Cyto- and genotoxicity of $^{123}$I- and $^{125}$I-UdR in vitro: Apoptosis induction, micronucleus formation and chromatin damage in three human cell lines

R. Kriehuber, B. Küttner, F. Weigert, M. Unverricht, E. Kümmerle, E. Pomplun

The Auger electron emitters (AEE) $^{123}$I and $^{125}$I are characterized by different half-lifes (13.2 h vs. 59.4 d) and by different average numbers of Auger electrons emitted per decay (8 vs. 15). The biological response in synchronized mammalian cells labelled with various activity concentrations of $^{123}$I- and $^{125}$I-UdR were investigated and compared in respect to accumulated decays and dose rate to further elucidate the biological effectiveness of Auger electrons.

SCL-II, Kidney-T1 and Jurkat cells were synchronized in G1-phase, subsequently labelled with $^{123}$I- respectively $^{125}$I-UdR and the cellular up-take and DNA-incorporation of I-UdR were determined. Chromatin damage was quantified by the alkaline Comet-assay, apoptosis induction was assessed by the Annexin V/PI assay employing flow cytometry and micronucleus formation was quantified using the Cytochalasin-B–micronucleus assay at various times post-labelling. $^{137}$Cs gamma rays served as reference radiation.

$^{125}$I-UdR induced overall a slightly stronger response in human cell lines than $^{123}$I-UdR regarding micronucleus formation and chromatin damage. Apoptosis induction was much more profound in $^{125}$I-UdR-labelled cells immediately after labelling when compared to $^{123}$I-UdR. Both AEE induced a pronounced long-lasting G2/M phase arrest.

Albeit of a lower dose rate, $^{125}$I-UdR is 1.2 to 1.5 times more genotoxic in comparison with $^{123}$I-UdR. On average one decay ($^{125}$I-UdR) every 120 seconds per DNA/cell is sufficient to induce a permanent cell cycle arrest.