resulting plasmid pAJ63a-FLAB-gdhS was restricted via a Smal site introduced between the *gdhS* upstream and downstream regions. Plasmid pBBR1p264-sdh-Pnat-sdhE served as template for amplification of the insert p264-sdh-Pnat-sdhE via PCR using the oligonucleotide pair p264-forw/p264-seq1-rev. The PCR fragment was phosphorylated with T4 polynucleotide kinase (Roche Diagnostics) and ligated into the Smal-linearized and shrimp alkaline phosphatase-dephosphorylated plasmid pAJ63a-FLAB-gdhS. The resulting plasmid pAJ63a-sdhCDAB-Pnat-sdhE-gdhS was checked by DNA sequencing and transferred into *G. oxydans* 621H \(\Delta upp \) via conjugation using *E. coli* S17-1 as donor strain. Exconjugants showing a kanamycin-resistant phenotype were tested by colony PCR with the oligonucleotide pair gdhS_mut_forw_2/gdhS_mut_rev_2 for integration of the plasmid into the genome. Identified integrants were subjected to excision enforcement in recombination medium and subsequently plated on 5'-fluorouracil-containing mannitol plates as described previously (Peters et al. 2013a). Kanamycin-sensitive clones were tested via colony PCR for genomic integration of the *sdhCDABE* genes and simultaneous deletion of the *gdhS* gene using the oligonucleotide pairs gdhS_mut_forw_2/gdhS_mut_rev_2 for amplification of integrated *sdhCDABE* genes and gdhS-forw/gdhS-rev for showing that an internal part of the *gdhS* gene cannot be amplified anymore. Sequencing of the *gdhS* region (gdhS_mut_forw_2/gdhS_mut_rev_2) amplified from genomic DNA using Phusion polymerase also verified the genomic integration of *sdhCDABE* in *G. oxydans*. The resulting strain was termed IK001.

For construction of the integration plasmid pAJ63a-Pnat-ndh-pdc, 500 bp upstream and downstream of the *pdc* gene encoding pyruvate decarboxylase (GOX1081) were amplified with the oligonucleotide pairs pdc-forw-FlA/pdc-rev-FlA and pdc-forw-FlB/pdc-rev-FlB using genomic DNA of *G. oxydans* 621H \(\Delta upp \) as template. The two PCR fragments were then fused via overlap extension-PCR with the oligonucleotide pair pdc-forw-FlA/pdc-rev-FlB. After phosphorylation of the fusion product with T4 polynucleotide kinase, it was cloned into the Smal-dephosphorylated vector pAJ63a vector, resulting in plasmid pAJ63a-FLAB-pdc. The *ndh* (GLS_c05650) gene with its native promoter was amplified with the oligonucleotide pair GLS-pnatc05650-forw/GLS-c05650-rev-KpnI using genomic DNA of *G. oxydans* DSM3504 as template. After phosphorylation of the *ndh* PCR product it was cloned into pAJ63a-FLAB-pdc that had been restricted with Smal and dephosphorylated. Genomic integration of the *ndh* gene into the *pdc* locus of strain IK001 was performed as described above and the selected clones were checked by colony PCR with the oligonucleotide pairs pdc-mut-forw/pdc-mut-rev and pdc-for_2/pdc-rev_2 and DNA sequencing of a fragment obtained with oligonucleotides pdc-mut-forw/pdc-mut-rev. The resulting strain was named IK002.1.
Integration plasmid pAJ63a-sucCD-gdhM was constructed by amplification of 500 bp upstream and downstream of the *gdhM* gene encoding the membrane-bound glucose dehydrogenase (GOX0265) using the oligonucleotide pairs *gdhM*-forw-FIA/*gdhM*-rev-FIA-EcoRV and *gdhM*-forw-FiB-EcoRV/*gdhM*-rev-FiB. The two PCR products were fused by overlap extension-PCR with the oligonucleotide pair *gdhM*-forw-FIA/*gdhM*-rev-FiB. The fusion product was cloned into the Smal-linearized vector pAJ63a resulting in pAJ63a-FIAB-gdhM. Insert p264-sucCD was amplified from the expression plasmid pBBR1p264-sucCD by PCR with the oligonucleotide pair p264-forw/sucCD-rev-HindIII_2 and phosphorylated with T4 polynucleotide kinase. Subsequently, the insert was ligated into dephosphorylated pAJ63a-FIAB-gdhM, which had been linearized via an introduced EcoRV restriction site between the up- and downstream *gdhM* regions. Genomic integration of the sucCD genes into the *gdhM* locus of the *G. oxydans* strain IK002.1 was performed as described above and the selected clones were checked by colony PCR with the oligonucleotide pairs gdhM-mut-forw_2/gdhM-mut-rev_2 and gdhM-forw/ghdM-rev and sequencing of a DNA fragment amplified with oligonucleotide pair gdhM-mut-forw_2/gdhM-mut-rev_2. The resulting strain was named IK003.1.

2.6. Preparation of cell extracts and membranes for enzyme assays

For the measurement of citrate synthase, aconitase, isocitrate dehydrogenase, 2-oxoglutarate dehydrogenase, succinyl-CoA synthetase and fumarase activities, *G. oxydans* strains were cultivated in 50 mL mannitol medium at 30 °C and 140 rpm and *E. coli* in 50 mL LB medium at 37 °C and 130 rpm (Infors shaker, Basel, Switzerland) for 10 h. The cells were harvested (10,414 x *g*, 3 min, 4 °C) and resuspended in 300 μL of the buffers used in the corresponding enzyme assay (see below). The cell suspension was mixed with 250 mg zirconia/silica beads (0.1-mm diameter; Biospec, Bartlesville, USA) in a 1.5 mL Eppendorf tube, and the cells were mechanically disrupted by 3 x 20 sec bead-beating in a Silamat S5 (Ivoclar Vivadent, Ellwangen, Germany). Cell debris and unbroken cells were sedimented by 30 min centrifugation at 16,100 x *g* at 4 °C. The resulting supernatant was used as cell extract and kept on ice until it was used for the assay. Membrane preparations for the determination of the activities of succinate dehydrogenase, malate:quinone oxidoeductase, and NADH dehydrogenase were performed as described by Kiefler et al. (Kiefler et al. 2015).

The protein concentration of cell extracts was determined according to Bradford using bovine serum albumin as standard (Bradford 1976). The protein concentration of membranes was determined with the bicinchoninic acid (BCA) protein assay (Interchim, Montluçon, France) using bovine serum albumin (BSA) as standard.
2.7. **Enzyme assays**

The determination of citrate synthase activity was based on the reaction of coenzyme A with 5,5-dithiobis(2-nitrobenzoic acid) (Ellman’s reagent). The absorbance of the resulting yellow 2-nitro-5-thiobenzoate dianion was measured spectrophotometrically at 412 nm as described previously (Radmacher and Eggeling 2007). Aconitase activity was assayed by a coupled assay with isocitrate dehydrogenase in which the formation of NADPH at 340 nm was monitored. The reaction mixture contained 100 mM Tris-HCl pH 8.0, 20 mM trisodium citrate, 1 mM NADP+, 1 mM MnSO₄ and 1.6 U isocitrate dehydrogenase (USB Corporation, Cleveland, OH, USA) (Baumgart and Bott 2011). Isocitrate dehydrogenase was assayed as described by measuring the formation of NADPH (Eikmanns et al. 1995; Nachlas et al. 1963). 2-Oxoglutarse dehydrogenase activity was measured at 30 °C in a photometric assay by following the initial increase in absorbance of NADH at 340 nm (Niebisch et al. 2006). The succinyl-CoA synthetase activity measurement was based on the reaction of CoASH with Ellman’s reagent (Kersters and De Ley 1968) resulting in CoA formation monitored at 412 nm (Hauge et al. 1955). The fumarase assay was conducted with malate as substrate measuring fumarate concentration at 250 nm (Genda et al. 2006). For measurement of the activity of the pyruvate dehydrogenase complex (Niebisch et al. 2006) a cell-free extract of a *G. oxydans pdc* deletion mutant was used, since the presence of pyruvate decarboxylase impedes this activity determination (Bringer-Meyer and Sahm 1993). NADH dehydrogenase activity measurement was performed with the membrane fraction following the NADH oxidation at 385 nm (Bringer et al. 1984). For all enzymes mentioned above, one unit (U) of enzyme activity is defined as 1 nmol of product formed per minute.

Succinate:DCPIP reductase and malate:DCPIP reductase activities were determined with the membrane protein fraction as described previously (Kiefler et al. 2015). One molecule DCPIP is reduced by one molecule succinate or malate. One unit (U) is defined as 1 nmol DCPIP reduced per min.

2.8. **Determination of substrates and products by HPLC analysis**

One mL culture was centrifuged for 2 min at 13,000 x g and the supernatant was filtered through a 0.2 µm filter (Millipore, MA, USA) prior to HPLC analysis. Gluconate, 2-ketogluconate and 5-ketogluconate were quantified by method A with a Shodex RSpak DE-413L 250 x 4.6 mm ID column (CS Chromatographie Service GmbH, Langerwehe, Germany) at 40 °C using 2 mM HClO₄ as the eluent at a flow rate of 0.5 mL min⁻¹. Gluconate, 2-ketogluconate, and 5-ketogluconate were detected by an UV detector at 190 nm. Retention times for 2-ketogluconate, gluconate and 5-ketogluconate were 5.5, 6.0 and 6.5 min, respectively (Richhardt et al. 2013a). Since separation of pyruvate and 5-ketogluconate was not possible by method A, method B was applied for further quantification of gluconate, 2-
3.2 Increased cell yield of *G. oxydans* on glucose

ketogluconate, and 5-ketogluconate. Method B was carried out with a Rezex organic acid HPLC column (300 x 7.8 mm, Phenomenex, Aschaffenburg, Germany) at 65 °C by an isocratic separation with 92 % 1 mM H$_2$SO$_4$ and 8 % 100 mM H$_2$SO$_4$ as eluent at a flow rate of 0.3 mL min$^{-1}$. Gluconate, 2-ketogluconate and 5-ketogluconate were detected by an UV detector at 215 nm. Retention times for 2-ketogluconate, 5-ketogluconate and gluconate were 20.3 min, 21 min and 22.6 min, respectively. Calibration curves were prepared using concentration series ranging from 0-20.4 mM gluconate, 0-20.6 mM 2-ketogluconate and 0-20.6 mM 5-ketogluconate. Pyruvate, succinate, acetate and fumarate concentrations were measured with an Organic Acid Resin 300 x 8 mm column (CS Chromatographie Service, Langerwehe, Germany) at 25 °C using 8 mM H$_2$SO$_4$ as the eluent at a flow rate of 0.6 mL min$^{-1}$. Pyruvate, succinate, acetate and fumarate were detected with an UV detector at 215 nm, and the retention times were 11.5, 14.6, 18.15 and 20.42 min, respectively. Calibration curves were made using a series of standards ranging from 1 to 10 mM of the corresponding acid.

2.9 Enzymatic determination of glucose concentrations

One mL culture was centrifuged 2 min at 13,000 x g and the supernatant was filtered through a 0.2 µm filter (Millipore, MA, USA) prior to the glucose assay. Glucose concentrations were determined by a coupled enzymatic assay with hexokinase and glucose 6-phosphate dehydrogenase by measuring NADPH formation spectrophotometrically at 340 nm using suitable dilutions of the supernatant according to the method described previously (Richhardt et al. 2013a).

2.10. Determination of cell dry weight and calculation of cell yield

At different time points during growth of the *G. oxydans* strains in a bioreactor system with four vessels, the optical densities at 600 nm were determined and the cell dry weight was determined as described (Richhardt et al. 2012). A linear correlation between cell dry weight and OD$_{600}$ was obtained with an OD$_{600}$ of 1 corresponding to 0.36 g of cell dry weight per liter. The cell yield Y_{XS} represents g cell dry weight formed per g glucose consumed.

Results

3.1 Metabolic engineering of *G. oxydans* strains for improved growth yield on glucose

The strategy to engineer a *G. oxydans* strain with improved biomass yield on glucose (Fig. 1A) involved (i) the completion of the disrupted TCA cycle by genomic integration of the *A. pasteurianus* succinate dehydrogenase genes (*sdhCDAB*) and the assembly factor gene *sdhE* and of the succinyl-CoA synthetase genes (*sucCD*) from *Ga. diazotrophicus*, (ii) the
3.2 Increased cell yield of \textit{G. oxydans} on glucose

Chromosomal integration of a second NADH dehydrogenase gene (\textit{ndh}) from the \textit{G. oxydans} strain DSM3504 (Kostner et al. 2015) to allow for increased NADH oxidation capacity, (iii) the elimination of gluconate formation from glucose by deletion of the genes \textit{gdhS} and \textit{gdhM} for the soluble and the membrane-bound glucose dehydrogenase, respectively, thereby enforcing cytosolic glucose catabolism, and (iv) elimination of acetaldehyde and acetate formation from pyruvate by deletion of the pyruvate decarboxylase gene (\textit{pdc}). The task of genomic integration of heterologous genes and deletion of undesired genes was combined by simultaneous insertion and deletion. For the expression of the genes, either the native promoters (\textit{sdhE}, \textit{ndh}) or promoters of genes encoding the ribosomal proteins L35 (GOX0264, P264), L13 (GOX0452, P452), or S12 (GOX0384, P384) were used (Kallnik et al. 2010). P384, P452, and P264 represent weak, moderate, and strong promoters, respectively.

Fig. 1B shows the seven strains with genomic modifications constructed in this work. The first series of strains, named IK-A, IK-B, and IK-C, included the weak promoter P384 in front of \textit{sdhCDAB} and the native promoter in front of \textit{sdhE} replacing the \textit{gdhS} gene, the moderate promoter P452 in front of \textit{sucCD} replacing the \textit{gdhM} gene, and P384 in front of the \textit{Zymomonas mobilis} \textit{glf} gene and \textit{glk} gene replacing the \textit{pdc} gene. The glucose facilitator gene \textit{glf} and glucokinase gene \textit{glk} were introduced in order to increase glucose uptake and catabolism. Cultivation on glucose in a bioreactor system revealed retarded and unreproducible growth of strain IK-B (Fig. S1 A). Strain IK-C showed a retarded growth, but reached a higher final OD$_{600}$ than the reference strain (Fig. S1 B). However, these genomic changes did not result in enhanced cell yields and only minimal \textit{in vitro} activities of the introduced enzymes (succinate dehydrogenase, succinyl-CoA synthetase, glucose kinase) were detectable (data not shown). A second series of strains was initiated by placing the strong promoter P264 in front of \textit{sdhCDAB} and again the native promoter in front of \textit{sdhE}, these genes replacing the \textit{gdhS} gene (IK001). In the second step, the \textit{sucCD} genes under control of P264 replaced the \textit{pdc} gene in IK001, resulting in strain IK002.0. Due to the fact that the integration of a \textit{ndh} gene into the \textit{gdhM} locus was not possible, it was not used for further strain development (Supplement). Consequently, instead of \textit{sucCD}, the \textit{ndh} gene (GLS_c05650) of \textit{G. oxydans} DSM3504 under control of its native promoter was used to replace the chromosomal \textit{pdc} gene, resulting in strain IK002.1. In the third step, the \textit{sucCD} genes under control of P264 were used to replace the \textit{gdhM} gene in IK002.1, resulting in strain IK003.1. These experiments suggested that the type of promoter used, the locus of the integration, and the order of the metabolic engineering steps influence strain stability. The genomic integrations and deletions were confirmed by colony PCR and sequencing of the resulting DNA fragments.
3.2 Increased cell yield of \textit{G. oxydans} on glucose

The growth behavior of strains IK001, IK002.1, and IK003.1 on glucose (110 mM) was studied in a bioreactor system under constant conditions of pH 6 and 15\% dissolved oxygen. \textit{G. oxydans} 621H \textit{\Delta upp} was used as reference strain. The growth parameters of the three recombinant strains and the reference strain are summarized in Table 2 and the kinetics of growth, glucose consumption, and product formation are shown in Figs. 2 and 3. The calculations of the carbon balances are summarized in Table S1.

Strain IK001 (\textit{\Delta gdhS::sdhCDABE}) containing succinate dehydrogenase and lacking the soluble glucose dehydrogenase showed a slightly faster growth rate (0.3699 \pm 0.0090 h$^{-1}$) than the reference strain (0.3634 \pm 0.0341 h$^{-1}$) (Fig. 2A) and the cell yield was not changed (Table 2). The kinetics of glucose consumption and product formation were comparable for IK001 and the reference strain (Fig. 2B and 2C), but IK001 formed slightly more 2-ketogluconate (10 mM) and less CO$_2$ (38 mM). 2-Ketogluconate is formed by the membrane-bound flavoprotein gluconate 2-dehydrogenase (GOX1230-1232) (Weenk et al., 1984; Prust et al., 2005). With 104\% the carbon balance, which does not include carbon derived from the yeast extract, was almost closed for both strains (Table 2 and Table S1). The succinate:DCPIP reductase activity of the membrane fraction of strain IK001 was 75 nmol min$^{-1}$ (mg protein)$^{-1}$ and thus far above the background activity of 4 nmol min$^{-1}$ (mg protein)$^{-1}$ of the reference strain, indicating the presence of a functional succinate dehydrogenase (Table 3). The inconspicuous growth phenotype of strain IK001 compared to the reference strain is in accordance with the minor role of the soluble glucose dehydrogenase in gluconate formation (Pronk et al. 1989; Rauch et al. 2010).

Strain IK002.1 (\textit{\Delta gdhS::sdhCDABE \Delta pdc::ndh}), which contained in addition to IK001 a second \textit{ndh} gene and lacked pyruvate decarboxylase, showed a decreased growth rate of 0.2478 \pm 0.0113 h$^{-1}$, but the cell yield was increased by 12\% (Fig. 3A, Table 2). Whereas formation of 2-ketogluconate was somewhat decreased compared to the reference strain (31 mM vs. 39 mM), IK002.1 accumulated 21 mM 5-ketogluconate in the supernatant, which was not detected in the supernatant of the reference strain (Fig. 3B). Caused by the absence of pyruvate decarboxylase, acetate formation was almost completely abolished and instead of acetate strain IK002.1 excreted comparable concentrations of pyruvate (35 mM) (Fig. 3C). The NADH dehydrogenase activity determined with the membrane fraction of IK002.1 was 9630 \pm 2620 nmol min$^{-1}$ (mg protein)$^{-1}$ and thus only 11\% higher than the activity of the reference strain (8670 \pm 1590 nmol min$^{-1}$ (mg protein)$^{-1}$). This might be due to a low activity of the native promoter of the \textit{ndh} gene from \textit{G. oxydans} strain DSM3504. The carbon balance of IK002.1 (120\%) revealed a 20\% surplus in the products, which must be caused by an increased usage of compounds of the yeast extract.
3.2 Increased cell yield of *G. oxydans* on glucose

Strain IK003.1 (ΔgdhS::sdhCDABE Δpdc::ndh ΔgdhM::sucCD) contains in addition to IK002.1 the succinyl-CoA synthetase genes, but lacks the membrane-bound PQQ-dependent glucose dehydrogenase, which is the key enzyme for the rapid initial oxidation of glucose to gluconate. The deletion of *gdhM* had noticeable consequences for growth and product formation (Fig. 3). IK003.1 exhibited retarded growth (0.1678 ± 0.0014 h⁻¹) in line with retarded glucose consumption. Glucose was completely metabolized after 28 h, whereas it required only 6 h in the reference strain (Fig. 2E). The OD₆₀₀ of IK003.1 increased until the cultivation was terminated after 28 h and reached a value of 7.9, whereas in the reference strain the OD₆₀₀ reached its maximum of 4.6 after about 12 h. Most importantly, the cell yield of IK003.1 was increased by 60 % compared to the reference strain (Fig. 3D, Table 2). As expected from the deletion of *gdhM* and *gdhS*, neither gluconate nor 2-ketogluconate were formed by strain IK003.1 (Fig. 3E). Surprisingly, like IK002.1 also strain IK003.1 formed up to 20 mM 5-ketogluconate. The succinyl-CoA synthetase activity measured in cell-free extracts of IK003.1 was 3.2 ± 1.2 nmol min⁻¹ (mg protein)⁻¹, which is 4.5-fold above the background level of 0.7 ± 1.7 nmol min⁻¹ (mg protein)⁻¹ measured in the reference strain. This suggests that the *sucCD* genes are functionally expressed, but allow only for a very low succinyl-CoA synthetase activity. Similar to strain IK002.1, IK003.1 produced 38 mM pyruvate instead of acetate (Table 2), suggesting a bottleneck in pyruvate dissimilation despite the potential presence of a functional TCA cycle. A distinctive characteristic of IK003.1 was an increased formation of CO₂, the amount being more than twice as high than in the reference strain or IK001 and IK002.1 (Table 2). The calculation of the carbon balance for IK003.1 revealed a surplus of 30 % in the products formed compared to the glucose consumed, in line with an increased utilization of yeast extract components for biomass formation.

3.3 In vitro activities of the endogenous TCA cycle enzymes and the pyruvate dehydrogenase complex

As described above, IK003.1 produced 38 mM pyruvate despite the introduction of heterologous succinyl-CoA synthetase and succinate dehydrogenase that should enable a functional TCA cycle. Even if the activity of the TCA cycle would be low, at least partial dissimilation of pyruvate should be possible. In order to find the reason(s) for the bottleneck in pyruvate dissimilation, we measured the activities of the pyruvate dehydrogenase complex and of the endogenous TCA cycle enzymes citrate synthase, aconitase, isocitrate dehydrogenase, 2-oxoglutarate dehydrogenase, fumarase, and malate:quinone oxidoreductase in cell-free extracts or the membrane fraction. As shown in Table 3, no pyruvate dehydrogenase complex activity could be detected, although *G. oxydans* possesses the corresponding genes *aceEα-aceEβ-aceF-lpd* (GOX2289-2292). In order to
3.2 Increased cell yield of *G. oxydans* on glucose

exclude technical reasons for the inability to measure pyruvate dehydrogenase complex activity, we transformed IK003.1 with plasmid pBBR1p452-pdhC expressing the genes aceEα-aceEβ-aceF-lpd under the control of promoter P452. Growth of the recombinant strain was significantly inhibited compared to the reference strain IK003.1 carrying the vector pBBR1p452 (data not shown), but in cell-free extracts a pyruvate dehydrogenase complex activity of 95 nmol min\(^{-1}\) (mg protein\(^{-1}\)) was measured, showing that the assay conditions were suitable. The apparent absence of pyruvate dehydrogenase complex activity might explain the inability for pyruvate dissimilation in strain IK003.1.

For citrate synthase, oxoglutarate dehydrogenase, fumarase, and malate:quinone oxidoreductase, activities between 10 and 20 nmol min\(^{-1}\) (mg protein\(^{-1}\)) were determined in the *G. oxydans* reference strain. The activities measured for aconitase and isocitrate dehydrogenase were much lower, for the latter enzyme even below 1 nmol min\(^{-1}\) (mg protein\(^{-1}\)). Therefore, despite the functional expression of heterologous succinate dehydrogenase and succinyl-CoA synthetase in strain IK003.1, the activity of the TCA cycle is likely to be very limited.

Discussion

With 0.1 or even less g cell dry weight per g glucose consumed, the cell yield of *G. oxydans* 621H is 60-80 % lower than that of many other industrially relevant bacteria cultivated aerobically with glucose as carbon source, such as *E. coli* (Ng 1969), even though the medium contains also yeast extract. The reasons for this low cell yield have been described in the introduction. As the industrial applications of *G. oxydans* are typically oxidative biotranformations (Pappenberger and Hohmann 2014) that require the initial production of *G. oxydans* biomass, a better cell yield would lower the production costs. Therefore, this study aimed at an increase of the cell yield of *G. oxydans* 621H on glucose by metabolic engineering. Glucose represents a comparably cheap carbon source and the metabolic alterations for an improved cell yield should not interfere with the activity of the membrane-bound dehydrogenases involved in industrial applications.

The strategy applied involved the elimination of periplasmic and cytoplasmic oxidation of glucose to gluconate, the elimination of pyruvate decarboxylation, the establishment of a functional TCA cycle by introduction of heterologous succinate dehydrogenase and succinyl-CoA synthetase, and the improvement of the NADH oxidation capacity by introduction of a second NADH dehydrogenase gene. The introduction of the heterologous genes (*sdhCDAB-sdhE, ndh, sucCD*) was combined with the simultaneous deletion of the undesired genes (*gdhS, pdc, gdhM*), resulting in strains IK001, IK002.1, and IK003.1 (Fig. 1B). The replacement of *gdhS* by the *sdh* genes of *A. pasteurianus* in IK001 led to an active succinate
3.2 Increased cell yield of *G. oxydans* on glucose

dehydrogenase, but had no influence on the growth yield. The subsequent replacement of *pdc* by *ndh* in strain IK002.1 prevented acetate formation, but led to the secretion of equivalent amounts of pyruvate.

In contrast to IK001, IK002.1 produced significant amounts 5-ketogluconate, which were not metabolized further. At the pH of 6 used during cultivation, 5-ketogluconate synthesis is presumably catalyzed by the NADP-dependent gluconate 5-dehydrogenase (GOX2187, Gno) (Fig. 1) (Hanke et al. 2013). As NADPH can presumably be converted to NADH by the transhydrogenase PntA1A2B, possibly coupled to proton extrusion, the increased NADH oxidation capacity provided by the *ndh* gene in strain IK002.1 might be responsible for 5-ketogluconate formation and reduced 2-ketogluconate synthesis, the latter being formed by the membrane-bound flavoprotein gluconate 2-dehydrogenase (GOX1230-1232) (Weenk et al. 1984; Prust et al. 2005). In a recent study, overexpression of the *ndh* gene from *G. oxydans* DSM3504 in *G. oxydans* 621H using plasmid pAJ78 stimulated growth on mannitol and prevented intermediate accumulation of fructose (Kostner et al. 2015). The authors explained the positive effect of *ndh* overexpression by a competition of the membrane-bound substrate dehydrogenases and NADH dehydrogenase for delivering electrons into the electron transport chain. In the case of IK002.1, the additional chromosomal copy of *ndh* under control of its native promoter caused an increase of the NADH dehydrogenase activity of 960 nmol min$^{-1}$ (mg protein)$^{-1}$, which did not prevent the accumulation of gluconate from glucose. The NADH dehydrogenase activity provided by plasmid pAJ78 was not reported (Kostner et al. 2015), but assuming a copy number of around 10 for pAJ78, the resulting NADH dehydrogenase activity is estimated to be in the range of 10 µmol min$^{-1}$ (mg protein)$^{-1}$. Combined with the native NADH dehydrogenase activity of *G. oxydans* 621H of 8.7 µmol min$^{-1}$ (mg protein)$^{-1}$, the total activity of *G. oxydans* 621H with pAJ78 would be around 20 µmol min$^{-1}$ (mg protein)$^{-1}$. Further studies are required to test if plasmid-based overexpression of *ndh* can stimulate growth with glucose to a larger extent than the single-copy chromosomal expression in strain IK002.1.

The growth yield of IK002.1 was increased by 12 % and the carbon balance of 120 % showed that the increased growth yield was caused by an increased utilization of compounds of the yeast extract. Besides the slightly increased NADH oxidation capacity of IK002.1, the replacement of acetate formation by pyruvate formation may play a role in this context. Acetate with a pK$_a$ of 4.78 is known to act as an uncoupler (Axe and Bailey 1995), whereas pyruvate does not act in this way due to a pK$_a$ of 2.49. Prevention of acetate formation thus could increase the energetic efficiency of strain IK002.1, allowing for an increased utilization of yeast extract components for biomass synthesis.

Strain IK003.1 formed up to 20 mM 5-ketogluconate, although both the membrane-bound and the soluble glucose dehydrogenase are absent. Two possible explanations are the
3.2 Increased cell yield of \textit{G. oxydans} on glucose

presence of another glucose dehydrogenase that has not yet been identified or the presence of a 6-phosphogluconate phosphatase that hydrolyses 6-phosphogluconate to gluconate and Pi. In \textit{E. coli}, the protein encoded by \textit{yieH} was shown to catalyze this reaction with a \(K_m \) value of 2.2 mM for 6-phosphogluconate and a \(k_{cat} \) of 16 s\(^{-1}\) (Kuznetsova et al. 2006). A BLAST search revealed that GOX1036 of \textit{G. oxydans} 621H, annotated as a putative phosphatase (Prust et al. 2005), displays 32 % sequence identity to \textit{YieH} and might function as 6-phosphogluconate phosphatase. The specific glucose 6-phosphate dehydrogenase activity in cell extracts of \textit{G. oxydans} 621H was found to be about five times higher than the 6-phosphogluconate dehydrogenase activity (Richhardt et al. 2012), which might cause an accumulation of 6-phosphogluconate. Such an accumulation was reported to be toxic for several bacteria (Richhardt et al. 2012; Fuhrman et al. 1998) and a 6-phosphogluconate phosphatase might serve to protect the cell from this situation.

A striking feature of strain IK003.1 was the 2.2-fold increased carbon dioxide formation (Table 2). In the absence of pyruvate decarboxylase, the enhanced CO\(_2\) formation is likely caused to a significant extent by the oxidative pentose phosphate cycle, which is the major pathway of sugar degradation in \textit{G. oxydans} (Richhardt et al. 2012; Hanke et al. 2013; Richhardt et al. 2013a). Glucose is completely catabolized in the cytoplasm in IK003.1 and a significant fraction via the pentose phosphate pathway, which can operate in cyclic way in \textit{G. oxydans} (Hanke et al. 2013). If the 2-ketogluconate formed in the reference strain (38 mM) would be completely oxidized to CO\(_2\) via a cyclic PPP in IK003.1, the difference in CO\(_2\) formation could be explained to a large extent. A second possible explanation for the increased CO\(_2\) level formed by IK003.1 could be the activity of a functional TCA cycle. However, as we did not detect pyruvate dehydrogenase complex activity in \textit{G. oxydans} 621H despite the presence of the corresponding genes, a flux of glucose-derived carbon into the TCA cycle might only be possible by carboxylation of PEP to oxaloacetate via PEP carboxylase (GOX0102). The next problem would be the provision of acetyl-CoA, where the only source might be the oxidation of fatty acids or other components of the yeast extract. If acetyl-CoA would be available, also other constituents of the yeast extract, such as aspartate or glutamate could be oxidized in the TCA cycle after conversion to the corresponding 2-ketoacids.

Besides the apparent absence of pyruvate dehydrogenase complex activity, also aconitase and isocitrate dehydrogenase showed very low specific activities in \textit{G. oxydans}, suggesting that despite the successfull introduction of succinate dehydrogenase and succinyl-CoA synthetase the activity of the TCA cycle appears to be very limited and a major contribution to growth may be doubted for strain IK003.1. The generally low activities of the TCA cycle enzymes in \textit{G. oxydans} wild type are not surprising in view of the absence of succinyl-CoA synthetase and succinate dehydrogenase and probably result from the
evolutionary metabolic adaptation to sugar-rich ecological niches in association with plants, which favored incomplete periplasmic oxidations rather than cytoplasmic catabolism. Formation of sugar acids may support the nutrition of the plants by solubilization of phosphorus and zinc (Intorne et al. 2009), thereby also ensuring the provision of substrates for Gluconobacter.

The present study has demonstrated that the conversion of the special catabolism of G. oxydans with a predominantly periplasmic oxidation of glucose to a more standard-type cytoplasmic catabolism with a functional TCA cycle cannot be achieved simply by provision of the missing enzymes. Rather, the activities of several other enzymes, in particular pyruvate dehydrogenase complex, aconitase, and isocitrate dehydrogenase need to be increased to allow a significant flux through the TCA cycle. Strain IK003.1 presents a suitable parent for these following metabolic approaches aiming at a growth yield in the range of 0.4 – 0.5 g cell dry weight per g glucose.

Acknowledgements

The scientific activities of the Bioeconomy Science Center were financially supported by the Ministry of Innovation, Science and Research within the framework of the NRW Strategieprojekt BioSC (No. 313/323-400-002 13). We are most grateful to Uwe Deppenmeier (Universität Bonn) for providing plasmids pBBR1p452 and pBBR1p264.

Appendix A. Supplementary materials

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/

References

3.2 Increased cell yield of *G. oxydans* on glucose

3.2 Increased cell yield of *G. oxydans* on glucose

3.2 Increased cell yield of *G. oxydans* on glucose

3.2 Increased cell yield of *G. oxydans* on glucose

Table 1

Bacterial strains, plasmids and oligonucleotides used in this work.

<table>
<thead>
<tr>
<th>Strain or plasmid or oligonucleotide</th>
<th>Description or oligonucleotide sequence (5'→3')</th>
<th>Source or added restriction sitea or purpose of use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli DH10B</td>
<td>F<sup>−</sup> mcrA ∆ (mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ∆lacz74 recA1 endA1 araD139 ∆ (ara leu) 7697 galU galK rpsL nupG λ<sup>−</sup></td>
<td>Invitrogen, Darmstadt, Germany</td>
</tr>
<tr>
<td>E. coli S17-1</td>
<td>∆recA, endA1, hsdR17, supE44, thi-1, tra<sup>+</sup></td>
<td>(Simon et al. 1983)</td>
</tr>
<tr>
<td>A. pasteurianus</td>
<td>Acetobacter pasteurianus DSM3509</td>
<td>DSMZ, Braunschweig, Germany</td>
</tr>
<tr>
<td>Ga. diazotrophicus</td>
<td>Gluconacetobacter diazotrophicus DSM5601</td>
<td>DSMZ, Braunschweig, Germany</td>
</tr>
<tr>
<td>Z. mobilis</td>
<td>Zymomonas mobilis ATCC10988</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>G. oxydans DSM3504</td>
<td>G. oxydans DSM3504</td>
<td>DSMZ, Braunschweig, Germany</td>
</tr>
<tr>
<td>G. oxydans (reference strain)</td>
<td>G. oxydans 621H derivative with a deletion of GOX0327 coding for uracil phosphoribosyltransferase (Δupp)</td>
<td>(Peters et al. 2013a)</td>
</tr>
<tr>
<td>IK-A</td>
<td>G. oxydans ΔgdhS::sdhCDABE; sdhCDAB (APA01_00310-00340) from A. pasteurianus with promoter P384 and sdhE (APA01_11050) from A. pasteurianus with its native promoter genomically integrated into the gdhS (GOX2015) locus of G. oxydans</td>
<td>This work</td>
</tr>
<tr>
<td>IK-B</td>
<td>G. oxydans ΔgdhS::sdhCDABE ΔgdhM::sucCD; strain IK-A with sucCD (GDI_2951-2952) from Ga. diazotrophicus genomically integrated with P452 promoter into the gdhM (GOX0265) locus of G. oxydans</td>
<td>This work</td>
</tr>
<tr>
<td>IK-C</td>
<td>G. oxydans ΔgdhS::sdhCDABE ΔgdhM::sucCD Δpdc::glf-glk; strain IK-B with glf (Zmob_0907) and glk (Zmob_0910) genes from Z. mobilis under promoter P384 genomically integrated into the pdc (GOX1081) locus of G. oxydans</td>
<td>This work</td>
</tr>
<tr>
<td>IK001</td>
<td>G. oxydans ΔgdhS::sdhCDABE; sdhCDAB (APA01_00310-00340) from A. pasteurianus with promoter P264 and sdhE (APA01_11050) from A. pasteurianus with its native promoter genomically integrated into the gdhS</td>
<td>This work</td>
</tr>
</tbody>
</table>
3.2 Increased cell yield of *G. oxydans* on glucose

<table>
<thead>
<tr>
<th>Strain</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>IK002.0</td>
<td>G. oxydans ΔgdhS::sdhCDAB Δpdc::sucCD; strain IK001 with with sucCD (GDI_2951-2952) genes from Ga. diazotrophicus genomically integrated with promoter P264 into the pdc (GOX1081) locus of G. oxydans</td>
<td>This work</td>
</tr>
<tr>
<td>IK002.1</td>
<td>G. oxydans ΔgdhS::sdhCDAB Δpdc::ndh; strain IK001 with ndh from G. oxydans DSM3504 (GLS_c05650) genomically integrated with its native promoter into the pdc (GOX1081) locus of G. oxydans</td>
<td>This work</td>
</tr>
<tr>
<td>IK003.1</td>
<td>G. oxydans ΔgdhS::sdhCDAB Δpdc::ndh ΔgdhM::sucCD; strain IK002.1 with sucCD (GDI_2951-2952) from Ga. diazotrophicus genomically integrated with promoter P264 into gdhM (GOX0265) locus of G. oxydans</td>
<td>This work</td>
</tr>
</tbody>
</table>

Plasmid

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAJ63a</td>
<td>Kan<sup>R</sup>; pK18mobGII derivative; lacZ, mob, oriV, GOX0327 and GOX0328</td>
<td>(Peters et al. 2013a; Katzen et al. 1999)</td>
</tr>
<tr>
<td>pAJ63a_sdhCDAB_ Pnat-sdhE-gdhS</td>
<td>Kan<sup>R</sup>; plasmid for genomic integration of P264- sdhCDAB (APA01_00310-00340) and sdhE (APA01_11050) under control of its native promoter from A. pasteurianus DSM3509 into the gdhS (GOX2015) locus of the genome of G. oxydans 621H with simultaneous deletion of gdhS</td>
<td>This work</td>
</tr>
<tr>
<td>pAJ63a-Pnat-ndh-_pdc</td>
<td>Kan<sup>R</sup>; plasmid for genomic integration of ndh (GLS_c05650) gene from G. oxydans DSM3504 under control of its native promoter into the pdc (GOX1081) locus of the genome of G. oxydans 621H with simultaneous deletion of pdc</td>
<td>This work</td>
</tr>
<tr>
<td>pAJ63a-sucCD-_gdhM</td>
<td>Kan<sup>R</sup>; gene integration plasmid; integration of sucCD (Gdia_3398-3397) genes from Ga. diazotrophicus with promoter P264 into the gdhM (GOX0265) locus of the genome of G. oxydans 621H with simultaneous deletion of gdhM</td>
<td>This work</td>
</tr>
</tbody>
</table>

Oligonucleotide

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence</th>
<th>Enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>gdhS-forw-FIA</td>
<td>CGATATGGTACCTCCCGCTGGCCAAGCCCGC</td>
<td>KpnI</td>
</tr>
<tr>
<td>gdhS-rev-FIA</td>
<td>GGCCCGGGTGTTTCTCCATCTGGGCTCCTCCTC TTGTGAATGCGAGGTTT</td>
<td>SmaI</td>
</tr>
<tr>
<td>gdhS-forw-FIB</td>
<td>AGGTGAGGCCAGATGGAAAACACCCGGGCCTC GTAAACTTATATGCCCAAC</td>
<td>Smal</td>
</tr>
<tr>
<td>gdhS-rev-FIB</td>
<td>CTAACTGCTAGAGGCCGAGGCCTGGCTGCTGATG</td>
<td>XbaI</td>
</tr>
<tr>
<td>p264-forw</td>
<td>GTTGCAGCCTGATGAGAGGA</td>
<td></td>
</tr>
<tr>
<td>p264-seq1-rev</td>
<td>TAACCTCCTAAAGGGAAC</td>
<td></td>
</tr>
</tbody>
</table>
3.2 Increased cell yield of *G. oxydans* on glucose

<table>
<thead>
<tr>
<th>Primer/PCR</th>
<th>Sequence</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>gdhS_mut_forw_2</td>
<td>GGACGCGACCTTCAGGAACC</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>gdhS_mut_rev_2</td>
<td>CAGGGCCGGATTTGCACTTG</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>gdhS_forw</td>
<td>GAAGCTGCCCAGGTTTTC</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>gdhS_rev</td>
<td>GATGTAGGTGCGCTGTCCTTC</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>gdhM-forw-FIA</td>
<td>CGTATAAGAGTTCTTACGAAAAAGCCGAGG</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>gdhM_rev-FIA</td>
<td>GAGGGCTGATCATGAAGGTCTGTTCAGCAAGG</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>gdhM-forw</td>
<td>GAGATTTCTAGAAGTTCTGAGGCGAGGCATG</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>gdhM_rev</td>
<td>AGTTGTGGATCCGTCGTAGGAG</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>sucCD_forw_EcoRI</td>
<td>CGCGGAGGGATTACACAAACGCGGATGAAAAAG</td>
<td>EcoRV</td>
</tr>
<tr>
<td>sucCD_rev_HindIII_2</td>
<td>CGTAAAGGTGGAACACGGCTGACGAGCGAG</td>
<td>HindIII</td>
</tr>
<tr>
<td>pdc-forw-FIA</td>
<td>GCTCCGGGGAATGCGATG</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>pdc_rev-FIA</td>
<td>GATCTCGGATCTGAGTACACCGGGG</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>pdc-forw-FIB</td>
<td>GGTATGAAATCATGCGCAAGCCGACGGT</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>pdc_rev-FIB</td>
<td>GGCTAGGGTATGACGTTGGGGTGG</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>pdc-mut_forw</td>
<td>CGCTTCAATCGAGTCGATACGG</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>pdc-mut_rev</td>
<td>CGCAATCCATTCGCCGATTC</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>pdc_for_2</td>
<td>TGCCGGACTACAACCCCTCC</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>pdc_rev_2</td>
<td>AGGCCATCGACGGCATTGCC</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>GLS-pnatc05650-forw</td>
<td>TATATAGGTACCCGAGGAGCAGGATGTTGC</td>
<td>KpnI</td>
</tr>
<tr>
<td>GLS-c05650-rev-Kpnl</td>
<td>GCAATTGTACCGCGACCCCCGATGTTTCTT</td>
<td>KpnI</td>
</tr>
<tr>
<td>seq_bc1-rev-3</td>
<td>TCCGGCTGATGTTGTG</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>M13uni(-43)</td>
<td>AGGGTTTCACGTCAGACGTT</td>
<td>Colony PCR</td>
</tr>
<tr>
<td>M13rev(-49)</td>
<td>GAGCGGATAAACATTTGACACGTT</td>
<td>Colony PCR</td>
</tr>
</tbody>
</table>
Table 2
Cultivation parameters, glucose consumption and product formation of the engineered *G. oxydans* strains and the reference strainsa

<table>
<thead>
<tr>
<th>Parameterc (conc. in mM)</th>
<th>Reference strain Ib</th>
<th>IK001</th>
<th>Reference strain IIb</th>
<th>IK002.1</th>
<th>Reference strain IIb</th>
<th>IK003.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD$_{600}$</td>
<td>4.7 ± 0.1</td>
<td>4.8 ± 0.1</td>
<td>4.8 ± 0.2</td>
<td>5.4 ± 0.2</td>
<td>4.6 ± 0.2</td>
<td>7.9 ± 0.2</td>
</tr>
<tr>
<td>g_{cdw}^d</td>
<td>1.673 ± 0.049</td>
<td>1.740 ± 0.036</td>
<td>1.718 ± 0.080</td>
<td>1.925 ± 0.064</td>
<td>1.663 ± 0.054</td>
<td>2.837 ± 0.068</td>
</tr>
<tr>
<td>$Y_{X/S}$ (g${cdw}$/g${glucose}$)</td>
<td>0.088 ± 0.000</td>
<td>0.090 ± 0.002</td>
<td>0.092 ± 0.004</td>
<td>0.103 ± 0.003</td>
<td>0.089 ± 0.004</td>
<td>0.142 ± 0.001</td>
</tr>
<tr>
<td>Growth rate (h$^{-1}$)</td>
<td>0.3634 ± 0.0341</td>
<td>0.3699 ± 0.0090</td>
<td>0.3510 ± 0.0474</td>
<td>0.2478 ± 0.0113</td>
<td>0.3510 ± 0.0474</td>
<td>0.1678 ± 0.0014</td>
</tr>
<tr>
<td>Glucose (consumed)</td>
<td>105.2 ± 2.9</td>
<td>107.2 ± 1.4</td>
<td>103.6 ± 1.3</td>
<td>103.7 ± 1.4</td>
<td>103.6 ± 1.3</td>
<td>110.7 ± 1.8</td>
</tr>
<tr>
<td>Gluconate</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td>3.5 ± 2.0</td>
<td>1.1 ± 0.8</td>
<td>2.0 ± 1.3</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>2-KGA</td>
<td>41.9 ± 5.0</td>
<td>51.1 ± 0.3</td>
<td>38.8 ± 2.9</td>
<td>31.2 ± 0.2</td>
<td>38.1 ± 2.9</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>5-KGA</td>
<td>0.9 ± 0.9</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td>20.9 ± 2.9</td>
<td>0.0 ± 0.0</td>
<td>17.1 ± 1.6</td>
</tr>
<tr>
<td>Acetate</td>
<td>38.1 ± 1.6</td>
<td>38.1 ± 1.2</td>
<td>34.7 ± 2.0</td>
<td>0.8 ± 0.1</td>
<td>33.7 ± 3.2</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>0.2 ± 0.1</td>
<td>0.3 ± 0.2</td>
<td>0.4 ± 0.2</td>
<td>34.6 ± 0.6</td>
<td>0.3 ± 0.2</td>
<td>37.6 ± 0.6</td>
</tr>
<tr>
<td>Succinate</td>
<td>1.8 ± 1.2</td>
<td>0.7 ± 0.2</td>
<td>1.9 ± 1.2</td>
<td>0.7 ± 0.1</td>
<td>1.6 ± 0.9</td>
<td>2.0 ± 0.1</td>
</tr>
<tr>
<td>Fumarate</td>
<td>0.01 ± 0.00</td>
<td>0.01 ± 0.00</td>
<td>0.0 ± 0.0</td>
<td>0.01 ± 0.00</td>
<td>0.01 ± 0.0</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>250.1 ± 13.3</td>
<td>212.2 ± 0.5</td>
<td>229.4 ± 6.0</td>
<td>240.3 ± 7.4</td>
<td>233.1 ± 6.6</td>
<td>517.4 ± 12.6</td>
</tr>
<tr>
<td>Carbon balance</td>
<td>104 %</td>
<td>104 %</td>
<td>102 %</td>
<td>120 %</td>
<td>99 %</td>
<td>131 %</td>
</tr>
<tr>
<td>Acid demand (2 M HCl, mL)</td>
<td>1.7 ± 0.1</td>
<td>1.4 ± 0.0</td>
<td>1.7 ± 0.1</td>
<td>3.6 ± 0.3</td>
<td>1.7 ± 0.1</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>Base demand (2 M NaOH, mL)</td>
<td>10.9 ± 0.1</td>
<td>11.3 ± 0.2</td>
<td>12.6 ± 1.2</td>
<td>13.9 ± 0.7</td>
<td>12.6 ± 1.2</td>
<td>5.8 ± 0.0</td>
</tr>
</tbody>
</table>

aMean values and standard deviation from three biological replicates are given.
bReference strain I and II correspond to *G. oxydans* 621H Δ*upp* of separate cultivations. Reference strain I compares to strain IK001; reference strain II compares to strains IK002.1 and IK003.1.
cConcentrations refer to end times for IK001 and IK002.1, 24 h; IK003.1, 28 h.
dcdw, cell dry weight. Calculation: $\text{OD}_{600} \times 0.36 = g_{cdw}$.

3.2 Increased cell yield of *G. oxydans* on glucose
Table 3
Activities of the pyruvate dehydrogenase complex and the TCA cycle enzymes

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>G. oxydans</th>
<th>E. coli DH10B<sup>b</sup></th>
<th>G. oxydans IK001</th>
<th>G. oxydans IK003.1<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyruvate dehydrogenase complex</td>
<td>0.0 ± 0.0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Citrate synthase</td>
<td>19.5 ± 3.5</td>
<td>31.8 ± 26.9</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Aconitase</td>
<td>2.7 ± 1.9</td>
<td>14.9 ± 5.2</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Isocitrate dehydrogenase</td>
<td>0.7 ± 0.6</td>
<td>369.5 ± 138.2</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Oxoglutarate dehydrogenase</td>
<td>11.0 ± 6.1</td>
<td>127.9 ± 28.7</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Succinyl-CoA synthetase</td>
<td>0.7 ± 1.7</td>
<td>18.4 ± 5.0</td>
<td>n.d.</td>
<td>3.2 ± 1.2</td>
</tr>
<tr>
<td>Succinate dehydrogenase</td>
<td>4.2 ± 3.7</td>
<td>339.0 ± 44.0</td>
<td>74.7 ± 22.9</td>
<td>n.d.</td>
</tr>
<tr>
<td>Fumarase</td>
<td>10.3 ± 8.3</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Malate::quinone oxidoreductase</td>
<td>20.4 ± 8.0</td>
<td>2.1 ± 0.9</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

^aMean values and standard deviation from three biological replicates are given.

^bE. coli served as a positive control.

^cnd, not determined.
3.2 Increased cell yield of *G. oxydans* on glucose
3.2 Increased cell yield of G. oxydans on glucose

Figure 1. (A) Scheme of the central carbon metabolism of G. oxydans with the substrate glucose at a cultivation pH of 6. Green (bold) and blue (fine) arrows show the innate metabolism, red arrows (bold) denote reactions that were introduced by genomic integration of the respective genes from various sources and red crosses mark inactivated functions. 2-KGA, 2-ketogluconate; 5-KGA, 5-ketogluconate; UQ, ubiquinone; PPP, pentose phosphate pathway; glucose-6-P, glucose 6-phosphate; fructose 6-P, fructose 6-phosphate; F-1,6P₂, fructose 1,6-bisphosphate; GAP, glyceraldehyde 3-phosphate; 3PG, 3-phosphoglycerate; KDPG, 2-keto-3-deoxy-6-phosphogluconate. (B) Series of G. oxydans strains developed in this work.
3.2 Increased cell yield of *G. oxydans* on glucose

Figure 2.
Growth (A), substrate consumption and product formation (B, C) of the *G. oxydans* reference strain I (RS, gray symbols), *G. oxydans ΔgdhS::sdhCDABE* (strain IK001, colored symbols). Gluconate, 2-ketogluconate (2-KGA), 5-ketogluconate (5-KGA), pyruvate, acetate succinate and fumarate concentrations were determined by HPLC. The cultures were grown in glucose (2 % w/v) medium at 15 % dissolved oxygen at pH 6 in a parallel bioreactor system (DASGIP, Juelich, Germany). Mean values and standard deviation from three biological replicates are shown.
3.2 Increased cell yield of *G. oxydans* on glucose

Figure 3. Growth (A, D), substrate consumption and product formation (B, C, E, F) of the *G. oxydans* reference strain II (RS, gray symbols), *G. oxydans* Δ*gdhS::sdhCDABE Δpdc::ndh* (strain IK002.1, colored symbols) and *G. oxydans* Δ*gdhS::sdhCDABE Δpdc::ndh ΔgdhM::sucCD* (strain IK003.1, colored symbols). Gluconate, 2-ketogluconate (2-KGA), 5-ketogluconate (5-KGA), pyruvate, acetate, succinate and fumarate concentrations were determined by HPLC. The cultures were grown in glucose (2 % w/v) medium at 15 % dissolved oxygen at pH 6 in a parallel bioreactor system (DASGIP, Juelich, Germany). Mean values and standard deviation from three biological replicates are shown.
Table S1
Calculation of the carbon balances of engineered strains

<table>
<thead>
<tr>
<th>Substrate/Product</th>
<th>Ref. strain I (^a) (%)</th>
<th>IK001 (%)</th>
<th>Ref. strain II (^b) (%)</th>
<th>IK002.1 (%)</th>
<th>Ref. strain II (^b) (%)</th>
<th>IK003.1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (t_0)</td>
<td>632.7 ± 17.6 100</td>
<td>644.7 ± 8.1 100</td>
<td>623.3 ± 7.7 100</td>
<td>624.8 ± 8.2 100</td>
<td>623.3 ± 7.7 100</td>
<td>666.9 ± 11.0 100</td>
</tr>
<tr>
<td>Glucose (t_{\text{end}})</td>
<td>1.8 ± 0.1 0.3</td>
<td>1.7 ± 0.0 0.3</td>
<td>1.6 ± 0.1 0.3</td>
<td>2.40 ± 0.1 0.4</td>
<td>1.7 ± 0.0 0.3</td>
<td>2.5 ± 0.0 0.4</td>
</tr>
<tr>
<td>Biomass(^b)</td>
<td>69.7 ± 21 11.0</td>
<td>72.5 ± 1.5 11.3</td>
<td>1.6 ± 3.3 11.5</td>
<td>80.2 ± 2.7 12.8</td>
<td>69.3 ± 2.2 11.1</td>
<td>118.2 ± 2.8 17.7</td>
</tr>
<tr>
<td>2-KGA</td>
<td>251.6 ± 29.9 39.8</td>
<td>306.4 ± 2.0 47.5</td>
<td>232.9 ± 17.1 37.4</td>
<td>187.3 ± 1.4 30.0</td>
<td>228.5 ± 17.4 36.7</td>
<td>9.2 ± 0.7 1.4</td>
</tr>
<tr>
<td>Gluconate</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
<td>20.9 ± 12.3 3.4</td>
<td>6.3 ± 4.6 1.0</td>
<td>11.9 ± 7.8 1.9</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>5-KGA</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
<td>125.2 ± 17.2 20.0</td>
<td>0.0 0.0</td>
<td>102.7 ± 9.9 15.4</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>0.7 ± 0.4 0.1</td>
<td>1.0 ± 0.5 0.2</td>
<td>1.2 ± 0.6 0.2</td>
<td>103.7 ± 1.8 16.6</td>
<td>0.87 ± 0.5 0.1</td>
<td>112.9 ± 1.9 16.9</td>
</tr>
<tr>
<td>Succinate</td>
<td>7.3 ± 4.8 1.2</td>
<td>2.7 ± 0.7 0.4</td>
<td>7.5 ± 4.6 1.2</td>
<td>2.6 ± 0.2 0.4</td>
<td>6.4 ± 3.5 1.0</td>
<td>8.2 ± 0.3 1.2</td>
</tr>
<tr>
<td>Acetate</td>
<td>76.2 ± 3.2 12.0</td>
<td>76.1 ± 2.4 11.8</td>
<td>69.5 ± 4.0 11.2</td>
<td>1.7 ± 0.2 0.3</td>
<td>67.5 ± 6.4 10.8</td>
<td>2.0 ± 0.1 0.3</td>
</tr>
<tr>
<td>Fumarate</td>
<td>0.04 ± 0.01 0.0</td>
<td>0.04 ± 0.00 0.0</td>
<td>0.00 0.0</td>
<td>0.05 ± 0.02 0.0</td>
<td>0.03 ± 0.02 0.0</td>
<td>0.11 ± 0.05 0.0</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>250.1 ± 13.3 39.5</td>
<td>212.2 ± 0.5 32.9</td>
<td>229.4 ± 5.9 36.8</td>
<td>240.3 ± 7.4 38.5</td>
<td>233.1 ± 6.6 37.4</td>
<td>517.4 ± 12.6 77.6</td>
</tr>
<tr>
<td>Balance</td>
<td>661.0 104</td>
<td>671.0 104</td>
<td>632.9 102</td>
<td>749.8 120</td>
<td>617.48 99</td>
<td>870.6 131</td>
</tr>
</tbody>
</table>

\(^a\)Reference strain I and II correspond to G. oxydans 621H \(\Delta \text{upp} \) of separate cultivations. Reference strain I compares to strain IK001; reference strain II compares to strains IK002.1 and IK003.1.

\(^b\)Calculation: OD\(_{600}\) x 0.36 = gCDW \(^{\text{I}} \); gCDW / 2 = carbon in cell dry weight (g l\(^{-1}\)) / 12 x 1000 = mmol C in biomass.

\(^c\)The end times for calculation were: IK001 and IK002.1, 24 h; IK003.1, 28 h.
3.2 Increased cell yield of *G. oxydans* on glucose

![Figure S1](image)

Figure S1. Growth of the *G. oxydans* reference strain *G. oxydans Δupp* (RS, gray symbols), (A) *G. oxydans ΔgdhS::P384-sdhCDAB-Pnat-sdhE ΔgdhM::P452-sucCD* (strain IK-B, black symbols); (B) *G. oxydans ΔgdhS::P384-sdhCDAB-Pnat-sdhE ΔgdhM::P452-sucCD Δpdc::P384-glf-egl* (strain IK-C, black symbols) and (C) *G. oxydans ΔgdhS::P264-sdhCDAB Pnat-sdhE Δpdc::P264-sucCD* (strain IK002.0, black symbols). The cultures were grown in glucose (2 % w/v) medium at 15 % dissolved oxygen at pH 6 in a parallel bioreactor system (DASGIP, Juelich, Germany). Mean values and standard deviation from three biological replicates are shown.
3.3 Impact of expression of functions for glucose uptake and intracellular carbon flux on growth of *G. oxydans*

Own contribution to this publication: about 70 %. I performed all experimental work described in the publication and wrote a draft of the manuscript. I am first author of the publication.

To be submitted
3.3 Impact of expression of functions for glucose uptake and intracellular carbon flux on growth of *G. oxydans*

Impact of plasmid-based expression of functions for glucose uptake and phosphorylation, glycolysis, and pyruvate oxidation to acetyl-CoA on growth of *Gluconobacter oxydans* IK003.1

Abstract

The obligatory aerobic acetic acid bacterium *Gluconobacter oxydans* is used in oxidative biotransformations due to its ability of rapid regio- and stereoselective oxidations of diverse carbohydrates in the periplasm. However, industrial applications are handicapped by the low cell yield, caused by the incomplete oxidation of the substrates and limitations in cytoplasmic catabolism such as the absence of glycolysis and the tricarboxylic acid (TCA) cycle. In a recent study aimed at an improved cell yield on glucose, we replaced the genes *gdhS* and *gdhM* for cytoplasmic and membrane-bound glucose dehydrogenase by heterologous genes for succinate dehydrogenase and succinyl-CoA synthetase, thereby preventing glucose oxidation to gluconate and introducing the missing enzymes of the TCA cycle. In addition, the *pdc* gene for pyruvate decarboxylase was replaced by a *ndh* gene for a second NADH dehydrogenase, thereby eliminating acetate formation from pyruvate and increasing the NADH oxidation capacity. The resulting strain IK003.1 showed retarded growth, but the cell yield on glucose was improved by 60%. In the present study, attempts were made to further improve strain IK003.1 by (i) enhancing glucose uptake and phosphorylation by overexpression of the genes *glf* and *glk* for a glucose facilitator from *Zymomonas mobilis* and glucose kinase, (ii) allowing for glycolysis by overexpression of the phosphofructokinase gene *pfkA* from *E. coli*, and (iii) stimulating pyruvate conversion to acetyl-CoA by overexpression of the genes *aceEα-aceEβ-aceF-lpd* for the pyruvate dehydrogenase complex. Unfortunately, neither the individual nor the combined plasmid-based overexpression of these genes improved growth and cell yield of strain IK003.1, although the functional synthesis of phosphofructokinase and the pyruvate dehydrogenase complex were confirmed by enzymatic assays. We assume that imbalances of enzymatic activities could be responsible for the absence of a growth enhancement, which need to be addressed in future studies.
Introduction

The Gram-negative, strictly aerobic, rod-shaped α-proteobacterium *Gluconobacter oxydans* belongs to the family of acetic acid bacteria. Its industrial application is in vitamin C production and several other oxidative biotransformations. Due to a versatile set of membrane-bound dehydrogenases the organism has the ability to rapidly oxidize monosaccharides and alcohols regio- and stereoselectively in the periplasm (Deppenmeier et al. 2002; Adachi et al. 2003b; Mamlouk and Gullo 2013; Nishikura-Imamura et al. 2014; Macauley et al. 2001; Raspor and Goranović 2008).

G. oxydans lacks genes of the central metabolism, such as succinyl-CoA synthetase and succinate dehydrogenase resulting in an incomplete tricarboxylic acid (TCA) cycle and phosphofructokinase causing an interrupted glycolysis (Prust et al. 2005). Furthermore, the PEP: carbohydrate phosphotransferase system (PTS) is incomplete due to the absence of EIIC and EIIB components, suggesting a regulatory rather than a transporter function (Prust et al. 2005).

Cultivation of *G. oxydans* on the carbon source glucose results in the oxidation of 90% glucose to gluconate by the membrane-bound PQQ-dependent glucose dehydrogenase. Intracellular glucose is oxidized to lesser extent by the by the cytoplasmic NADP-dependent glucose dehydrogenase (Hanke et al. 2013). So far, the transport system for glucose uptake is not known for *G. oxydans*. The incomplete glucose oxidation to gluconate and ketogluconates and the restriction of intracellular catabolism result in very low cell yields of *G. oxydans* causing high costs for the production of biomass to be used in whole-cell biotransformations.

In a recent study we increased the cell yield of *G. oxydans* by 60% by metabolic engineering via (i) the prevention of periplasmic and cytoplasmic glucose oxidation to gluconate, (ii) elimination of pyruvate decarboxylation to acetaldehyde, (iii) complementation of the TCA cycle, and (iv) integration of a second NADH dehydrogenase gene (Kiefler et al., to be submitted). The resulting strain IK003.1 did not excrete gluconate, 2-ketogluconate, and acetate anymore, but formed some 5-ketogluconate, and pyruvate instead of acetate. Measurement of enzyme activities revealed that a major reason for pyruvate accumulation was the apparent absence of pyruvate dehydrogenase activity despite the presence of the corresponding genes (*aceEα-aceEβ-aceF-lpd*). In addition also several activities of TCA cycle enzymes were quite low, such as aconitase and isocitrate dehydrogenase.

In this work, attempts were made to improve the growth properties and the cell yield of *G. oxydans* IK003.1 by improving glucose uptake and phosphorylation by expression of the glucose facilitator Glf from *Zymomonas mobilis* and glucokinase, by provision of a complete glycolytic pathway via expression of phosphofructokinase PfkA of *Escherichia coli*, and by
allowing for pyruvate conversion to acetyl-CoA via expression of the \(\text{aceE}\alpha-\text{aceE}\beta-\text{aceF}-\text{lpd} \) genes.

Materials and methods

2.1. Materials

Chemicals were obtained from Sigma-Aldrich (Taufkirchen, Germany), Qiagen (Hilden, Germany), Merck (Darmstadt, Germany) and Roche Diagnostics (Mannheim, Germany).

2.2. Bacterial strains, plasmids, media and growth conditions

The bacterial strains and plasmids used in this study are listed in Table 1. The *E. coli* strains were cultivated in lysogeny broth (LB) medium or on LB agar plates at 37 °C (Bertani 1951, 2004). When required, kanamycin was added to a final concentration of 50 \(\mu \text{g mL}^{-1} \). *Z. mobilis* cells were obtained by cultivation on 10 g L\(^{-1}\) peptone, 10 g L\(^{-1}\) yeast extract and 20 g L\(^{-1}\) glucose at 30 °C and 140 rpm. *G. oxydans* ATCC 621H \(\Delta\text{upp} \) (ATCC 621H is identical to DSM2343), which lacks the *up* gene for uracil phosphoribosyltransferase, was obtained from Armin Ehrenreich (Technical University of Munich, Germany). *G. oxydans* was cultivated on medium containing 220 mM (4 % w/v) mannitol or 110 mM (2 % w/v) glucose, 5 g L\(^{-1}\) yeast extract, 2.5 g L\(^{-1}\) Mg\(\text{SO}_4\) x 7 H\(_2\)O, 1 g L\(^{-1}\) (NH\(_4\))\(_2\)SO\(_4\), 1 g L\(^{-1}\) KH\(_2\)PO\(_4\) and 10 \(\mu \text{M} \) thymidine. The initial pH value of the medium was 6.0. *G. oxydans* possesses a natural resistance towards cefoxitin; as a precaution to prevent bacterial contaminations, cefoxitin was added to the media at a concentration of 50 \(\mu \text{g mL}^{-1} \). When required, kanamycin (50 \(\mu \text{g mL}^{-1} \)) was added. Precultures were grown in baffled shaking flasks at 30 °C and 140 rpm. Main cultures were grown in 500 mL baffled shaking flasks containing 100 mL medium with the carbon source indicated in the text. Incubation was at 140 rpm and 30 °C in an Infors shaker (Basel, Switzerland) (Kiefler et al. 2015).

For determination of growth parameters with glucose as the carbon source, cells were cultivated in 250 mL of the same medium in a bioreactor system (DASGIP, Jülich, Germany) as described previously (Kiefler et al. 2015).

For small-scale cultivations a BioLector cultivation system (m2plabs GmbH, Aachen, Germany) was used. Precultures of the *G. oxydans* strains were grown overnight in 20 mL mannitol medium (4 % mannitol) at 30 °C and 140 rpm. Per well of the 48 well microtiter Flowerplates, the strains were inoculated to an OD\(_{600}\) of 0.3 (end volume per well 1 mL). For that purpose the necessary volume of the preculture was centrifuged (3 min, 10,414 x g, 4 °C) and the pellet was resuspended in 1 mL 0.9 % NaCl and centrifuged again. The pellet was resuspended in glucose medium (2 % glucose) and incubated at 30 °C and 1,200 rpm
3.3 Impact of expression of functions for glucose uptake and intracellular carbon flux on growth of *G. oxydans* (shaking diameter 3 mm) in the BioLector. During cultivation biomass was measured as scattered light intensity (620 nm, signal gain factor of 20).

2.3. **Cloning and DNA techniques**

DNA manipulation was performed by standard methods as described by Green and Sambrook (Green and Sambrook 2012). For PCR reactions, genomic DNA served as template for amplification. Competent cells of *E. coli* were prepared with CaCl$_2$ and transformed as described by Hanahan (Hanahan et al. 1991). DNA sequencing was performed by Eurofins MWG Operon (Ebersberg, Germany). Oligonucleotides were synthesized by Biolegio (Nijmegen, Netherlands) and are listed in Table 1.

2.4. **Plasmid construction for expression of pyruvate dehydrogenase complex, glucose facilitator, glucokinase and phosphofructokinase genes**

For construction of expression plasmid pBBR1p452-pdhC genes encoding the pyruvate dehydrogenase complex (GOX2289-2292, aceEα-aceEβ-aceF-lpd) were amplified by PCR (pdhC-forw-XhoI/ pdhC-rev-KpnI) from genomic DNA of *G. oxydans* 621H. The KpnI/XhoI restricted insert was ligated into the KpnI/XhoI linearized empty vector pBBR1p452. Expression plasmid pBBR1p452-glf was designed via PCR amplification (glf-Zm-forw-EcoRI/ glf-Zm-rev-HindIII-pT) of the *glf* gene from *Z. mobilis*, followed by EcoRI/HindIII restriction and cloning into EcoRI/HindIII restricted pBBR1p452. Construction of pBBR1p264-glk was performed by the amplification (glk-forw/glk-rev) of the *glk* gene (GOX2419) from genomic DNA of *G. oxydans* 621H and KpnI/XhoI restriction. The insert was ligated into the KpnI/XhoI linearized empty vector pBBR1p264. The *glk* gene with promoter P264 was amplified (p264-forw/p264-seq1-rev) from pBBR1p264-glk and phosphorylated. Plasmid pBBR1p452-glf was digested with HindIII, filled up via Klenow reaction and dephosphorylated. Ligation of insert p264-glk into the linearized vector pBBR1p452-glf resulted in expression plasmid pBBR1p452-glf-p264-glk. The expression plasmid pBBR1p452-glf-p264-glk served as matrix for amplification of p452-glf-p264-glk via PCR (pBBR1p452-screen-forw/p264-seq1-rev). After linearization of plasmid pBBR1p452-pdhC with AegI the ends were filled up by Klenow reaction. The phosphorylated insert p452-glf-p264-glk was ligated into the linearized and dephosphorylated vector pBBR1p452-pdhC. The resulting expression plasmid pBBR1p452-pdhC-p452-glf-p264-glk was digested with EcoR81I, filled up by Klenow reaction and dephosphorylated. Expression plasmid pBBR1p384-pfkA was constructed by the amplification (pfkA-forw-HindIII/pfkA-rev-XhoI) of the *pfkA* gene from genomic DNA of *E. coli* DH10B. After HindIII/XhoI restriction the insert was cloned into the HindIII/XhoI linearized vector pBBR1p384. Insert p384-pfkA amplified (p384-seq-forw/p384-seq-rev) from
expression plasmid pBBR1p384-pfkA via PCR, phosphorylated and ligated into pBBR1p452-
phdC-p452-glf-p264-glk resulting in expression plasmid pIK1.

2.5. Enzyme assays

G. oxydans strains were grown in 50 mL mannitol medium at 30 °C and 140 rpm and _E. coli_ in 50 mL LB medium at 37 °C and 130 rpm (Infors shaker, Basel, Switzerland) for 10 h. The cells were centrifuged at 10,414 x g for 3 min at 4 °C and resuspended in the corresponding buffer. 300 μl of the cell suspension was mixed with 250 mg zirconia/silica beads (0.1-mm diameter; Biospec, Bartlesville, OK) in a 1.5 mL Eppendorf tube, and the cells were mechanically disrupted by three 20 sec shakings in a Silamat S5 (Ivoclar Vivadent, Ellwangen, Germany). Cell debris and unbroken cells were separated by 30 min centrifugation at 16,100 x g at 4 °C. The resulting cell extract was kept on ice until it was used for the assay (Kiefler et al., to be submitted).

Pyruvate dehydrogenase complex activity was determined as described previously using pyruvate as substrate measuring the absorbance of NADH at 340 nm (Niebisch et al. 2006). Activity of glucokinase was measured via a coupled assay with glucose-6-phosphate dehydrogenase monitoring the reduction of NADP+ to NADPH + H+ at 340 nm. The assay consisted of 50 mM TrisHCl pH 7.5, 10 mM MgCl2, 2 mM ATP, 0.2 mM NADP+, 1.5 U/mL glucose-6-phosphate dehydrogenase and cell extract. The reaction was started by the addition of 0.5 mM glucose. Phosphofructokinase activity was determined as described by Santamaria et al. (Santamaria et al. 2002) using an enzymatic coupled assay with pyruvate kinase and lactate dehydrogenase. One unit (U) of enzyme activity was defined as 1 nmol of product formed per minute.

2.6. Determination of substrates and products by HPLC analysis

One mL culture was centrifuged for 2 min at 13,000 x g and the supernatant was filtered through a 0.2 μm filter (Millipore, MA, USA) prior to HPLC analysis. Gluconate, 2-ketogluconate and 5-ketogluconate were quantified by a Rezex organic acid HPLC-column (300 x 7.8 mm, Phenomenex, Aschaffenburg, Germany) at 65 °C by an isocratic separation with 92 % 1 mM H2SO4 and 8 % 100 mM H2SO4 as eluent at a flow rate of 0.3 mL min⁻¹. Gluconate, 2-ketogluconate and 5-ketogluconate were detected by an UV detector at 215 nm. Retention times for 2-ketogluconate, 5-ketogluconate and gluconate were 20.3 min, 21 min and 22.6 min, respectively. Calibration curves were made using different metabolite concentrations, ranging from 0-20.4 mM gluconate, 0-20.6 mM 2-ketogluconate and 0-20.6 mM 5-ketogluconate (Kiefler et al., to be submitted). Pyruvate, succinate, acetate and fumarate concentrations were measured with an Organic Acid Resin 300 x 8 mm column (CS Chromatographie Service, Langerwehe, Germany) at 25 °C using 8 mM H2SO4 as the
eluent at a flow rate of 0.6 mL min\(^{-1}\). Pyruvate, succinate, acetate and fumarate were detected with an UV detector at 215 nm, and the retention times were 11.5, 14.6, 18.15 and 20.42 min, respectively. Calibration curves were made using a series of standards ranging from 1 to 10 mM of the corresponding substrate (Kiefler et al. 2015).

2.7. **Enzymatic determination of glucose concentrations**

One mL culture was centrifuged 2 min at 13,000 x g and the supernatant was filtered through a 0.2 µm filter (Millipore, MA, USA) prior to the glucose assay. Glucose concentrations were determined photometrically at 340 nm using suitable dilutions of the supernatant according to the method described by Richhardt et al. (Richhardt et al. 2013a).

2.8. **Determination of cell dry weight and calculation of cell yield**

At three different time points during the growth of *G. oxydans* 621H strains on glucose in a bioreactor system with four vessels, the optical densities at 600 nm were determined and the cell dry weight was determined according to Richhardt et al. (Richhardt et al. 2012). A linear correlation between cell weight (dry weight) and OD\(_{600}\) was obtained, and an OD\(_{600}\) of 1 corresponded to 0.36 g of cells (dry weight) per liter. The cell yield \(Y_{X/S}\) represents g cell dry weight formed per g glucose consumed (Kiefler et al., to be submitted).

Results

3.1 **Potential metabolic bottlenecks of *G. oxydans* IK003.1**

In a recent study (Kiefler et al., to be submitted) we constructed a derivative of the *G. oxydans* wild type strain 621H, termed IK003.1, in which the *gdhS* gene for the soluble NADP-dependent glucose dehydrogenase was replaced by the *A. pasteurianus* genes *sdhCDAB* and *sdhE* for succinate dehydrogenase and the assembly protein SdhE, the *pdc* gene for pyruvate decarboxlyase was replaced by the *ndh* gene for NADH dehydrogenase from *G. oxydans* DSM3504, and the *gdhM* gene for the membrane-bound glucose dehydrogenase was replaced by the *sucCD* genes of *Ga. diazotrophicus*. Strain IK003.1 showed a slowed glucose consumption and growth, some 5-ketogluconate formation possibly by dephosphorylation of 6-phosphogluconate and oxidation by gluconate 5-dehydrogenase, pyruvate formation instead of acetate, and strongly increased CO\(_2\) formation. Importantly, the cell yield was increased by 60 % compared to the parental strain.

In this study, we addressed three potential metabolic bottlenecks of strain IK003.1 (Fig. 1). As the slowed glucose consumption might be due to limitations in glucose uptake and phosphorylation, we attempted to improve these functions by overexpression of the glucose facilitator gene *glf* of *Z. mobilis* (Parker et al. 1995 Mol Microbiol 15 795-802; Weisser et al.
The production of 5-ketogluconate and the slow glucose consumption might also be caused by limitations in the flux capacity of the pentose phosphate pathway (PPP) and the Entner-Doudoroff pathway (EDP) (Richhardt et al. 2012, 2013, Hanke et al. 2013). We therefore attempted to create a functional glycolysis by overexpression of the \textit{E. coli} \textit{pfkA} gene for phosphofructokinase, an enzyme that is absent in \textit{G. oxydans}. The possibility of glycolytic breakdown in addition to the PPP and EDP might increase the metabolic flux capacity for conversion of glucose to pyruvate. The third bottleneck we addressed concerned the apparent absence of pyruvate dehydrogenase complex activity, explaining pyruvate formation by strain IK003.1. To provide this activity, the corresponding endogenous genes \textit{aceEα-aceEβ-aceF-lpd} were overexpressed.

3.2 Influence of individual expression of glf-glk, pfkA, and \textit{aceEα-aceEβ-aceF-lpd} on growth of \textit{G. oxydans} IK003.1

For the investigation of the effects of individual expression of \textit{glf-glk}, \textit{pfkA}, and \textit{aceEα-aceEβ-aceF-lpd}, the expression plasmids \textit{pBBR1p452-glf-p264-glk}, \textit{pBBR1p384-pfkA}, and \textit{pBBR1p452-pdhC} (carrying \textit{aceEα-aceEβ-aceF-lpd}) were constructed as described in Materials and Methods and transferred into the parent strain and IK003.1. The same strains transformed with the vector \textit{pBBR1p452} were used as reference strains. The eight strains were cultivated in a BioLector microcultivation system with 110 mM glucose as carbon source. As shown in Fig. 2, the three expression plasmids had a slightly (\textit{pBBR1p452-glf-p264-glk}, \textit{pBBR1p384-pfkA}) or moderately (\textit{pBBR1p452-pdhC}) negative effect on the growth of the parent strain and IK003.1.

3.3 Influence of combined expression of glf-glk, pfkA, and \textit{aceEα-aceEβ-aceF-lpd} on growth of \textit{G. oxydans} IK003.1

In a next attempt, the influence of the combined overexpression of \textit{glf-glk}, \textit{pfkA}, and \textit{aceEα-aceEβ-aceF-lpd} was tested. For this purpose, the 16-kb expression plasmid \textit{pIK1} was constructed as described in Materials and Methods and transferred into strain IK003.1. As reference strain, \textit{G. oxydans} 621H ∆\textit{upp} carrying \textit{pBBR1p452} was used. The two strains were cultivated in a bioreactor system under constant conditions of pH 6 and 15 % dissolved oxygen using 110 mM glucose as carbon source. In Fig. 3 and Table 2, the growth parameters, glucose consumption, and product formation of the two strains are displayed. In addition, the corresponding data for \textit{G. oxydans} IK003.1 and 621H ∆\textit{upp} reported before (Kiefler et al., to be submitted) are shown to allow for a direct comparison of the influence of plasmid \textit{pIK1} on the behaviour of strain IK003.1.
The growth rate of strain IK003.1/pIK1 (0.0638 ± 0.0091 h\(^{-1}\)) was reduced compared to IK003.1 (0.1678 ± 0.0014 h\(^{-1}\)), 621H ∆upp (0.3510 ± 0.0474 h\(^{-1}\)), and 621H ∆upp/pBBR1p452 (0.3253 ± 0.0110 h\(^{-1}\)). The final OD\(_{600}\) of IK003.1/pIK1 was 33 % higher than for 621H ∆upp/pBBR1p452, but 23 % lower than for IK003.1 without a plasmid. Similarly, the cell yield of IK003.1/pIK1 (0.116 ± 0.011 g\text{cdw} (g\text{glucose})\(^{-1}\)) was 51 % higher than for 621H ∆upp/pBBR1p452, but 18 % lower than for IK003.1. Thus, contrary to our aim, plasmid pIK1 did not improve the growth properties of strain IK003.1, but even had a negative influence. When comparing the products formed by IK003.1/pIK1 and IK003.1 without plasmid, no drastic changes were observed. The plasmid-carrying strain formed comparable amounts of pyruvate (36.2 mM vs. 37.2 mM), twice as much succinate (4.5 mM vs. 2.0 mM), and 3.8 % more carbon dioxide. With 135 %, also the carbon balance of IK003.1/pIK1 was close to that of IK003.1.

3.4 In vitro activities of homologous and heterologous expressed genes in G. oxydans

To test whether the plasmid-borne genes for glucokinase, phosphofructokinase, and pyruvate dehydrogenase complex were functionally expressed in G. oxydans IK003.1/pIK1, the corresponding enzyme activities were determined in cell-free extracts in comparison to the parental strain 621H ∆upp. In the case of glucokinase, the specific activity of IK003.1/pIK1 (6.7 ± 2.8 nmol min\(^{-1}\) (mg protein)\(^{-1}\)) was 47 % decreased rather than increased compared to the reference strain (12.6 ± 2.2 nmol min\(^{-1}\) (mg protein)\(^{-1}\)). Expression of the E. coli pfkA gene in G. oxydans IK003.1 with plasmid pIK1 resulted in a specific phosphofructokinase activity of 62 ± 23 nmol min\(^{-1}\) (mg protein)\(^{-1}\). In the case of pyruvate dehydrogenase complex, expression of the endogeneous aceEα-aceEβ-aceF-lpd genes with plasmid pIK1 led to an activity of 95 nmol min\(^{-1}\) (mg protein)\(^{-1}\). Thus, phosphofructokinase and pyruvate dehydrogenase complex were functionally synthesized in G. oxydans IK003.1/pIK1.

Discussion

In a recent study we metabolically engineered G. oxydans 621H to obtain strain IK003.1 with a 60 % increased cell yield on glucose, allowing to decrease the costs for biomass synthesis in industrial applications. Here, we tried to further improve IK003.1 by plasmid-based expression of genes considered as beneficial to eliminate metabolic bottlenecks. Therefore, the 16-kb plasmid pIK1 was constructed which contains genes for a glucose facilitator and glucokinase in order to improve glucose uptake and phosphorylation, for phosphofructokinase in order to provide a functional glycolysis, and for the pyruvate dehydrogenase complex in order to allow pyruvate oxidation to acetyl-CoA and its oxidation...
3.3 Impact of expression of functions for glucose uptake and intracellular carbon flux on growth of \textit{G. oxydans}

in the TCA cycle. The presence of plasmid plK1 in strain IK003.1 did, however, not improve the growth properties, but rather reduced the growth rate and the cell yield on glucose compared to the plasmid-free IK003.1 strain. Overexpression of the endogenous \textit{glk} gene caused a two-fold reduction of the specific glucokinase activity in cell extracts rather than an increase. The functionality of the glucose facilitator Gif from \textit{Z. mobilis} in \textit{G. oxydans} was not tested. Expression of \textit{E. coli} \textit{pfkA} led to the synthesis of functional phosphofructokinase, which should allow a functional glycolysis. Further studies are required to confirm usage of the glycolytic pathway experimentally, e.g. by labelling studies with 13C-glucose. Overexpression of the endogenous \textit{aceE\textalpha-aceE\textbeta-aceF-lpd} genes led to a specific pyruvate dehydrogenase complex activity of 95.0 ± 59.0 nmol min-1 (mg protein)-1. Despite this high activity, strain IK003.1/plK1 still accumulated pyruvate to a similar concentration as strain IK003.1 without detectable pyruvate dehydrogenase complex activity. The inability to oxidize pyruvate could be due to a deficiency in NAD+ and coenzyme A, which are essential substrates of the pyruvate dehydrogenase complex reaction, or to a deficiency in the subsequent enzymatic steps of the TCA cycle, in particular citrate synthase. The specific activity of citrate synthase measured in cell-free extracts of \textit{G. oxydans} was 20 nmol min-1 (mg protein)-1 (Kiefler et al., to be submitted) and thus five-fold lower than the pyruvate dehydrogenase complex activity in IK003.1/plK1. This might cause an accumulation of acetyl-CoA, which is known to be an allosteric inhibitor of pyruvate dehydrogenase complex. The measured activities of aconitase and isocitrate dehydrogenase in cell-free extracts of \textit{G. oxydans} were much lower than that of citrate synthase (Kiefler et al., to be submitted), suggesting that even in the case of sufficient citrate synthase activity the TCA cycle flux would stagnate soon. In summary, these results show that overproduction of single enzymes cannot solve the problem of a weak TCA cycle activity. Thus, future work should aim at the provision of sufficient and balanced activities of all TCA cycle enzymes in order to allow a complete oxidation of pyruvate to CO\textsubscript{2} with a concomitant gain in energy via oxidative phosphorylation and in cell yield.

Acknowledgements

The scientific activities of the Bioeconomy Science Center were financially supported by the Ministry of Innovation, Science and Research within the framework of the NRW Strategieprojekt BioSC (No. 313/323-400-002 13). We are most grateful to Uwe Deppenmeier (Universität Bonn) for providing plasmids pBBR1p384, pBBR1p452 and pBBR1p264.
3.3 Impact of expression of functions for glucose uptake and intracellular carbon flux on growth of *G. oxydans*

References

3.3 Impact of expression of functions for glucose uptake and intracellular carbon flux on growth of G. oxydans

3.3 Impact of expression of functions for glucose uptake and intracellular carbon flux on growth of *G. oxydans*

Table 1
Bacterial strains, plasmids and oligonucleotides used in this work

<table>
<thead>
<tr>
<th>Strain or plasmid or oligonucleotide</th>
<th>Description or oligonucleotide sequence (5’→3’)</th>
<th>Source or added restriction site*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli DH10B</td>
<td>$F^{-} \text{mcrA} \Delta (\text{mrr-hsdRMS-mcrBC}) \Phi80lacZAΔM15$ Δ lacX74 recA1 endA1 araD139 Δ (ara leu) 7697 galU galK rpsL $\text{nupG} \lambda^{-}$</td>
<td>Invitrogen, Darmstadt, Germany</td>
</tr>
<tr>
<td>E. coli S17-1</td>
<td>Δ recA, endA1, hsdR17, supE44, thi-1, tra$^+$</td>
<td>(Simon et al. 1983)</td>
</tr>
<tr>
<td>Z. mobilis</td>
<td>ATCC29191, wild type strain</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>G. oxydans Δupp (reference strain)</td>
<td>G. oxydans 621H derivative with a deletion of GOX0327 coding for uracil phosphoribosyltransferase (Δupp)</td>
<td>A. Ehrenreich (TU Munich), (Peters et al. 2013a)</td>
</tr>
<tr>
<td>G. oxydans Δupp/pBBR1p452</td>
<td>G. oxydans 621H derivative with a deletion of GOX0327 coding for uracil phosphoribosyltransferase (Δupp) carrying plasmid pBBR1p452</td>
<td>This work</td>
</tr>
<tr>
<td>IK003.1</td>
<td>G. oxydans ΔgdhS::sdhCDABE Δpdc::ndh ΔghdhM::sucCD; sdhCDAB (APA01_00310-00340) from A. pasteurianus with promoter P264 and sdhE (APA01_11050) from A. pasteurianus with its native promoter genomically integrated into the gdhS (GOX2015) locus of G. oxydans; ndh from G. oxydans DSM3504 (GLS_c05650) genomically integrated with its native promoter into the pdc (GOX1081) locus of G. oxydans; sucCD (GDI_2951-2952) from Ga. diazotrophicus genomically integrated with promoter P264 into gdhM (GOX0265) locus of G. oxydans</td>
<td>Kiefler et al., to be submitted</td>
</tr>
<tr>
<td>IK003.1/plK1</td>
<td>G. oxydans ΔgdhS::sdhCDABE Δpdc::ndh ΔghdhM::sucCD carrying plasmid plK1, see below</td>
<td>This work</td>
</tr>
<tr>
<td>Plasmid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBBR1p264</td>
<td>KanR, pBBR1MCS-2 derivative containing the 5'-UTR of GOX0264</td>
<td>(Kallnik et al. 2010; Kovach et al. 1995)</td>
</tr>
<tr>
<td>pBBR1p452</td>
<td>KanR, pBBR1MCS-2 derivative containing the 5'-UTR of GOX0452</td>
<td>(Kallnik et al. 2010; Kovach et al. 1995)</td>
</tr>
<tr>
<td>pBBR1p384</td>
<td>KanR, pBBR1MCS-2 derivative containing the 5'-UTR of GOX0384</td>
<td>Uwe Deppenmeier, Bonn</td>
</tr>
<tr>
<td>pBBR1p452-pdhC</td>
<td>pBBR1p452 derivative expressing pdhC (GOX2289-2292)</td>
<td>This work</td>
</tr>
<tr>
<td>pBBR1p452-glf</td>
<td>pBBR1p452 derivative expressing glf (Zmob_0907)</td>
<td>This work</td>
</tr>
<tr>
<td>pBBR1p264-glk</td>
<td>pBBR1p264 derivative expressing glk (GOX2419)</td>
<td>This work</td>
</tr>
<tr>
<td>pBBR1p452-glf-p264-glk</td>
<td>pBBR1p452 derivative expressing glf (Zmob_0907) and glk (GOX2419)</td>
<td>This work</td>
</tr>
<tr>
<td>pBBR1p384-pfkA</td>
<td>pBBR1p384 derivative expressing pfkA (ECDH10B_4105)</td>
<td>This work</td>
</tr>
<tr>
<td>plK1</td>
<td>pBBR1p452 derivative expressing pdhC (GOX2289-</td>
<td>This work</td>
</tr>
</tbody>
</table>
3.3 Impact of expression of functions for glucose uptake and intracellular carbon flux on growth of *G. oxydans*

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>2292) under promoter P452, glf (Zmob_0907) with promoter P452, glk (GOX2419) with promoter P264 and pfkA (ECDH10B_4105) with promoter P384</th>
</tr>
</thead>
<tbody>
<tr>
<td>p264-forw</td>
<td>GTTGCACCTGAGTACGAGGAGGA</td>
</tr>
<tr>
<td>p264-seq1-rev</td>
<td>TAACCGCTTAAGGGAAC</td>
</tr>
<tr>
<td>pdhC-forw-Xhol</td>
<td>GAAACCTCGAGATTCCATCAGGACCCGTC</td>
</tr>
<tr>
<td>pdhC-rev-KpnI</td>
<td>TATATAGGTAACCAGGACCGCTGCACTGGAT</td>
</tr>
<tr>
<td>glf-Zm-forw-EcoRI</td>
<td>GATATAGGACCTCAAGGAGGAGAAAGGTGCA</td>
</tr>
<tr>
<td>glf-Zm-rev-HindIII-pT</td>
<td>CGCGCGAGCTTCTCACTTACGCTGTATGTC</td>
</tr>
<tr>
<td>glk-forw</td>
<td>GCTATACTCGAGGCGAGGATTTGAGGTGCC</td>
</tr>
<tr>
<td>glk-rev</td>
<td>GCTATAGGTACAAACGGCGGCTGGACTGAGAGGC</td>
</tr>
<tr>
<td>pfkA-forw-HindIII</td>
<td>CGCGCGAAGCTTCCAAAGATTCAGAGGAGGTC</td>
</tr>
<tr>
<td>pfkA-rev-Xhol</td>
<td>CGCGCGCTCAGACATGTCAGAGAATTCAGCATGTAGG</td>
</tr>
<tr>
<td>p384-seq-forw</td>
<td>AAGACGCGGAGGCAATGAGAGAGGC</td>
</tr>
<tr>
<td>p384-seq-rev</td>
<td>CTTCAGCGCTCATGCGGATGTGGA</td>
</tr>
<tr>
<td>pBBR1p452-screen-forw</td>
<td>CTCATAGGACGAGTCTATGACC</td>
</tr>
<tr>
<td>pBBR1p452-screen-rev</td>
<td>CAGAGGAACAGCTATGACC</td>
</tr>
<tr>
<td>M13uni(-43)</td>
<td>AGGGTTTTTCAGTGAGCGAGCGTT</td>
</tr>
<tr>
<td>M13rev(-49)</td>
<td>GAGCGGATACAAATTTACACAGAGG</td>
</tr>
</tbody>
</table>
3.3 Impact of expression of functions for glucose uptake and intracellular carbon flux on growth of *G. oxydans*

Table 2
Cultivation parameters, glucose consumption and product formation of the engineered *G. oxydans* strains and the reference strains.

<table>
<thead>
<tr>
<th>Parameter^c (conc. in mM)</th>
<th>Reference strain I^b</th>
<th>IK003.1</th>
<th>Reference strain II^b</th>
<th>IK003.1/pIK1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD<sub>600</sub></td>
<td>4.6 ± 0.2</td>
<td>7.9 ± 0.2</td>
<td>4.6 ± 0.2</td>
<td>6.1 ± 0.4</td>
</tr>
<tr>
<td>g<sub>cdw</sub>^d</td>
<td>1.663 ± 0.054</td>
<td>2.837 ± 0.068</td>
<td>1.656 ± 0.085</td>
<td>2.194 ± 0.126</td>
</tr>
<tr>
<td>Y<sub>X/S</sub>(g<sub>cdw<gsub>/g</sub> glucose)</td>
<td>0.089 ± 0.004</td>
<td>0.142 ± 0.001</td>
<td>0.077 ± 0.003</td>
<td>0.116 ± 0.011</td>
</tr>
<tr>
<td>Y<sub>X/S</sub>(% of ref.)</td>
<td>100</td>
<td>160</td>
<td>100</td>
<td>151</td>
</tr>
<tr>
<td>Growth rate (h<sup>-1</sup>)</td>
<td>0.3510 ± 0.0474</td>
<td>0.1678 ± 0.0014</td>
<td>0.3253 ± 0.0110</td>
<td>0.0638 ± 0.0091</td>
</tr>
<tr>
<td>Glucose (consumed)</td>
<td>103.6 ± 1.3</td>
<td>110.7 ± 1.8</td>
<td>108.1 ± 1.7</td>
<td>105.8 ± 4.8</td>
</tr>
<tr>
<td>Gluconate</td>
<td>2.0 ± 1.3</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td>0.2 ± 0.2</td>
</tr>
<tr>
<td>2-KGA</td>
<td>38.1 ± 2.9</td>
<td>1.5 ± 0.1</td>
<td>39.7 ± 2.5</td>
<td>1.7 ± 0.2</td>
</tr>
<tr>
<td>5-KGA</td>
<td>0.0 ± 0.0</td>
<td>17.1 ± 1.6</td>
<td>3.6 ± 2.6</td>
<td>14.4 ± 0.3</td>
</tr>
<tr>
<td>Acetate</td>
<td>33.7 ± 3.2</td>
<td>1.0 ± 0.1</td>
<td>30.3 ± 1.5</td>
<td>3.1 ± 0.3</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>0.3 ± 0.2</td>
<td>37.6 ± 0.6</td>
<td>0.6 ± 0.2</td>
<td>36.2 ± 0.1</td>
</tr>
<tr>
<td>Succinate</td>
<td>1.6 ± 0.9</td>
<td>2.0 ± 0.1</td>
<td>1.9 ± 1.1</td>
<td>4.5 ± 0.0</td>
</tr>
<tr>
<td>Fumarate</td>
<td>0.01 ± 0.0</td>
<td>0.03 ± 0.01</td>
<td>0.00 ± 0.0</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>CO<sub>2</sub></td>
<td>233.1 ± 6.6</td>
<td>517.4 ± 12.6</td>
<td>228.5 ± 2.7</td>
<td>536.8 ± 9.3</td>
</tr>
<tr>
<td>Carbon balance</td>
<td>99 %</td>
<td>131 %</td>
<td>96 %</td>
<td>135 %</td>
</tr>
<tr>
<td>Acid demand (2 M HCl, mL)</td>
<td>1.7 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td>2.0 ± 0.1</td>
<td>0.3 ± 0.0</td>
</tr>
<tr>
<td>Base demand (2 M NaOH, mL)</td>
<td>12.6 ± 1.2</td>
<td>5.8 ± 0.0</td>
<td>13.6 ± 0.4</td>
<td>5.5 ± 0.2</td>
</tr>
</tbody>
</table>

^aMean values and standard deviation from three biological replicates are given.

^bReference strain I (*G. oxydans* 621H Δ*upp*) compares to strain IK003.1; reference strain II (*G. oxydans* Δ*upp*/pBBR1p452) compares to strain IK003.1 pIK1.

^cConcentrations refer to end times for IK003.1, 28 h; IK003.1/pIK1, 50 h.

^dcdw, cell dry weight. Calculation: OD₆₀₀ x 0.36 = g_{cdw}.
3.3 Impact of expression of functions for glucose uptake and intracellular carbon flux on growth of *G. oxydans*

Figure 1. Scheme of the central carbon metabolism of *G. oxydans* with the substrate glucose at a cultivation pH of 6. 2-KGA, 2-ketogluconate; 5-KGA, 5-ketogluconate; UQ, ubiquinone; PPP, pentose phosphate pathway; glucose-6-P, glucose 6-phosphate; fructose 6-P, fructose 6-phosphate; F-1,6P₂, fructose 1,6-bisphosphate; GAP, glyceraldehyde 3-phosphate; 3PG, 3-phosphoglycerate; KDPG, 2-keto-3-deoxy-6-phosphogluconate. Green (bold) and blue (fine) arrows show the innate metabolism, red arrows (bold) denote reactions that were introduced by genomic integrations of the respective genes from various sources and red crosses mark inactivated functions. Blue arrows (bold) indicate reactions catalyzed by enzymes from plasmid-encoded genes.
3.3 Impact of expression of functions for glucose uptake and intracellular carbon flux on growth of *G. oxydans*

Figure 2. Growth of different *G. oxydans* reference (RS) and expression strains (ES) on glucose medium. The cultures were grown in a BioLector instrument (m2p-labs GmbH, Baesweiler, Germany) in glucose (2 %) medium and growth was followed by measuring the backscatter at 620 nm in arbitrary units (a.u.). Mean values and standard deviation from three replicates are given.
3.3 Impact of expression of functions for glucose uptake and intracellular carbon flux on growth of *G. oxydans*

Figure 3. Growth (A, D), substrate consumption and product formation (B, C, E, F) of the *G. oxydans* reference strain I (*G. oxydans* Δupp; RS, gray symbols), *G. oxydans* ΔgdhS::sdhCDABE Δpdc::ndh ΔgdhM::sucCD (strain IK003.1; colored symbols), reference strain II (*G. oxydans* Δupp/pBBR1p452; RS, gray symbols) and *G. oxydans* ΔgdhS::sdhCDABE Δpdc::ndh ΔgdhM::sucCD/pIK1 (strain IK003.1/pIK1; colored symbols). Gluconate, 2-ketogluconate (2-KGA), 5-ketogluconate (5-KGA), pyruvate, acetate, succinate and fumarate concentrations were determined by HPLC. The cultures were grown in glucose (2 % w/v) medium at 15 % dissolved oxygen at pH 6 in a parallel bioreactor system (DASGIP, Juelich, Germany). Mean values and standard deviation from three biological replicates are shown.
4. Discussion

The acetic acid bacterium \textit{G. oxydans} is an organism of high biotechnological relevance due to a large set of membrane-bound dehydrogenases oxidizing a broad range of carbohydrates and alcohols in the periplasm stereo- and regioselectively. The corresponding products accumulate almost completely in the medium offering a great advantage to industrial applications. However, a handicap for further use of \textit{G. oxydans} are very low cell yields caused by special metabolic features (De Ley et al. 1984; Deppenmeier and Ehrenreich 2009). The carbohydrates provided for energy and biomass formation are incompletely oxidized in the periplasm and the products remain unmetabolized in the medium. The mechanism of glucose uptake into the cell is not known so far. \textit{G. oxydans} possesses an incomplete PEP: carbohydrate phosphotransferase system (PTS). Based on the absence of the EIIC and EIIB components a regulatory function rather than a transporter function is suggested. \textit{G. oxydans} lacks genes for phosphofructokinase, succinyl-CoA synthetase, and succinate dehydrogenase resulting in an interrupted glycolysis and an incomplete TCA cycle (Prust et al. 2005). Intracellular carbon metabolism proceeds primarily via the PPP and to a minor part via the EDP (Hanke et al. 2013; Richhardt et al. 2012, 2013a). This study aimed at the improvement of the cell yield on glucose to increase the potential for industrial application in oxidative biotransformations. To this end, different strains of \textit{G. oxydans} were constructed, which are unable to oxidize glucose to gluconate due to deletion of the genes coding for the membrane-bound glucose dehydrogenase (\textit{gdhM}, GOX0265) and the cytosolic glucose dehydrogenase (\textit{gdhS}, GOX2015). Heterologous expression of the glucose facilitator gene (\textit{glf}) and overexpression of glucokinase (\textit{glk}, GOX2419) should enhance the glucose consumption rate. Through the heterologous expression of the phosphofructokinase gene (\textit{pfkA}), glucose degradation should be possible via the EMP pathway in addition to the PPP and EDP. The formation of acetate is prevented by deletion of the pyruvate decarboxylase gene (\textit{pdc}, GOX1081) and an increased oxidative decarboxylation of pyruvate to acetyl-CoA should be possible by overexpression of the endogenous genes encoding the pyruvate dehydrogenase complex (GOX2289, \textit{aceE}a; GOX2290, \textit{aceE}B; GOX2291, \textit{aceF}; GOX2292, \textit{lpd}). \textit{G. oxydans} strains constructed in this study theoretically possess a complete TCA cycle enabling a complete oxidation of acetyl-CoA due to the genomic integration of genes coding for succinate dehydrogenase (\textit{sdhCDABE}) and succinyl-CoA synthetase (\textit{sucCD}). Due to the complete intracellular glucose degradation the NADH formation rate should increase, leading to an enhanced demand for NADH dehydrogenase activity (Kostner et al. 2015). To avoid a NADH accumulation, a second gene for NADH dehydrogenase (\textit{ndh}) was integrated into the
4. Discussion

The four strains *G. oxydans* IK001, *G. oxydans* IK002.1, *G. oxydans* IK003.1 and *G. oxydans* IK003.1/pIK1 were characterized with respect to their growth behavior on glucose, substrate consumption and product formation. Furthermore, the enzyme activities resulting from expression of the corresponding homologous or heterologous genes and the TCA cycle genes were determined.

4.1. Synthesis of a heterologous succinate dehydrogenase in *G. oxydans*

The TCA cycle is an amphibolic metabolic pathway providing energy in the form of reducing equivalents (NADH, NADPH, ubiquinol) and ATP and precursors (oxaloacetate, 2-oxoglutarate) for biosynthesis. In *G. oxydans* the generation of ATP via succinyl-CoA synthetase and ubiquinol formation by succinate dehydrogenase is not possible due to the absence of the corresponding genes (Prust et al. 2005). The first step in *G. oxydans* strain development was the introduction of a heterologous Sdh complex due to an assumed high risk for the functional synthesis of this membrane protein complex. As donor strain for the *sdh* genes the close relative *Acetobacter pasteurianus* was chosen. In Gram-negative bacteria Sdh is composed of a flavoprotein subunit SdhA containing a covalently linked flavin adenine dinucleotide (FAD) prosthetic group, an iron-sulfur protein subunit SdhB with three iron-sulfur clusters, and the membrane-integral subunits SdhC and SdhD containing a cytochrome *b* (Nishimura 1986; Park et al. 1997; Majumdar et al. 1991; Zhang et al. 2014; McNeil and Fineran 2013 a). The covalent binding of FAD to the SdhA subunit was reported to be essential for electron transfer from succinate due to an increase of the FAD redox potential (Cheng et al. 2015). McNeil and coworkers identified a protein required for the covalent attachment of FAD to the subunit SdhA in *Serratia* strain ATCC 39006 and named it SdhE (McNeil et al. 2012). Homologs of SdhE are present in α-, β-, and γ-proteobacteria and eukaryotes including humans (McNeil et al. 2012; McNeil and Fineran 2013 b, 2013 a; Van Vranken et al. 2015). SdhE of *Serratia* is a soluble protein of 88 amino acid residues with a highly conserved RGxxE motif (McNeil and Fineran 2013 b). In this study the SdhE homolog of *A. pasteurianus* was identified and shown to be required for synthesis of a functional Sdh of *A. pasteurianus* in the heterologous *G. oxydans* host. Thereby, the necessity of SdhE for activation of Sdh in α-proteobacteria was demonstrated. UV-induced fluorescence indicated flavinylation of the *A. pasteurianus* SdhA protein only in the presence of SdhE. In the absence of SdhE the residual Sdh activity was negligible quite in contrast to *Serratia*. Furthermore, it could be shown that the γ-proteobacterial *Serratia* SdhE protein is able to flavinylate the α-proteobacterial *A. pasteurianus* SdhA protein in *G. oxydans*. Co-expression of *sdhE* with the Sdh structural genes *sdhCDAB* was sufficient to achieve an active Sdh in *G. oxydans* with succinate/oxygen reductase activity, indicating the formation of a holo-
complex enabling the electron transfer from succinate via FAD in SdhA, the iron-sulfur clusters in SdhB to the ubiquinone binding site of SdhCD. Like *A. pasteurianus*, *G. oxydans* possesses the Suf and the Nif systems for iron-sulfur cluster biogenesis and repair (Roche et al. 2013; Prust et al. 2005) and the succinate/oxygen reductase activity indicates that these systems are sufficient for the correct insertion of [2Fe-2S], [3Fe-4S], and [4Fe-4S] into the heterologous apo-SdhB subunit. However, a functional Sdh complex in *G. oxydans* did not result in an improved growth on mannitol. On the contrary, for the *G. oxydans* strain exhibiting the highest Sdh activity (almost 4000 nmol min\(^{-1}\) mg protein\(^{-1}\)) even a decreased growth in the second growth phase was observed. An explanation might be the low energy availability in the second growth phase, where fructose is slowly oxidized to 5-ketofructose (Richhardt et al. 2012) and the strong metabolic burden of Sdh overexpression. Additionally, the Sdh-positive strain produced small amounts of fumarate implying the presence of a functional Sdh *in vivo* and at the same time a limiting fumarate hydratase activity.

The next critical step in *G. oxydans* strain development consisted in the genomic integration of the *sdhCDABE* genes with simultaneous deletion of the *gdhS* (GOX2015) gene for the cytosolic glucose dehydrogenase catalyzing the NADP-dependent oxidation of glucose to gluconate (Prust et al. 2005; Krajewski et al. 2010). The initial genomic integration of the insert p384-*sdhCDAB*-P\(_{nat}\)-*sdhE* resulted in a succinate/DCPIP reductase activity of 15.0 ± 0.5 nmol min\(^{-1}\) mg protein\(^{-1}\). In order to achieve a higher Sdh activity the *sdhCDAB* genes were cloned under control of the strong promoter p264 and insert p264-*sdhCDAB*-P\(_{nat}\)-*sdhE* was used to replace the *gdhS* gene. The promoter change caused a five-fold increase of succinate/DCPIP reductase activity (74.7 ± 22.9 nmol min\(^{-1}\) (mg protein\(^{-1}\))\(^{-1}\) of the resulting strain *G. oxydans* IK001. Cultivation of the *gdhS* negative/*sdhCDABE* positive strain *G. oxydans* IK001 with glucose as carbon source revealed a slightly faster growth, but no improvement of the cell yield in comparison to the reference strain *G. oxydans* \(\Delta\)upp. It has previously been shown that a *G. oxydans* *gdhS* deletion mutant exhibited a minor growth inhibition in the second growth phase (Kiefer 2012) (Supplement, Fig. 1). This observation supports that the slightly enhanced growth of strain *G. oxydans* IK001 is caused by an active Sdh. Glucose consumption and product formation of strain IK001 and the reference strain were comparable. However, strain *G. oxydans* IK001 produced almost 10 mM more 2-KGA than the reference strain, which might be caused by an increased glucose oxidation in the periplasm as a consequence of the *gdhS* deletion. Furthermore, the mutant produced minute fumarate concentrations suggesting a Sdh *in vivo* activity. In *G. oxydans* carbon metabolism proceeds mainly via the PPP, however a decreased CO\(_2\) production of 18 % during cultivation is presumably a hint on a preference of strain IK001 to metabolize glucose via the EDP instead of the PPP (Kruger and von Schaewen 2003; Richhardt et al. 2012).
4. Discussion

4.2 Impact of an additional NADH dehydrogenase

G. oxydans strain IK001 was still able to oxidize the major part of glucose in the periplasm. In order to prevent this reaction and increase intracellular glucose metabolism, the next expected step would be the deletion of the membrane-bound glucose dehydrogenase gene (GOX0265, *gdhM*). Previous studies on glucose metabolism of *G. oxydans* strain N44-1 demonstrated the impact of the cytosolic and membrane-bound glucose dehydrogenase on growth. Disruption of the *gdhM* gene resulted in a growth yield increase of 110 %, whereas the growth rate raised about 271 % through deletion of *gdhM* and disruption of *gdhS* (Krajewski et al. 2010). However, the positive effect on growth by deletion of the *gdhM* and *gdhS* genes in strain *G. oxydans* 621 H was not observed revealing the large difference between these two strains (Kiefler 2012) (Supplement, Fig.2). Until now, we have no explanation for this effect. Genome sequencing of N44-1 has to be performed to have a closer look on the differences in carbon metabolism. Strain N44-1 might possess genes lacking in *G. oxydans* 621H and/or more copies of particular genes in the genome offering an advantage with respect to growth. For prevention of a negative effect of *gdhM* deletion on growth, we decided to delete the pyruvate decarboxylase gene (GOX1081, *pdc*) before *gdhM*. A positive effect on growth by deletion of the *pdc* gene was reported previously (Peters et al. 2013a; Kiefler 2012) (Supplement, Fig.3). Based on the incomplete TCA cycle of *G. oxydans*, a complete oxidation of pyruvate to CO$_2$ cannot occur via this pathway. Instead, a significant amount of pyruvate is converted to acetate by pyruvate decarboxylase and acetaldehyde dehydrogenase. Pyruvate decarboxylase, which is rarely found in bacteria, catalyzes the decarboxylation of pyruvate to the toxic intermediate acetaldehyde under CO$_2$ formation (Krajewski et al. 2010).

In a recent study, the plasmid-based expression of the *ndh* gene from *G. oxydans* DSM3504 in *G. oxydans* 621H led to a significantly increase of the growth rate (Kostner et al. 2015), indicating that a limited NADH oxidation capacity is in part responsible for the better growth of DSM3504 possessing an additional type II NADH dehydrogenase gene (*ndh*) compared to strain 621H with only a single *ndh* gene. As a consequence of the strongly elevated intracellular glucose metabolism caused by the *gdhS* deletion and planned *gdhM* deletion, the NADH and NADPH formation rate via glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glyceraldehyde 3-phosphate dehydrogenase should also increase significantly. To support the reoxidation of NADH to NAD$^+$, the *ndh* gene of *G. oxydans* DSM3504 was used to replace the pyruvate decarboxylase gene in strain IK001, resulting in strain *G. oxydans* IK002.1. The mutant strain exhibited only an 11 % elevated NADH dehydrogenase activity compared to the reference strain, which might be caused by a low activity of the native promoter of the *ndh* gene from *G. oxydans* strain DSM3504. *G. oxydans* IK002.1 exhibited no significant differences in the first growth phase, but reached
a slightly higher final OD$_{600}$ in comparison to the reference strain of about 12 %, when cultivated on glucose. The mutant strain produced less 2-KGA and significant amounts 5-KGA. At pH 6 used during cultivation, synthesis of 5-KGA is catalyzed by the NADP-dependent gluconate 5-dehydrogenase (GOX2187, Gno) in the cytoplasm and secreted into the medium. 5-KGA is taken up again by the reference strain, however the uptake mechanism is unknown (Rauch et al. 2010). Formation of 2-KGA occurs in the periplasm via the membrane-bound flavoprotein gluconate-2-dehydrogenase (GOX1230-1232, gndSLC). The transhydrogenase PntA1A2B presumably converted NADPH to NADH and is possibly coupled to proton extrusion. The increased NADH oxidation capacity provided by the introduced second ndh gene might be responsible for the 5-KGA formation and reduced 2-KGA production. Acetate formation was prevented in strain IK002.1, but equivalent amounts pyruvate were secreted caused by replacement of pdc by ndh (Peters et al. 2013a). Acetate (pK$_a$ 4.78) act as an uncoupler in contrast to pyruvate (pK$_a$ of 2.49) caused by a lower pK$_a$ (Axe and Bailey 1995). Thus, prevention of acetate formation in strain IK002.1 might ensure an increase of energy efficiency leading to increased utilization component(s) of the yeast extract (carbon balance 120 %), and also might explain improved biomass formation.

4.3 Consequences of the absence of membrane-bound glucose dehydrogenase and introduction of a heterologous succinyl-CoA synthetase to provide all enzymes for a functional TCA cycle

The next step in G. oxydans strain development was the replacement of the gdhM gene (GOX0265) encoding the membrane-bound glucose dehydrogenase by the succinyl-CoA synthetase (Scs) genes sucCD from Gluconacetobacter diazotrophicus in strain IK002.1, resulting in strain G. oxydans IK003.1. Ga. diazotrophicus was chosen as donor strain, because A. pasteurianus lacks the sucCD genes. The close phylogenetic relationship of G. oxydans to Ga. diazotrophicus was promising with regard to a functional synthesis of Scs in the host G. oxydans. However, G. oxydans IK003.1 exhibited a very low in vitro Scs activity, although the sucCD genes were under control of the strong P264 promoter. The reason for this low activity is not known yet. Presumably the Scs activity is already very low in the host, which needs to be tested. As a consequence of the deletion of gdhS and gdhM in G. oxydans IK003.1, glucose was completely metabolized in the cytoplasm, providing more precursors for biomass formation, and neither gluconate nor 2-ketogluconate were formed. However, G. oxydans IK003.1 produced almost 20 mM 5-ketogluconate, which presumably is formed by dephosphorylation of 6-phosphogluconate to gluconate and subsequent oxidation via the NADP-dependent gluconate-5 dehydrogenase. Cultivation of G. oxydans IK003.1 on glucose revealed a retarded growth phenotype in the first 12 h. Nevertheless, the
mutant strain showed a significantly higher final OD$_{600}$ of about 72 % and cell yield was increased by 60 % compared to the reference strain. Due to the $gdhM$ deletion, degradation of the substrate glucose was also retarded, which might be due to limitations in glucose uptake and phosphorylation via glucokinases (GlkA, GlkB) (Rauch et al. 2010; Pronk et al. 1989). Like $G._{oxydans}$ IK002.1, the mutant $G._{oxydans}$ IK003.1 synthesized pyruvate in a growth-coupled manner (40 mM) instead of acetate due to the pdc deletion. The 2.2-fold increased CO$_2$ formation is a striking characteristic of strain IK003.1, although pyruvate decarboxylase is absent. Due to prevention of glucose oxidation the carbon source is completely catabolized in the cytoplasm in strain IK003.1 and to a large extent via the PPP. Thus, enhanced CO$_2$ formation might be caused by the cyclic PPP offering the major pathway of sugar degradation in $G._{oxydans}$ (Richhardt et al. 2012; Hanke et al. 2013). Another possibility for the increased CO$_2$ level could be the activity of a functional TCA cycle. Although pyruvate dehydrogenase complex activity was not detectable in $G._{oxydans}$, carboxylation of PEP to oxaloacetate via PEP carboxylase (GOX0102) might enable a glucose-derived carbon flux into the TCA cycle. However, supply of acetyl-CoA offering a problem which could be derived from the oxidation of fatty acids and other components of the yeast extract.

4.4 Plasmid-based expression of genes encoding glucose facilitator, glucokinase, phosphofructokinase, pyruvate dehydrogenase complex

The last step in $G._{oxydans}$ strain development consisted in the plasmid-based expression of genes encoding glucose facilitator (glf) from Zymomonas mobilis, endogenous glucokinase ($glkB$), phosphofructokinase ($pfkA$) from Escherichia coli and endogenous pyruvate dehydrogenase complex (GOX2289, aceEα; GOX2290, aceEβ; GOX2291, aceF; GOX2292, lpd) (plasmid pIK1) in the improved strain IK003.1. In vitro a PfkA activity of 62 nmol min$^{-1}$ mg protein$^{-1}$ was obtained demonstrating a functional synthesis of $E._{coli}$ PfkA in $G._{oxydans}$. The high amounts of pyruvate accumulating in the medium in the pdc negative strains indicate a low activity of the pyruvate dehydrogenase complex. The assumption was confirmed by an enzyme assay yielding no measurable pyruvate dehydrogenase complex activity in the reference strain. In contrast the expression strain $G._{oxydans}$ IK003.1/pIK1 exhibited an active pyruvate dehydrogenase complex with 95 nmol min$^{-1}$ (mg protein)$^{-1}$. However, in vitro glucokinase (Glk) activity decreased by 47 % in the expression strain. In a previous study it was observed that Glk activity in a $gdhS$ deletion mutant was much less than in the wildtype (87 %) or in a $gdhM$ disruption mutant (92 %) (Krajewski 2008). These data indicate a dependency of Glk activity (in vitro) on GdhS in $G._{oxydans}$. Cultivation of strain IK003.1/pIK1 on glucose showed a retarded growth. The final OD$_{600}$ rose about 33 %
4. Discussion

compared to the reference strain and a cell yield increase of 51 % was obtained. Nevertheless, the expression plasmid caused an impairment in comparison to strain IK003.1 without a plasmid. Previously, it has been shown that heterologous pfkA expression in *Neisseria meningitidis* resulted in a decrease of biomass yield caused by stress, protein turnover, or cycling with fructose bisphosphatase resulting in an ATP-consuming process. The enhanced ATP demand caused a higher oxygen consumption, CO$_2$ generation and biomass yield decrease (Baart et al. 2010). A slightly increased CO$_2$ formation was also observed in the *G. oxydans* IK003.1/pIK1 strain compared to IK003.1 without plasmid. Furthermore, the negative effect on cell yield might be due to a high protein burden and an imbalance of enzyme activities causing the accumulation of metabolic intermediates and redox cofactors. Another evidence for an enzyme activity imbalance is that pyruvate accumulation still occurred in the expression strain, although the pyruvate dehydrogenase complex is active. Most likely, pyruvate degradation is limited due to the very low activities of the TCA cycle enzymes measured *in vitro* and/or allosteric inhibiton of the pyruvate dehydrogenase complex by NADH and acetyl-CoA *in vivo*.

4.5 Conclusions and outlook

In this study different steps in synthetic biology were undertaken to obtain a *G. oxydans* strain generating improved cell yields for a broader industrial use. To this end, the genomic integration of genes in *G. oxydans* presents an essential method. In the present work the successful integration of genes was established offering possibilities for further investigations concerning this organism. The complementation of the TCA cycle by genomic integration of genes encoding the succinate dehydrogenase and succinyl-CoA synthetase revealed an important step in *G. oxydans* strain construction and is essential for further strain optimization. The constructed *G. oxydans* strain IK003.1 possesses the ability to metabolize glucose completely in the cytoplasm ensured by deletion of the cytosolic glucose dehydrogenase (*gdhS*) and the membrane-bound glucose dehydrogenase (*gdhM*) genes. Consequently, the energy and carbon source glucose can be used for the desired biomass formation. Furthermore, the additional support of NADH oxidation by a second gene for NADH dehydrogenase and the concurrent prevention of acetaldehyde formation through deletion of the pyruvate decarboxylase gene in the designed *G. oxydans* strain IK003.1 is ensured. Metabolic changes of the constructed strain resulted in an increased biomass formation on the favorable carbon source glucose. Consequently, the costs for biomass production of *G. oxydans* required for oxidative biotransformations with resting cells can be reduced offering a great advantage to industry.
4. Discussion

The metabolic engineering steps undertaken in this work represent a good basis for further improvement of cell yields of *G. oxydans* and built a fundament for further strain optimization of *G. oxydans* for extended biotechnological applications.

Due to the low activities of the innate TCA cycle enzymes determined in this study, the increase of the activities is necessary to prevent pyruvate accumulation in the medium and to ensure the complete intracellular glucose metabolism. Therefore, in future attempts promoter exchanges of TCA cycle genes should be performed. As shown in the present work, pyruvate dehydrogenase complex exhibited no measurable *in vitro* activity. Thus, promoter exchange is also essential to improve pyruvate decarboxylation to acetyl-CoA and guarantee the entire oxidation of acetyl-CoA via the improved TCA cycle.

Richhardt et al. demonstrated a positive effect on growth caused by the overexpression of the cytochrome *bo*$_3$ oxidase genes in *G. oxydans* (Richhardt et al. 2013b). Consequently, a further optimization of the constructed *G. oxydans* strain in this study can be achieved by the improvement of the respiratory chain.
5. Literature

Bridger WA (1971) Evidence for two types of subunits in succinyl coenzyme A synthetase. Biochem Biophys Res Commun 42 (5):948-954

Hutkins RW (2008) Microbiology and technology of fermented foods. 402

5. Literature

5. Literature

6. Appendix

6.1 Supplementary data: Growth of different deletion mutants of *G. oxydans*

Table 1: Constructed strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gluconobacter oxydans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. oxydans 621H ∆upp</td>
<td>G. oxydans 621H derivative with a deletion of GOX0327 coding for uracil phosphoribosyl-transferase (∆upp); Cef<sup>R</sup></td>
<td>A. Ehrenreich (TU Munich), (Peters et al. 2013a)</td>
</tr>
<tr>
<td>G. oxydans 621H ∆upp ∆gdhS</td>
<td>Derivative of G. oxydans 621H ∆upp with in-frame deletion of GOX2015 (∆gdhS); Cef<sup>R</sup></td>
<td>Kiefler, 2012</td>
</tr>
<tr>
<td>G. oxydans 621H ∆upp ∆gdhS ∆gdhM</td>
<td>Derivative of G. oxydans 621H ∆upp with in-frame deletion of GOX2015 (∆gdhS and GOX2065 (∆gdhM); Cef<sup>R</sup></td>
<td>Kiefler, 2012</td>
</tr>
<tr>
<td>G. oxydans 621H ∆upp ∆gdhS ∆gdhM ∆pdc</td>
<td>Derivative of G. oxydans 621H ∆upp with in-frame deletion of GOX2015 (∆gdhS), GOX2065 (∆gdhM), and GOX1081 (∆pdc); Cef<sup>R</sup></td>
<td>Kiefler, 2012</td>
</tr>
</tbody>
</table>
The deletion mutants \textit{G. oxydans} 621H \textit{Δ}upp \textit{Δ}gdhS (Fig. 1), \textit{G. oxydans} 621H \textit{Δ}upp \textit{Δ}gdhS \textit{Δ}gdhM (Fig. 2) and \textit{G. oxydans} 621H \textit{Δ}upp \textit{Δ}gdhS \textit{Δ}gdhM \textit{Δ}pdc (Fig. 3) were cultivated in a parallel bioreactor system (DASGIP, Juelich, Germany) on glucose (2 \% w/v) at a constant pH of 6 and 15 \% dissolved oxygen.

\textbf{Figure 1:} Growth behavior of \textit{G. oxydans} 621H \textit{Δ}upp \textit{Δ}gdhS (■) in comparison to the reference strain \textit{G. oxydans} 621H \textit{Δ}upp (●). The cultures were grown in glucose (2 \% w/v) medium at 15 \% dissolved oxygen at pH 6 in a parallel bioreactor system (DASGIP, Juelich, Germany). Mean values and standard deviation from three biological replicates are shown.
Figure 2: Growth behavior of *G. oxydans* 621H Δ*upp* Δ*gdhS* Δ*gdhM* (■) in comparison to the reference strain *G. oxydans* 621H Δ*upp* (○). The cultures were grown in glucose (2 % w/v) medium at 15 % dissolved oxygen at pH 6 in a parallel bioreactor system (DASGIP, Juelich, Germany). Mean values and standard deviation from three biological replicates are shown.

Figure 3: Growth behavior of *G. oxydans* 621H Δ*upp* Δ*gdhS* Δ*gdhM* Δ*pdc* (Clone 1-1 ■, clone 1-3 □) and the reference strain *G. oxydans* 621H Δ*upp* (○). The cultures were grown in glucose (2 % w/v) medium at 15 % dissolved oxygen at pH 6 in a parallel bioreactor system (DASGIP, Juelich, Germany). Two different clones of the deletion mutant are shown.
Danksagung

Ein besonderer Dank gilt Prof. Dr. Michael Bott für die Überlassung des herausfordernden Themas, der sich trotz eines straffen Terminkalenders immer die nötige Zeit genommen hat. Vielen Dank für die sowohl hilfreichen Gespräche und Ratschläge als auch für die Durchsicht dieser Arbeit.

Des Weiteren möchte ich mich bei Herrn PD Dr. Ulrich Schulte für die Übernahme des Zweitgutachtens bedanken.

Meiner Gruppenleiterin Dr. Stephanie Bringer danke ich dafür, dass Sie stets ein offenes Ohr für mich hatte und mir immer mit Rat und Tat zur Seite stand. Deine letzte Doktorandin wünscht Dir eine wohlverdiente schöne Zeit nach der Arbeit!

Helga, ohne Dich wären die Wachstumskurven in dieser Arbeit wohl nicht zustande gekommen. Danke, dass du immer auf mich aufgepasst hast.

Mein Dank gilt auch den Mitarbeitern des IBG-1 für die positive Arbeitsatmosphäre und die Gespräche, durch die ich Vieles lernen durfte.

Ich möchte auch meinen Großeltern danke sagen. Ihr ward und seid bis heute eine Bereicherung in meinem Leben.

Markus, ich bin dankbar Dich an meiner Seite zu haben! Ich danke Dir für das Bisherige und freue mich auf das Zukünftige.

Mirj, meine Beste, danke! Dass Du bist wie Du bist und wir uns auch ohne ein Wort verstehen.

Meine Mädels! Wenn wir zusammen sind, ist alles andere egal und dafür danke ich Euch!
Erklärung

Jülich, den 30.03.2016

Ines Kiefler
Band / Volume 68
Modifikationen der Atmungskette in Corynebacterium glutamicum und Rolle des Flavohämoproteins Hmp
L. Platzen (2013), IV, 119 pp
ISBN: 978-3-89336-931-7

Band / Volume 69
L-Cystein-Bildung mit Corynebacterium glutamicum und optische Sensoren zur zellulären Metabolitanalyse
K. Hoffmann (2014), vi, 83 pp
ISBN: 978-3-89336-939-3

Band / Volume 70
Metabolic engineering of Corynebacterium glutamicum for production of the adipate precursor 2-oxoadipate
M. Spelberg (2014), 118 pp
ISBN: 978-3-89336-954-6

Band / Volume 71
Design and application of metabolite sensors for the FACS-based isolation of feedback-resistant enzyme variants
G. Schendzielorz (2014), 129 pp
ISBN: 978-3-89336-955-3

Band / Volume 72
The development and application of a single cell biosensor for the detection of L-methionine and branched-chain amino acids
N. Mustafi (2014), 137 pp
ISBN: 978-3-89336-956-0

Band / Volume 73
Metabolic engineering of Corynebacterium glutamicum for production of L-leucine and 2-ketoisocaproate
M. Vogt (2014), VI, 92 pp
ISBN: 978-3-89336-968-3

Band / Volume 74
Pupylierung in Corynebacterium glutamicum
A. Küberl (2014), VI, 163 pp
ISBN: 978-3-89336-969-0

Band / Volume 75
Tat-translocase composition in Corynebacterium glutamicum and the effect of TorD coexpression
D. Oertel (2014), v, 117 pp
ISBN: 978-3-89336-996-6
Band / Volume 76
The 6C RNA of *Corynebacterium glutamicum*
J. Pahlke (2014), II, 144 pp
ISBN: 978-3-95806-003-6

Band / Volume 77
Anaerobes Wachstum von *Corynebacterium glutamicum* durch gemischte Säurefermentation
A. Michel (2014), 145 pp
ISBN: 978-3-95806-010-4

Band / Volume 78
Engineering of *Corynebacterium glutamicum* towards utilization of methanol as carbon and energy source
S. Witthoff (2015), V, 113 pp
ISBN: 978-3-95806-029-6

Band / Volume 79
Interaction of the two-component systems HrrSA and ChrSA in *Corynebacterium glutamicum*
E. Hentschel (2015), V, 118 pp
ISBN: 978-3-95806-053-1

Band / Volume 80
Strukturelle und funktionelle Untersuchungen zur Kupfer-Homöostase in *Corynebacterium glutamicum*
X. Schuplezow (2015), 114 pp
ISBN: 978-3-95806-085-2

Band / Volume 81
Development and application of single cell biosensors for the improvement of amino acid production in *Escherichia coli* and *Corynebacterium glutamicum*
R. Mahr (2016), IV, 179 pp
ISBN: 978-3-95806-145-3

Band / Volume 82
Strain development of *Gluconobacter oxydans*: Complementation of non-functional metabolic pathways and increase of carbon flux
I. Kiefler (2016), III, 103 pp
ISBN: 978-3-95806-158-3

Weitere *Schriften des Verlags im Forschungszentrum Jülich* unter
http://wwwzb1.fz-juelich.de/verlagextern1/index.asp
Strain development of *Gluconobacter oxydans*: Complementation of non-functional metabolic pathways and increase of carbon flux

Ines Kiefler