Assessing hydrogen production from wind and solar power with an LCA

15.06.2016
Christina Wulf, Martin Kaltschmitt
Agenda

Introduction

System definition

Environmental assessment

Conclusions
Introduction

Hydrogen in Germany for mobility mainly from wind energy

Problems: - Limited area
- Social acceptance

Alternative: Import of renewable produced hydrogen, e.g. from solar power

→ High temperature hydrogen production processes

→ Long distance hydrogen transport

Comparison of solar hydrogen production incl. long distance transport with onsite wind hydrogen production

Source: Kosa1983

Source: Fotolia© DeVice
High-temperature hydrogen production

High-temperature electrolysis

Thermochemical cycles

- Direct water splitting requires very high temperatures (2500 °C)
- Water splitting integrated into a chain of chemical reactions lowers the temperature to a manageable magnitude
- Sulfur–iodine cycle

Heat: 850 °C

\[
\begin{align*}
2\text{HI} & \longrightarrow \text{I}_2 + \text{H}_2 \\
\text{H}_2\text{SO}_4 & \rightarrow \text{H}_2\text{O} + \text{SO}_2 + \frac{1}{2}\text{O}_2 \\
2\text{H}_2\text{O} + \text{SO}_2 + \text{I}_2 & \longrightarrow \text{H}_2\text{SO}_4 + \text{HI}
\end{align*}
\]
Long distance distribution: Liquid Organic Hydrogen Carriers

- Chemical compounds that bind hydrogen
- Up to 6.2 wt% stored hydrogen in LOHC possible
- Liquid can be handled like mineral oil products
- Possible compounds: e.g. dibenzyltoluene or toluene/methylcyclohexane
LCA Methodology

Goal and scope definition

Inventory analysis

Impact analysis

Interpretation

Source: DIN 14040
Goal and Scope

Provision of 1 kg hydrogen at 700 bar for mobility applications at a hydrogen refueling station in Germany

Solar hydrogen production in North Africa compared with wind hydrogen production in Germany

State of the technology of 2030

Analysis of impact categories:

- Climate change
- Acidification
- Eutrophication
- Photochemical ozone creation
System Definition

CSP plant

Electricity -> S-I cycle -> H₂ → Hydrogenation of LOHC

LOHC → Transport → H₂ → Dehydrogenation of LOHC

H₂ → Purification → Compression

CSP plant

Electricity -> HT electrolysis → H₂ → Hydrogenation of LOHC

LOHC → Transport → H₂ → Dehydrogenation of LOHC

H₂ → Purification → Compression

WP plant

Electricity -> Electricity Grid

Electricity → Electrolysis → H₂ → Purification → Compression
Important Parameters

High-temperature electrolysis:
- Production capacity: 208 kg H₂/h
- Heat at 850 °C: 2.5 kWh/kg H₂
- Electricity: 36 kWh/kg H₂

Sulfur-Iodine cycle:
- Production capacity 417 kg H₂/h
- Heat at 850 °C: 78 kWh/kg H₂
- Electricity: 20 kWh/kg H₂

Alkaline water electrolysis:
- Production capacity: 4.4 kg H₂/h
- Electricity: 49 kWh/kg H₂
Efficiency

Institute of Energy and Climate Research
Systems Analysis and Technology Evaluation (IEK-STE)
LCA results climate change

- LCA results for climate change
- Comparison of different electrolysis methods:
 - Alkaline Electrolysis
 - High Temperature Electrolysis
 - Sulfur-Iodine Cycle
- GWP in kg CO$_2$-eq/kgH$_2$
- Legend:
 - HRS
 - Ship
 - LOHC
 - Truck
 - Recycling
 - Direct Emissions
 - Production
 - Plant
LCA results comparison

Share of environmental impact

- HRS
- Ship
- Truck
- LOHC
- Recycling
- Direct Emissions
- Production
- Plant

Institute of Energy and Climate Research
Systems Analysis and Technology Evaluation (IEK-STE)
Conclusions

• Transportation of hydrogen with LOHC causes significant environmental impacts due to the heat demand for dehydration

• Heat for dehydrogenation from burning of hydrogen

• Usage for the excess heat should be considered

• The long transportation distance causes strong environmental impacts due to the direct emissions from the truck and the ship transport
Thank you for your attention!

Dipl.-Ing. Christina Wulf
Telefon: +49 2461 61-3268
E-mail: c.wulf@fz-juelich.de