Arbor
A morphologically detailed neural network library for modern high performance computer architectures

Wouter Klijna, Ben Cummingb, Stuart Yatesc, Vasileios Karakasisd, Alexander Peysera

aSimulation Lab Neuroscience, Bernstein Facility for Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance Forschungszentrum Jülich
bSwiss National Supercomputer Centre

Why Arbor?

Many core HPC architectures are becoming the norm

The HBP PCP prototype systems at Jülich. Both are a radical departure from current technology. Left: Jurek, IBM "fat node" with Power8 CPUs and 4 GPUs. Right: Julia, Cray XC "blades" with 4 Intel KNL nodes.

We need to develop simulators designed to exploit these architectures now. Arbor aims to meet this need, alongside other efforts to add many core support to existing software. Designing software for the many core environment from the ground-up will pay off.

Preparing for communication at exascale

Performance modelling is required to predict and understand scaling issues ahead of time.

Naïve linear spike exchange (red) grows exponentially with large node numbers. The improved implementation (green) does not show this problem.

Who

Developed by a team from three HPC Centers: Jülich, CSCS and BSC

- Part of HPC infrastructure work package in the HBP
- Part of the NEST family
- The team provides know-how in computer science, math, neuroscience and software development

How

Arbor is designed from the ground up for modern core architectures.

- Written in modern C++, CUDA, Intel TBB and HPX
- Uses sound development practices including unit testing, continuous integration, and validation
- Open source and community-driven

Prototype

- Supports NMODL for ion channels and synapses
- Distributed building of networks with millions of cells
- Finite volume discretization of the cable equation
- Salad model description (NMODL & recipes)

The prototype is designed to be modular. This allows plug-in of different simulation and communication implementations.

Do you want to know more?

The source code of the prototype is in an open repository on GitHub. It is not ready for general release, but we want to share our work with the community. If you would like to know more, contribute or collaborate, please contact us!

web
eth-cscs.github.io/nestmc

source
github.com/eth-cscs/nestmc-proto

email
bcumming@cscs.ch
a.peyser@fz-juelich.de

Performance of the prototype

Add nodes for a faster simulation

The simulation runtime of a model with fixed size as a function of the number of compute nodes. The runtime is greatly decreased by adding nodes.

Add nodes for a bigger simulation

The simulation runtime of a model with 256 cells per core as a function of the number of nodes. The increase in runtime of a model 256 times larger is only a couple of percent.

Use the advanced features

Two models are run on the Inter KNL with and without the advanced high-speed memory (solid and dashed lines respectively). The bundling of work items allows for important optimization for some models and architectures.

Acknowledgements

Research leading to these results has in parts been carried out on the Human Brain Project COPP Test Systems at the Jülich Supercomputing Centre, which received co-funding from the European Union (Grant Agreement no. 604102).

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604102 (Human Brain Project). Specific Grant Agreement 1.