How to Publish
From finished manuscript to publication in a scientific journal

12.09.2017 | Dr. Claudia Frick
Outline

• Basic Information
 ➢ Research Cycle
 ➢ Publication Types

• Academic Papers
 ➢ Journal Types
 ➢ Journal Selection

• Workflow
 ➢ Overview
 ➢ Submission
 ➢ Peer-Review
 ➢ Rejection
 ➢ Acceptance
 ➢ Publication

• Published Articles

• Services & Support
Basic Information
Outline

• Basic Information
 ➢ Research Cycle
 ➢ Publication Types

• Academic Papers
 ➢ Journal Types
 ➢ Journal Selection

• Workflow
 ➢ Overview
 ➢ Submission
 ➢ Peer-Review
 ➢ Rejection
 ➢ Acceptance
 ➢ Publication

• Published Articles

• Services & Support
Research Cycle

- Idea or question
- Read
- Data gathering
- Data analysis
- Reflect and write
- Communicate results
Research Cycle

- Idea or question
- Read
- Communicate results
- Reflect and write
- Data gathering
- Data analysis

Information Services of Central Library
Research Cycle

Idea or question

Read

Data gathering

Data analysis

Reflect and write

Communicate results

Writing Seminars of Central Library and literature
Research Cycle

This Seminar of Central Library and literature

- Communicate results
- Reflect and write
- Data analysis
- Data gathering
- Read
- Idea or question
Research Cycle

This Seminar of Central Library and literature

Communicate results

Reflect and write

People only see the end result.
Outline

- Basic Information
 - Research Cycle
 - Publication Types

- Academic Papers
 - Journal Types
 - Journal Selection

- Workflow
 - Overview
 - Submission
 - Peer-Review
 - Rejection
 - Acceptance
 - Publication

- Published Articles

- Services & Support
Publications Types
Publications Types

Journal Article

Proceedings Paper
Publications Types

Journal Article

An academic or scholarly journal is a periodical publication in which a collection of academic papers is published.

Proceedings Paper

Proceedings or conference proceedings are a collection of academic papers published in the context of an academic conference or workshop.
Academic Papers
Outline

• Basic Information
 ➢ Research Cycle
 ➢ Publication Types

• Academic Papers
 ➢ Journal Types
 ➢ Journal Selection

• Workflow
 ➢ Overview
 ➢ Submission
 ➢ Peer-Review
 ➢ Rejection
 ➢ Acceptance
 ➢ Publication

• Published Articles

• Services & Support
Journal Types

Subscription Journals

• The classical way to publish
• Publication charges for authors possible
 (Colour Charges, Page Charges, …)
• Copyright owned by Publisher
• Pay for Read and Re-Use

Closed Access
Journal Types

Subscription Journals

• The classical way to publish
• Publication charges for authors possible
 (Colour Charges, Page Charges, …)
• Copyright owned by Publisher
• Pay for Read and Re-Use

Open Access Journals

• The emerging way to publish
• Publication charges for authors possible
 (Article Processing Charges: APCs)
• Copyright owned by authors
 (Creative Commons Licences)
• Free to read and Re-Use

Closed Access

Gold Open Access
Outline

• Basic Information
 ➢ Research Cycle
 ➢ Publication Types

• Academic Papers
 ➢ Journal Types
 ➢ Journal Selection

• Workflow
 ➢ Overview
 ➢ Submission
 ➢ Peer-Review
 ➢ Rejection
 ➢ Acceptance
 ➢ Publication

• Published Articles

• Services & Support
Journal Selection

Point in time
- Before you start to write
- While you write
Journal Selection

Point in time
• Before you start to write
• While you write

Possible selection criteria
• Content criteria
 ➢ Suggestion by colleagues/peers or supervisor
 ➢ Scope of the journal
 ➢ Conference
 ➢ Editors
 ➢ ...
Journal Selection

Point in time
- Before you start to write
- While you write

Possible selection criteria
- Content criteria
 - Suggestion by colleagues/peers or supervisor
 - Scope of the journal
 - Conference
 - Editors
 - ...
- Formal criteria
 - Publications charges
 - Open or closed access journal
 - Peer-Review
 - Impact of the journal
 - Copyright
 - Self-archiving
 - Limitations
 - Publication guidelines
 - ...
Journal Selection

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Source of information</th>
<th>Support offered by Central Library</th>
</tr>
</thead>
</table>

| | | |

Criterion:

Source of information:

Support offered by Central Library:
Journal Selection

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Source of information</th>
<th>Support offered by Central Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open or closed access journal</td>
<td>Publisher’s website, DOAJ, SCImago</td>
<td>Finding open access journals related to your manuscript</td>
</tr>
</tbody>
</table>

DOAJ

SCImago

SJR

Journal Selection
Journal Selection

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Source of information</th>
<th>Support offered by Central Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open or closed access journal</td>
<td>Publisher’s website, DOAJ, SCImago</td>
<td>Finding open access journals related to your manuscript</td>
</tr>
</tbody>
</table>
Journal Selection

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Source of information</th>
<th>Support offered by Central Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open or closed access journal</td>
<td>Publisher‘s website, DOAJ, SCImago</td>
<td>Finding open access journals related to your manuscript</td>
</tr>
<tr>
<td>Impact of the journal</td>
<td>Publisher‘s website, Web of Science, Scopus</td>
<td>Providing access to Web of Science</td>
</tr>
</tbody>
</table>
Journal Selection

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Source of information</th>
<th>Support offered by Central Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open or closed access journal</td>
<td>Publisher’s website, DOAJ, SCImago</td>
<td>Finding open access journals related to your manuscript</td>
</tr>
<tr>
<td>Impact of the journal</td>
<td>Publisher’s website, Web of Science, Scopus</td>
<td>Providing access to Web of Science</td>
</tr>
</tbody>
</table>

Additional Information: Finding open access journals related to your manuscript, Providing access to Web of Science.
Journal Selection

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Source of information</th>
<th>Support offered by Central Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open or closed access journal</td>
<td>Publisher‘s website, DOAJ, SCImago</td>
<td>Finding open access journals related to your manuscript</td>
</tr>
<tr>
<td>Impact of the journal</td>
<td>Publisher‘s website, Web of Science, Scopus</td>
<td>Providing access to Web of Science</td>
</tr>
<tr>
<td>Self-archiving</td>
<td>Publisher‘s website, Sherpa/RoMEO</td>
<td>Operates institutional repository, information about policies</td>
</tr>
</tbody>
</table>
Journal Selection

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Source of information</th>
<th>Support offered by Central Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open or closed access journal</td>
<td>Publisher’s website, DOAJ, SCImago</td>
<td>Finding open access journals related to your manuscript</td>
</tr>
<tr>
<td>Impact of the journal</td>
<td>Publisher’s website, Web of Science, Scopus</td>
<td>Providing access to Web of Science</td>
</tr>
<tr>
<td>Self-archiving</td>
<td>Publisher’s website, Sherpa/RoMEO</td>
<td>Operates institutional repository, information about policies</td>
</tr>
</tbody>
</table>

Licence Information:

- **DOAJ** (Directory of Open Access Journals)
- **Web of Science**
- **Scopus**
- **SJR** (SCImago Journal & Country Rank)
- **Sherpa/RoMEO**
Journal Selection

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Source of information</th>
<th>Support offered by Central Library</th>
</tr>
</thead>
</table>

DFG Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

erc European Research Council

Europäische Kommission

HELMHOLTZ GEMEINSCHAFT

JÜLICH FORSCHUNGSZENTRUM
Workflow
Outline

• Basic Information
 ➢ Research Cycle
 ➢ Publication Types

• Academic Papers
 ➢ Journal Types
 ➢ Journal Selection

• Workflow
 ➢ Overview
 ➢ Submission
 ➢ Peer-Review
 ➢ Rejection
 ➢ Acceptance
 ➢ Publication

• Published Articles

• Services & Support
Workflow

Submission → Peer-Review → Acceptance → Publication

| Rejection |
Workflow

1. **Submission of First Draft**
 - Editor is assigned
 - Editorial review
 - Editor decision
2. **Outcome**
 - **Rejection**
 - **Revisions required**
 - **Acceptance**
3. **Publication**
4. **Submission of revision**
 - Corresponding Author

Referees
- Referees are assigned
- Review
- Referee reports
A bulk parametrization of melting snowflakes with explicit liquid water fraction for the COSMO model

C. Frick, A. Sefert, and H. Wetzel
1 Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland
2 Deutscher Wetterdienst, Offenbach, Germany
3 Hans Ertel Centre for Weather Research, Hamburg, Germany

Received: 04 Apr 2013 – Discussion started: 21 May 2013
Revised: 28 Aug 2013 – Accepted: 04 Oct 2013 – Published: 06 Nov 2013

Abstract. A new snow melting parametrization is presented for the non-hydrostatic limited-area COSMO ("consortium for small-scale modeling") model. In contrast to the standard cloud microphysics of the COSMO model, which instantaneously transfers the meltwater from the snow to the rain category, the new scheme explicitly considers the liquid water fraction of the melting snowflakes. These semi-melted hydrometeors have characteristics (e.g., shape and fall speed) that differ from those of dry snow and rain droplets. Where possible, theoretical considerations and results from vertical wind tunnel laboratory experiments of melting snowflakes are used as the basis for characterizing the melting snow as a function of its liquid water fraction. These characteristics include the capacitance, the ventilation coefficient, and the terminal fall speed. For the bulk parametrization, a critical diameter is introduced. It is assumed that particles smaller than this diameter, which increases during the melting process, have completely melted, i.e., they are converted to the rain category. The values of the bulk integrals are calculated with a finite difference method and approximately represented by polynomial functions, which allows an efficient implementation of the parametrization. Two case studies of (wet) snowfall in Germany are presented to illustrate the potential of the new snow melting parametrization. It is shown that the new scheme (i) produces wet snow instead of rain in some regions with surface temperatures slightly above the freezing point, (ii) simulates realistic atmospheric melting layers with a gradual transition from dry snow to melting snow to rain, and (iii) leads to a slower snow melting process. In the future, it will be important to thoroughly validate the scheme, also with radar data and to further explore its potential for improved surface precipitation forecasts for various meteorological conditions.

Outline

• Basic Information
 ➢ Research Cycle
 ➢ Publication Types

• Academic Papers
 ➢ Journal Types
 ➢ Journal Selection

• Workflow
 ➢ Overview
 ➢ Submission
 ➢ Peer-Review
 ➢ Rejection
 ➢ Acceptance
 ➢ Publication

• Published Articles

• Services & Support
Submission

Corresponding Author

Submission of First Draft
Submission

• Most of the times via Publisher‘s website: Online submission system
• Formal submission requirements depend on the journal
• Typical files to submit:
 ➢ Text
 ➢ Figures
 ➢ Cover letter
Submission

- Most of the times via Publisher’s website: Online submission system
- Formal submission requirements depend on the journal
- Typical files to submit:
 - Text
 - Figures
 - Cover letter

A **cover letter** provides context for considering your paper. It might include the following basic information about the paper:

- Title
- Authors
- Journal and, if applicable, the section of the journal
- Short summary and/or context
- Type of the submission, e.g. scientific paper or review article, if applicable
- Statement which attests that the work is original and is not being considered by other journals
- State whether some content appeared previously
- Statement regarding potential conflicts of interest
- Reviewer suggestions

Sometimes no longer a letter but part of the submission system
Submission

- Most of the times via Publisher’s website: Online submission system
- Formal submission requirements depend on the journal
- Typical files to submit:
 - Text
 - Figures
 - Cover letter
- Typical conditions for the text:
 - Style sheet (line numbers, line spacing, …)
 - Format (Word or LaTeX)
 - Length limit
- Other conditions:
 - Data and source code deposition
 - Figure format and size
 - Number of color figures
 - …
A bulk parametrization of melting snowflakes with explicit liquid water fraction for the COSMO model

C. Frick, A. Sefert, and H. Wernli
1Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland
2Deutscher Wetterdienst, Offenbach, Germany
3Hans Ertel Centre for Weather Research, Hamburg, Germany

Received: 04 Apr 2013 – Discussion started: 21 May 2013
Revised: 28 Aug 2013 – Accepted: 04 Oct 2013 – Published: 06 Nov 2013

Abstract. A new snow melting parametrization is presented for the non-hydrostatic limited-area COSMO ("consortium for small-scale modeling") model. In contrast to the standard cloud microphysics of the COSMO model, which instantaneously transfers the meltwater from the snow to the rain category, the new scheme explicitly considers the liquid water fraction of the melting snowflakes. These semi-melted hydrometeors have characteristics (e.g., shape and fall speed) that differ from those of dry snow and rain droplets. Where possible, theoretical considerations and results from vertical wind tunnel laboratory experiments of melting snowflakes are used as the basis for characterising the melting snow as a function of its liquid water fraction. These characteristics include the capacitance, the ventilation coefficient, and the terminal fall speed. For the bulk parametrization, a critical diameter is introduced. It is assumed that particles smaller than this diameter, which increases during the melting process, have completely melted, i.e., they are converted to the rain category. The values of the bulk integrals are calculated with a finite difference method and approximately represented by polynomial functions, which allows an efficient implementation of the parametrization. Two case studies of (wet) snowfall in Germany are presented to illustrate the potential of the new snow melting parametrization. It is shown that the new scheme (i) produces wet snow instead of rain in some regions with surface temperatures slightly above the freezing point, (ii) simulates realistic atmospheric melting layers with a gradual transition from dry snow to melting snow to rain, and (iii) leads to a slower snow melting process. In the future, it will be important to thoroughly validate the scheme, also with radar data and to further explore its potential for improved surface precipitation forecasts for various meteorological conditions.

A bulk parametrization of melting snowflakes with explicit liquid water fraction for the COSMO model

G. Frick¹,², A. Sefert²,³, and H. Wernli¹

¹Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland
²Deutscher Wetterdienst, Offenbach, Germany
³Hans Erle Centre for Weather Research, Hamburg, Germany

Abstract. A new snow melting parametrization is presented for the non-hydrostatic limited-area COSMO ("consortium for small-scale modelling") model. In contrast to the standard cloud microphysics of the COSMO model, which instantaneously transfers the meltwater from the snow to the rain category, the new scheme explicitly considers the liquid water fraction of the melting snowflakes. These semi-melted hydrometeors have characteristics (e.g., shape and fall speed) that differ from those of dry snow and rain droplets. Where possible, theoretical considerations and results from vertical wind tunnel laboratory experiments of melting snowflakes are used as the basis for characterizing the melting snow as a function of its liquid water fraction. These characteristics include the capacitance, the ventilation coefficient, and the terminal fall speed. For the bulk parametrization, a critical diameter is introduced. It is assumed that particles smaller than this diameter, which increases during the melting process, have completely melted, i.e., they are converted to the rain category. The values of the bulk integrals are calculated with a finite difference method and approximately represented by polynomial functions, which allows an efficient implementation of the parametrization. Two case studies of (wet) snowfall in Germany are presented to illustrate the potential of the new snow melting parametrization. It is shown that the new scheme (i) produces wet snow instead of rain in some regions with surface temperatures slightly above the freezing point, (ii) simulates realistic atmospheric melting layers with a gradual transition from dry snow to melting snow to rain, and (iii) leads to a slower snow melting process. In the future, it will be important to thoroughly validate the scheme, also with radar data and to further explore its potential for improved surface precipitation forecasts for various meteorological conditions.

First steps

Before the submission of your manuscript to the Editorial Support for peer review, you are kindly requested to do the following:

- to decide which manuscript type is correct for your GMD manuscript, ensuring that you can fulfill the requirements outlined on the [manuscript type](#) page. For most paper types, it is required to make model code available. We recommend that your manuscript includes the model code or that the code is submitted to a reliable repository and linked from your manuscript through a DOI. Please see our guidelines on [model code availability](#).
- to read the [general terms and the article processing charges](#) for this journal;
- to read the [licence and copyright](#);
- to read the [manuscript preparation](#) for this journal;
- to agree and comply with the [general obligations for authors](#);
- to register the manuscript in order to receive a link to upload the manuscript files into the Copernicus Office Editor. The registration also defines the manuscript subject areas and index terms as the basis for the [editor assignment](#).

File submission for review process

After the manuscript registration, you are kindly asked to upload those files which are necessary for the peer-review process. The following files are required:

- the abstract (title, authors, affiliations, abstract text, sample) as a `.pdf` file;
- the complete manuscript (title, authors, affiliations, abstract, text, tables, figures) as a `.pdf` file.

Other possible review files include the following:

- Any supplementary material (if available) must be submitted as a `.zip` archive or single `.pdf` file. The overall file size of a supplement is limited to 30 MB. Authors of larger supplements are kindly asked to submit their files to a reliable data repository and to insert a link in the manuscript. Ideally, this linkage is realized through DOIs (digital object identifiers).
- The **author’s response** (also final author comment in the public discussion) in case of “minor” or “major” revisions must be submitted as one separate `.pdf` file (indicating page and line numbers), structured in a clear and easy-to-follow sequence: (1) comments from referees/public, (2) author’s response, and (3) author’s changes in manuscript. Regarding author’s changes, a marked-up manuscript version (track changes in Word, latexdiff in Latex) converted into a `.pdf` including the author’s response must be provided.

File submission for publication of discussion paper

After the acceptance of your manuscript for publication as discussion paper in the discussion forum of the journal, you will be informed by email and are kindly asked to upload your discussion paper as `.pdf` file. Although initials are used in reference lists, please use full first names on the title page. Discussion papers do not undergo typesetting and proofreading; instead, Copernicus adds a citation header to your uploaded `.pdf` file and the merged file will then be published. Please note the sketch of this process.

File submission for production of final revised paper

After the final acceptance of your manuscript for publication in the journal, you will be informed by email and are kindly asked to complete the file upload for the publication production process. Then, please submit the following files:

- the actual text followed by the table(s) and figure caption(s) prepared in the way as outlined in the [manuscript preparation](#) as one file in Latex (as a `.tex` file) or MS Word format (as a `.doc` or `.docx` file). Although initials are used in reference lists, please use full first names on the title page;
- all figures, numbered (e.g., f01, f02, ... f11, f01a, f01b) and prepared in the way as outlined in the [manuscript preparation](#), as one `.zip` archive (or other compressed formats). Possible figure formats are `.pdf`, `.ps`, `.eps`, `.jpg`, `.png`, `.tif`, and `.gif`.

Remark on file sizes

Authors are kindly asked to find the best balance between quality of figures (and submitted material) and overall file size. Individual figures should not exceed 5 MB, and the overall size of all submitted files excluding supplements should not exceed 30 MB.
First steps

Before the submission of your manuscript to the Editorial Support for peer review, you are kindly requested to do the following:

- to decide which manuscript type is correct for your GMD manuscript, ensuring that you can fulfil the requirements outlined on the [manuscript type](#) page. For most paper types, it is required to make model code available. We recommend that your manuscript includes the model code or that the code is submitted to a reliable repository and linked from your manuscript through a DOI. Please see our guidelines on [model code availability](#).

- to read the [general terms](#) and the [article processing charges](#) for this journal;

- to read the [licence and copyright](#);

- to read the [manuscript preparation](#) for this journal;

- to agree and comply with the [general obligations for authors](#);

- to register the manuscript in order to receive a link to upload the manuscript files into the Copernicus Office Editor. The registration also defines the manuscript subject areas and index terms as the basis for the [editor assignment](#).
File submission for review process

After the manuscript registration, you are kindly asked to upload those files which are necessary for the peer-review process. The following files are required:

- the **abstract** (title, authors, affiliations, abstract text, sample) as a *.pdf file;
- the complete **manuscript** (title, authors, affiliations, abstract, text, tables, figures) as a *.pdf file.

Other possible review files include the following:

- Any **supplementary material** (if available) must be submitted as a *.zip archive or single *.pdf file. The overall file size of a supplement is limited to 50 MB. Authors of larger supplements are kindly asked to submit their files to a reliable data repository and to insert a link in the manuscript. Ideally, this linkage is realized through DOIs (digital object identifiers).
Outline

• Basic Information
 ➢ Research Cycle
 ➢ Publication Types

• Academic Papers
 ➢ Journal Types
 ➢ Journal Selection

• Workflow
 ➢ Overview
 ➢ Submission
 ➢ Peer-Review
 ➢ Rejection
 ➢ Acceptance
 ➢ Publication

• Published Articles

• Services & Support
Submission

Corresponding Author

Submission of First Draft
Peer-Review

1. Submission of First Draft
2. Editor is assigned
3. Editorial review
4. Editor
Peer-Review

• Does the article fit in the scope of the journal?
• Does the article fulfill the formal and language criteria?
• …
Desk Rejection

- Does the article fit in the scope of the journal?
- Does the article fulfill the formal and language criteria?
- …
Submission of First Draft

Editor is assigned

Editorial review

Editor

Referees

Referees are assigned

Review

Referee reports

Corresponding Author
Peer-Review

1. Submission of First Draft
 - Editor is assigned
 - Editorial review
 - Editor
 - Editor decision

2. Referees
 - Referees are assigned
 - Review
 - Referee reports
Types of Peer-Review

There exist different types of peer-review.

The three most common types of peer-review are:

- **Single blind peer-review**
 - In this type of peer review the authors don’t know who the referees are.

- **Double blind peer-review**
 - In this type of peer review the referees don’t know the identity of authors, and vice versa.

- **Open peer-review**
 - The identity of the authors and the referees are known by all participants.

Example: Open single blind peer-review
A bulk parametrization of melting snowflakes with explicit liquid water fraction for the COSMO model

C. Frick et al.

Download
- Final revised paper (published on 06 Nov 2013)
- Discussion paper (published on 21 May 2013)

Interactive discussion
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
- Printer-friendly version | S - Supplement

RC C997: 'RC', Anonymous Referee #1, 12 Jul 2013
AC C1325: 'Author Reply to anonymous Referee #1', Claudia Frick, 28 Aug 2013

RC C1012: 'Review', Anonymous Referee #2, 16 Jul 2013
AC C1333: 'Author Reply to anonymous Referee #2', Claudia Frick, 28 Aug 2013
Example: Referee reports

Development and technical paper

A bulk parametrization of melting snowflakes with explicit liquid water fraction for the COSMO model

C. Frick et al.

Download
- Final revised paper (published on 06 Nov 2013)
- Discussion paper (published on 21 May 2013)

Interactive discussion

Status: closed

AC C997: 'RC', Anonymous Referee #1, 12 Jul 2013

AC C1325: 'Author Reply to anonymous Referee #1', Claudia Frick, 28 Aug 2013

RC C1012: 'Review', Anonymous Referee #2, 16 Jul 2013

AC C1333: 'Author Reply to anonymous Referee #2', Claudia Frick, 28 Aug 2013
Example: Referee reports

A bulk parametrization of melting snowflakes with explicit liquid water fraction for the COSMO model

C. Frick et al.

Download
- Final revised paper (published on 06 Nov 2013)
- Discussion paper (published on 21 May 2013)

Interactive discussion

RC C997: 'RC', Anonymous Referee #1, 12 Jul 2013
AC C1325: 'Author Reply to anonymous Referee #1', Claudia Frick, 28 Aug 2013
RC C1012: 'Review', Anonymous Referee #2, 16 Jul 2013
AC C1333: 'Author Reply to anonymous Referee #2', Claudia Frick, 28 Aug 2013
Example: Referee 1

Interactive comment on “A bulk parameterization of melting snowflakes with explicit liquid water fraction for the COSMO model version 4.14” by C. Frick et al.

Anonymous Referee #1
Received and published: 12 July 2013

The authors publish a new method about numerical simulation of melting of snowflakes. The scheme is implemented into the NWP model, COSMO. Most of the numerical models have been applied for operational weather forecast involve a simplified description of the melting. Immediate shedding of melted water from the surface of snow and graupel particles is supposed in these models. This idea does not agree with the laboratory observations, e.g. Mitra et al. 1990 proved that the melted liquid water accumulated on the snowflakes. The author’s numerical model corresponds with these observations. Following the result of Szymer and Zawadowsky (1999) they developed a new bulk scheme to simulate the melting of snowflakes. However, the author used the amount of melted water as a prognostic variable instead of the critical diameter was
Example: Referee 1

suggested by Szymer and Zavadsky (1999). I agree with this modification, because the mass is a conserved variable. Beside the detailed description of the model, the paper involves two hindcast studies. The comparison between the 'standard' and the new scheme shows, that the more sophisticated simulation of melting improves the forecast of mixed phase precipitation. After minor revisions the paper is worth to be published in Geoscientific Model Development. Major comments: (i) Fig 1a. shows the size dependence of the capacitance of dry and wet snow flakes. In my opinion the calculation of capacitance may be incorrect. Contrary to the plots in the figure the capacitance of the water drops should be the smallest (0.5*Dq), if the masses (or Deq) are the same. The physical base of this statement is: if masses are equal, the surface of a sphere is smaller than that of an oblate spheroid or that of a hexagonal plate. In my opinion the source of this problem is that the mass – size relation of m ~ D2 is used for the melted particles as well. The problem can be solved if both the exponent and the multiplication factor (α) are given as a function of the liquid water fraction.

(ii) If I understand well the snow means the sum of melted water and ice core in Fig 9b. I think it would be also interesting to plot a similar figure by taking into consideration the ice core only. Comparison this figure with Fig 9a would show how the application of new scheme affects the melting rate.

Minor comments: The colors of contours in Fig 5. do not agree with text in the figure caption.

Interactive comment on Geosci. Model Dev. Discuss., 6, 2927, 2013.
Interactive comment on "A bulk parameterization of melting snowflakes with explicit liquid water fraction for the COSMO model version 4.14" by C. Frick et al.

Anonymous Referee #2
Received and published: 16 July 2013

Review of "A bulk parameterization of melting snowflakes with explicit liquid water fraction for the COSMO model version 4.14" by C. Frick, A. Seifert and H. Wernli.

The paper describes a parameterization of melting snowflakes explicitly considering the liquid water fraction of the melting particles as a prognostic variable, building on earlier work by Mitra et al. (1990) and Szyrmer and Zawadzki (1999). The parameterization is described in detail and is followed by two case studies that show the impact of the model changes. The work addresses a difficult problem for NWP in determining precipitation type where near-surface temperature is slightly above zero. The paper is well written, describes a novel bulk parameterization implementation in an NWP model and is appropriate for publication in GMD. However, there are a couple of major com-
MAJOR COMMENTS

1. Calculation of capacitance

The authors have chosen to express the analysis in terms of the maximum geometrical dimension of the mass equivalent dry snowflake, D_s, assuming a density relation of m=0.069*D_s^2. Equally the authors could have chosen the diameter of the mass equivalent melted sphere, D_eq. The rationale would be the same, i.e. the diameter is constant following a particular particle throughout the melting process (as is the total mass of the particle). In contrast, the actual melted diameter would change (decrease) through the melting process due to increasing density, from the dry snowflake diameter, D_s, to the melted sphere diameter, D_eq.

The use of a constant diameter assumption (in this case D_s) has a number of consequences. Firstly, there is a discontinuity at the point where all snow has turned to rain, which the authors point out for the assumption of size distribution on p2939. Secondly, particle characteristics that depend on diameter, such as capacitance can be incorrectly calculated for melting particles if not carefully accounted for.

The capacitance is a term in the melting rate, and for a melting particle, is defined as a function of D_s and an increasing function of meltwater fraction, l, (Eqn 9) so for a melting particle with constant D_s, the capacitance increases with increasing meltwater fraction. Assuming constant density throughout the melting process D_eq is proportional to D_s^2/3, so the capacitance also increases with constant D_eq, which is plotted in Figure 1a. In fact, the capacitance should *decrease* as the particle melts due to an increase in the density and decrease in melted diameter. Eqn 9 should include a modification term for the particle density, which was taken into account in Mitra et al. (1990), but isn’t here. M90 assumed a linear increase in density from 0.02 for a dry snowflake to 1 for a raindrop (linear with melted water fraction). This will then
lead to a smooth transition to the capacitance of a raindrop.

The result of this change will be a lower melting rate as the melting proceeds, which will change the results in all subsequent simulations and figures.

2. Calculation of ventilation coefficient

For the ventilation coefficient, it is not clear how the Reynolds number is specified as a function of I. Do you use Eq 13 with interpolated terminal velocities between a dry snowflake and a rain drop calculated from Eq 11? A bit more detail would be appropriate. It is not so clear why there is so little dependence of the ventilation coefficient on equivalent diameter from rain to snow given the large change in terminal fall velocity - is this because the smaller melted drop size compensates exactly for the increased terminal fall speed? Figure 1(c) is very different to the equivalent plot in SZ99 (fig 2) which has the ventilation coefficient increasing significantly for increasing meltwater fraction. If there is a good reason for the differences, this should be explained.

[Note the empirical terminal fall velocity formulation in Fig 1(b) does look reasonable, and is consistent with SZ99 Fig 1. Might be a good idea to separate this section with sub-titles, i.e. a) Capacitance, b) Terminal fall speed c) Ventilation coefficient?]

MINOR COMMENTS AND GRAMMATICAL SUGGESTIONS

- Although I realise the model version "version 4.14" in the title has been requested by the journal, I don’t think it is necessary or appropriate in this case? The paper is not a description of this particular model, but rather a description of a parametrization that is more generally applicable.

- Abstract, p2928, line 12-13 I would suggest a slight reordering of the sentence to "For the bulk parameterization, a critical diameter is introduced which increases during the melting process. It is assumed that particles smaller than this diameter have completely melted..."

On the next 4 pages!
Submission of First Draft

Editor is assigned

Editorial review

Referees are assigned

Referees

Editor

Review

Editor decision

Referee reports
Editor Decision

1. Submission of First Draft
 - Editor is assigned

2. Editorial review
 - Editor decision
 - Acceptance
 - Rejections required
 - Referees are assigned
 - Review
 - Referee reports

3. Outcome
 - Acceptance
 - Rejection

Peer-Review

1. Submission of First Draft
 Editor is assigned
 Editorial review
 Referees are assigned
 Review
 Referee reports

2. Corresponding Author
 Revisions required
 Editor decision
 Referee reports

3. Outcome
Submission of First Draft

Editor is assigned

Editorial review

Editor

Outcome

Revisions required
 - Minor revisions
 - Major revisions

Referees are assigned

Review

Referee reports

Corresponding Author

Peer-Review
Peer-Review

Submission of First Draft

Editor is assigned

Editorial review

Editor decision

Referees

Referees are assigned

Review

Referee reports

Revisions required

• Minor revisions
• Major revisions

Outcome

Submission of revision

Corresponding Author
Example: Referee reports

A bulk parametrization of melting snowflakes with explicit liquid water fraction for the COSMO model

C. Frick et al.

Download
- Final revised paper (published on 06 Nov 2013)
- Discussion paper (published on 21 May 2013)

Interactive discussion

RC 097: 'RC', Anonymous Referee #1, 12 Jul 2013
AC C1325: 'Author Reply to anonymous Referee #1', Claudia Frick, 28 Aug 2013
RC C1012: 'Review', Anonymous Referee #2, 16 Jul 2013
AC C1333: 'Author Reply to anonymous Referee #2', Claudia Frick, 28 Aug 2013
Example: Author replies

Development and technical paper

A bulk parametrization of melting snowflakes with explicit liquid water fraction for the COSMO model

C. Frick et al.

Download

- Final revised paper (published on 06 Nov 2013)
- Discussion paper (published on 21 May 2013)

Interactive discussion

AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment

RC C007: 'RC': Anonymous Referee #1, 12 Jul 2013

AC C1325: 'Author Reply to anonymous Referee #1', Claudia Frick, 28 Aug 2013

RC C1012: 'Review': Anonymous Referee #2, 16 Jul 2013

AC C1333: 'Author Reply to anonymous Referee #2', Claudia Frick, 28 Aug 2013
Interactive comment on “A bulk parameterization of melting snowflakes with explicit liquid water fraction for the COSMO model version 4.14” by C. Frick et al.

C. Frick et al.
claudia.frick@dwd.de
Received and published: 28 August 2013

Reply to Referee #2

Reviewer Comments are marked by RC and Author Reply by AR.

We thank anonymous referee #2 especially for the detailed comment on the capacitance of melting snowflakes. Consequently, we corrected our formulation of the

Thank you!
capacitance, leading to a modified melting integral and parametrization, and resimulated our case studies. A detailed description of the corrected calculation of the capacitance has been included in the paper and the new results (which are qualitatively very similar to the old ones) are presented.

Major Comments

1. **RC Calculation of capacitance**

 The authors have chosen to express the analysis in terms of the maximum geometrical dimension of the mass equivalent dry snowflake, D_s, assuming a density relation of $m = 0.069 \cdot D_s^2$. Equally the authors could have chosen the diameter of the mass equivalent melted sphere, D_{eq}. The rationale would be the same, i.e. the diameter is constant following a particular particle throughout the melting process (as is the total mass of the particle). In contrast, the actual melted diameter would change (decrease) through the melting process due to increasing density, from the dry snowflake diameter, D_s, to the melted sphere diameter, D_{eq}.

 The use of a constant diameter assumption (in this case D_s) has a number of consequences. Firstly, there is a discontinuity at the point where all snow has turned to rain, which the authors point out for the assumption of size distribution on p2939. Secondly, particle characteristics that depend on diameter, such as capacitance can be incorrectly calculated for melting particles if not carefully accounted for.

 The capacitance is a term in the melting rate, and for a melting particle, is defined as a function of D_s and an increasing function of meltwater fraction, l, (Eqn 9) so for a melting particle with constant D_s, the capacitance increases with increasing meltwater fraction. Assuming constant density throughout the melting process D_{eq} is proportional to $D_s^{2/3}$, so the
capacitance also increases with constant D_{eq}, which is plotted in Figure 1a. In fact, the capacitance should "decrease" as the particle melts due to an increase in the density and decrease in melted diameter. Eqn 9 should include a modification term for the particle density, which was taken into account in Mitra et al. (1990), but isn’t here. M90 assumed a linear increase in density from 0.02 for a dry snowflake to 1 for a raindrop (linear with melted water fraction). This will then lead to a smooth transition to the capacitance of a raindrop.

The result of this change will be a lower melting rate as the melting proceeds, which will change the results in all subsequent simulations and figures.

- **AR** We carefully had a look at our calculation of the capacitance and replaced the incorrectly applied diameter of the dry snowflake D_s by the diameter of the melting snowflake D_m as suggested by Mitra et al. (1990). A detailed description of the calculation has been added to the paper:

 "For the calculation of the capacitance M90 applied the approximation for an oblate spheroid. The axis ratio is assumed to be 0.3 for a dry dendritic crystal, and 1.0 for a raindrop. The axis ratio for melting snowflakes is approximated by a linear interpolation, i.e.,

 $$a(l) = 0.3 + 0.7 l. \quad (8)$$

 and the capacitance is then given by (Pruppacher and Klett, 1997, p. 547, Eq. (13-78)),

 $$C_m(D_s, l) = \alpha_{cap}(l) \frac{D_m(D_s, l)}{2} \frac{\sqrt{1-a(l)^2}}{\arcsin \sqrt{1-a(l)^2}} \quad (9)$$

 with $C_m(D_s, 0) = C_s$ and $C_m(D_s, 1) = C_r$. D_m is the maximum dimension of the melting snowflake, which can be calculated as follows.
Outline

- Basic Information
 - Research Cycle
 - Publication Types

- Academic Papers
 - Journal Types
 - Journal Selection

- Workflow
 - Overview
 - Submission
 - Peer-Review
 - Rejection
 - Acceptance
 - Publication

- Published Articles

- Services & Support
Rejection

1. Submission of First Draft
2. Editor is assigned
3. Editorial review
4. Referees are assigned
5. Referee reports
6. Editor decision

Outcome: Rejection

Corresponding Author
Workflow: Rejected

- Revise and submit to another journal
 - Mention the previous submission/rejection
Workflow: Rejected

- Revise and submit to another journal
 - Mention the previous submission/rejection

“From July 1999 through April 2012, a total of 62 unsolicited manuscripts were submitted to at least one journal for potential publication. Of those, 39 were published (63%), and 5 are in press (8%). These manuscripts were submitted to an average of 2.0 journals each before being accepted for publication (23 to one journal, 12 to two journals, 12 to three journals, 2 to four journals, 1 to five journals, and 2 to six journals).

Of the remaining 18 manuscripts, 14 (23%) were actively in review or revisions for potential publication and 4 (6%) were “in stasis” with no active efforts by the authors to publish the manuscript. These manuscripts were submitted to 2.1 journals each on average (7 to one journal, 5 to two journals, 4 to three journals, 1 to four journals, and 1 to five journals).”

Outline

• Basic Information
 ➢ Research Cycle
 ➢ Publication Types

• Academic Papers
 ➢ Journal Types
 ➢ Journal Selection

• Workflow
 ➢ Overview
 ➢ Submission
 ➢ Peer-Review
 ➢ Rejection
 ➢ Acceptance
 ➢ Publication

• Published Articles

• Services & Support
Acceptance

Submission of First Draft

Editor is assigned

Editorial review

Editor decision

Referees are assigned

Review

Referee reports

Outcome

Revisions required

Acceptance

Accepted after revisions

Submission of revision

Corresponding Author
Acceptance

Submission of First Draft

Editor is assigned

Editorial review

Referees are assigned

Editor

Review

Referee reports

Editor decision

Accepted as is

Outcome

Acceptance

Corresponding Author
Outline

• Basic Information
 ➢ Research Cycle
 ➢ Publication Types

• Academic Papers
 ➢ Journal Types
 ➢ Journal Selection

• Workflow
 ➢ Overview
 ➢ Submission
 ➢ Peer-Review
 ➢ Rejection
 ➢ Acceptance
 ➢ Publication

• Published Articles

• Services & Support
Publication

Submission of First Draft

Editor is assigned

Editorial review

Editor decision

Outcome

Rejection

Revisions required

Acceptance

Publication

Referees

Referees are assigned

Review

Referee reports
Publication

Typical steps before publication

• Typesetting
 ➢ The corresponding author has to submit the article in the defined style/typeset
 ➢ The journal typesets the article
Example: Publication

File submission for production of final revised paper

After the final acceptance of your manuscript for publication in the journal, you will be informed by email and are kindly asked to complete the file upload for the publication production process. Then, please submit the following files:

- the actual text followed by the table(s) and figure caption(s) prepared in the way as outlined in the manuscript preparation as one file in LaTeX (as a *.tex file) or MS Word format (as a *.doc/*.docx file). Although initials are used in reference lists, please use full first names on the title page;

- all figures, numbered (e.g. f01, f02, ..., f11, f01a, f01b) and prepared in the way as outlined in the manuscript preparation, as one *.zip archive (or other compressed formats). Possible figure formats are *.pdf, *.ps, *.eps, *.jpg, *.png, *.tif, and *.gif.

Remark on file sizes

Authors are kindly asked to find the best balance between quality of figures (and submitted material) and overall file size. Individual figures should not exceed 5 MB, and the overall size of all submitted files excluding supplements should not exceed 30 MB.
Publication

Typical steps before publication

• Typesetting
 ➢ The corresponding author has to submit the article in the defined style/typeset
 ➢ The journal typesets the article

• Proofreading
 ➢ The corresponding author receives a galley proof and carefully checks the typesetting, figures, line breaks, equations, …
Published Articles
Outline

• Basic Information
 ➢ Research Cycle
 ➢ Publication Types

• Academic Papers
 ➢ Journal Types
 ➢ Journal Selection

• Workflow
 ➢ Overview
 ➢ Submission
 ➢ Peer-Review
 ➢ Rejection
 ➢ Acceptance
 ➢ Publication

• Published Articles

• Services & Support
Open Access in Publication Guidelines

Directive: Publications by Forschungszentrum Jülich GmbH

Verwendungsrichtlinien - Allgemeine Bedingungen für Förderverträge mit der Deutschen Forschungsgemeinschaft e.V. (DFG)

Open Access in Deutschland - Die Strategie des Bundesministeriums für Bildung und Forschung

Open-Access-Richtlinie der Helmholtz-Gemeinschaft

Guidelines to the Rules on Open Access to Scientific Publications and Open Access to Research Data in Horizon 2020
Journal Types

Subscription Journals
- The classical way to publish
- Publication charges for authors possible
 (Colour Charges, Page Charges, …)
- **Copyright** owned by Publisher
- **Pay for Read** and Re-Use

Open Access Journals
- The emerging way to publish
- Publication charges for authors possible
 (Article Processing Charges: APCs)
- **Copyright** owned by authors
 (Creative Commons Licences)
- **Free to read** and Re-Use

Closed Access

Gold Open Access
Journal Types

Subscription Journals

- The classical way to publish
- Publication charges for authors possible
 (Colour Charges, Page Charges, …)
- **Copyright** owned by Publisher
- **Pay for Read** and Re-Use

Open Access Journals

- The emerging way to publish
- Publication charges for authors possible
 (Article Processing Charges: APCs)
- **Copyright** owned by authors
 (Creative Commons Licences)
- **Free to read** and Re-Use

Closed Access

Gold Open Access

Green Open Access

Hybrid Open Access
Workflow

- Submission
- Peer-Review
- Acceptance
- Publication
Workflow

1. Submission
2. Peer-Review
3. Acceptance
4. Publication

- Pre-Print
 - First Draft
 - without Publisher's layout

- Post-Print
 - Final Draft
 - Post-Referee
 - Author's Manuscript
 - Author's Fulltext
 - without Publisher's layout

- Publisher's Version
 - with Publisher's layout
 - Publisher's PDF
Open Access Possibilities

<table>
<thead>
<tr>
<th>Open Access Journals</th>
<th>Gold Open Access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The Publisher’s version is directly open access on the Publisher’s website under a free licence. No additional fee for open access publication for the author. There might be publication fees (Article Processing Charges) for the author.</td>
</tr>
</tbody>
</table>

Subscription Journals
Open Access Possibilities

<table>
<thead>
<tr>
<th>Open Access Journals</th>
<th>Gold Open Access</th>
<th>Closed Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publisher's version is directly open access on the Publisher's website under a free licence. No additional fee for open access publication for the author. There might be publication fees (Article Processing Charges) for the author.</td>
<td>Publisher's version is directly accessible for subscribers on the Publisher's website. Reader / Library pays for reading. No additional fee for closed access publication for the author. There might be publication fees for the author. There are fees for re-use, e.g. for the re-use of figures.</td>
<td></td>
</tr>
</tbody>
</table>
Open Access Possibilities

<table>
<thead>
<tr>
<th>Open Access Journals</th>
<th>Gold Open Access</th>
<th>Subscription Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold Open Access</td>
<td>- The Publisher's version is directly open access on the Publisher's website under a free licence. No additional fee for open access publication for the author. There might be publication fees (Article Processing Charges) for the author.</td>
<td>Closed Access</td>
</tr>
<tr>
<td>Closed Access</td>
<td>- The Publisher's version is directly accessible for subscribers on the Publisher's website. Reader / Library pays for reading. No additional fee for closed access publication for the author. There might be publication fees for the author. There are fees for re-use, e.g. for the re-use of figures.</td>
<td>Hybrid Open Access</td>
</tr>
<tr>
<td>Hybrid Open Access</td>
<td>- The Publisher's version is directly open access on the Publisher's website. Additional fee for hybrid open access publication for the author. There might be publication fees for the author. There are fees for re-use, e.g. for the re-use of figures.</td>
<td></td>
</tr>
</tbody>
</table>
Open Access Possibilities

<table>
<thead>
<tr>
<th>Open Access Journals</th>
<th>Gold Open Access</th>
<th>Closed Access</th>
<th>Hybrid Open Access</th>
<th>Green Open Access Self-Archiving</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Publisher’s version is directly open access on the Publisher’s website under a free licence. No additional fee for open access publication for the author. There might be publication fees (Article Processing Charges) for the author.</td>
<td>The Publisher’s version is directly accessible for subscribers on the Publisher’s website. Reader / Library pays for reading. No additional fee for closed access publication for the author. There might be publication fees for the author. There are fees for re-use, e.g. for the re-use of figures.</td>
<td></td>
<td>Post-Print or Publisher’s version is directly or after an embargo period open access on a repository. No additional fee for green open access publication for the author. There might be publication fees for the author. There are fees for re-use, e.g. for the re-use of figures.</td>
<td></td>
</tr>
</tbody>
</table>
Services & Support
Outline

• Basic Information
 ➢ Research Cycle
 ➢ Publication Types

• Academic Papers
 ➢ Journal Types
 ➢ Journal Selection

• Workflow
 ➢ Overview
 ➢ Submission
 ➢ Peer-Review
 ➢ Rejection
 ➢ Acceptance
 ➢ Publication

• Published Articles

• Services & Support
Services

- Submission
- Peer-Review
- Acceptance
- Publication
Services

Advice for Authors
Advice for Authors

- Journal selection
- Publisher check
- Copyright and licences
- Check of publication fees and funding options
- Acquisition of rights for the re-use of figures
- Information about supporting tools
- Finding self-archiving policies
- ...

![DOAJ](image)

![WEB OF SCIENCE](image)

![SJR](image)

![SHERPA/RoMEO](image)

![Scopus](image)
Services

- Submission
- Peer-Review
- Acceptance
- Publication

- Advice for Authors
- Publication fees
Publication fees

• **Handling of the complete payment process**
 • Processing **all kind of invoices** or statements related to publications, irrespectively of the funder: publication fund or institute
 • Invoice order
 • Invoice check
 • Order to pay
 • Correspondence with publisher and financial department

• **Publication fund**
 • All fees for publications in **Open Access Journals** where the **Corresponding Author** is affiliated to Forschungszentrum Jülich
Services

Submission → Peer-Review → Acceptance → Publication

Advice for Authors → Publication fees → JuSER
JuSER-Workflow

- Enter **meta data** of publication
 - Use DOI import
 - Add contributing institutes and POF
 - Check authors
- Add **PDF** of publication
 - Open Access Journal
 1. **Publisher’s version** (Main document)
 - Subscription Journal
 1. **Post-Print** (Main document or Authors fulltext)
 2. **Publisher’s version** (Restricted fulltext)
JuSER-Workflow

Author

- Enter **meta data** of publication
 - Use DOI import
 - Add contributing institutes and POF
 - Check authors
- Add **PDF** of publication
 - **Open Access Journal**
 1. **Publisher’s version** (Main document)
 - **Subscription Journal**
 1. **Post-Print** (Main document or Authors fulltext)
 2. **Publisher’s version** (Restricted fulltext)

Institute

- Check **meta data** of publication
 - Add missing information
 - If necessary, use DOI import
- Check **PDFs**
JuSER-Workflow

Author
- Enter *meta data* of publication
 - Use DOI import
 - Add contributing institutes and POF
 - Check authors
- Add *PDF* of publication
 - Open Access Journal
 1. Publisher’s version (Main document)
 - Subscription Journal
 1. Post-Print (Main document or Authors fulltext)
 2. Publisher’s version (Restricted fulltext)

Institute
- Check *meta data* of publication
 - Add missing information
 - If necessary, use DOI import
- Check *PDFs*

Library
- Final check of *meta data* der Publikation
 - If necessary, resubmit to institute
- Check *PDFs*
 - If necessary, add Publisher’s version (adding Post-Print is not possible)
- Check secondary publication rights
 - If permitted release Main document or Authors fulltext to Open Access
 - If necessary, after an embargo period
JuSER

- OpenAIRE validated: Compliant with European standards for Green Open Access, e.g. for Horizon 2020
- Indexed in Google Scholar and BASE
- Connected to ORCID: Push your publications to your ORCID profile
- Open Access fulltexts can be found using the typical tools, e.g. unpaywall and oaDOI
Online Support

Academia Stack Exchange
What does the typical workflow of a journal look like?

What steps does a manuscript typically go through from submission to publication (or rejection) in a typical journal? How are these steps referred to, in particular by editorial systems, and how long do they each typically take?

Note that this question is about the typical situation and hence not about:

- Journals with an atypical workflow, e.g., those that allow for an instantaneous reviewer–author interaction.
- Exceptional steps or rare occurrences such as withdrawal or clerical errors.

This is a canonical question on this topic as per this Meta post. Due to its nature, it is rather broad and not exemplary for a regular question on this site. Please feel free to improve this question.

https://academia.stackexchange.com/q/55665/68222
Online Support

https://academia.stackexchange.com/a/55666/68222
Links

Publication guidelines and Open Access policies

BMBF: Open Access in Deutschland. Die Strategie des Bundesministeriums für Bildung und Forschung. https://www.bmbf.de/pub/Open_Access_in_Deutschland.pdf

DFG: Verwendungsrichtlinien Allgemeine Bedingungen für Förderverträge mit der Deutschen Forschungsgemeinschaft e.V. (DFG). http://www.dfg.de/formulare/2_00/v/dfg_2_00_de_v0317.pdf

FZJ: Veröffentlichungen des Forschungszentrums Jülich GmbH. http://intranet.fz-juelich.de/SharedDocs/Interne_Regelungen/Veroeffentlichungen_des_Forschungszentrums_Juelich_GmbH_RL_IR_251-2.html

Links

Tools

Academia Stack Exchange: Academia Stack Exchange is a question and answer site for academics and those enrolled in higher education. https://academia.stackexchange.com/

Creative Commons Germany: Creative Commons (CC) is a non-profit organisation providing different kinds of Open Access licences. https://de.creativecommons.org/

DOAJ: Directory of Open Access Journals. https://doaj.org/

JuSER: Publication database and repository of Forschungszentrums Jülich. https://juser.fz-juelich.de/

OpenAIRE: Assists in monitoring H2020 and other EC funded research outputs. https://www.openaire.eu

rchievit: Can I self-archive my e-print? Let's find out. https://rchive.it/

Sherpa/JULIET: Research funders’ open access policies. http://www.sherpa.ac.uk/juliet

Sherpa/RoMEO: Publisher copyright policies & self-archiving. http://www.sherpa.ac.uk/romeo

Unpaywall: Read paywalled research papers for free. http://unpaywall.org/
Links

Selected books available in the Central Library

Links

Further information

Example

Addendum
Closed Access

“Publishers provide services that scientists and societies could not (or did not want to) do themselves (e.g., typesetting, printing, delivering, subscription management). In exchange for these services, publishers acquire a valuable asset — copyright ownership of the scientific reports. How do they obtain ownership? The scientists give it to them, for free. Authors are so happy to have their submission accepted that they blissfully sign a copyright transfer form sent by the publishers. Then publishers recoup their investment by closing access to the articles and then selling journal subscriptions to the scientists and their institutions [...]. In other words, the funding public, universities, and scientists who produced and pay for the research give ownership of the results to publishers. Then, those with money left over buy the results back from the publishers; the rest are in the dark.”

Gold Open Access

- Author retains the Copyright of its publication:
 - Content
 - Figures
- Anyone can access the publication
- The author/journal assigns a licence:
 - The Author might permit additional rights, e.g. the right to re-use for non-commercial or even commercial purposes, the right to re-mix
 - The author might impose conditions, e.g. attribution