Jülich Supercomputing Centre

Introduction

E. Suarez
Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich
Outline

- JSC in a Nutshell
- Production systems
 - System use
 - How to get access
 - Training
- Architecture evolution
 - Dual approach
 - Cluster-Booster
 - Modular Supercomputing
- JSC vision
JSC in a Nutshell

Supercomputer operation for:
- Centre – FZJ
- Region – RWTH Aachen University
- Germany – Gauss Centre for Supercomputing
 John von Neumann Institute for Computing
- Europe – PRACE, EU projects

Application support
- Unique support & research environment at JSC
- Peer review support and coordination

Education and training

R&D work
- Methods and algorithms, computational science, performance analysis and tools
- Scientific Big Data Analytics with HPC
- Computer architectures, Co-Design
 Exascale Labs together with IBM, Intel, NVIDIA
Domain-specific User support
PRODUCTION SYSTEMS
JURECA Cluster – Hardware

- Dual-socket Intel Haswell (E5-2680 v3)
 - 12× cores/socket
 - 2.5 GHz
 - ≥ 128 GB main memory

- 1,884 compute nodes (45,216 cores)
 - 75 nodes: 2× K80 NVIDIA GPUs
 - 12 nodes: 2 × K40 NVIDIA GPUs
 - 512 GB main memory

- Peak performance: **2.2 Petaflop/s** (1.7 w/o GPUs)
- Mellanox InfiniBand EDR
- Connected to the GPFS file system on JUST
 - ~15 PByte online disk and
 - 100 PByte offline tape capacity
JUQUEEN - Hardware

- IBM Blue Gene/Q
- PowerPC® A2
 - 16× cores per node
 - 1.6 GHz
 - 16 Gbyte main memory
- 28,672 nodes
 - 458,752 cores
 - 28 racks
- Peak performance: 5,9 PFlop/s
- Connected to a GPFS:
- 5D network

June 2017: #7 in Europe
#21 worldwide
#94 in Green500
JUST: Storage server

- **8 PB**
 - **$WORK**
 - **$DATA**

- **$HOME**
 - 3 x 600 TB

- **$ARCH**
 - 2 x 600 TB

- 220 GB/sec

JUQUEEN | JURECA | JUROPA3 | JUDAC Jülich Data Access | TSM Server
JURECA Cluster – Software

- **Operating system**: Linux CentOS 7.X
- **Scheduler**: SLURM
- **Filesystem**: GPFS ($HOME, $WORK, $ARCH)
- **Compilers** (C/C++, Fortran, CUDA): Intel, GNU, PGI, CUDA
- **Debuggers**: TotalView, DDT, MUST
- **Programming**: Intel MPI, ParaStation MPI, OpenMP, CUDA
- **Performance analysis tools**: Score-P, Scalasca, Vampir, TAU, NVIDIA Visual Profiler, Darshan…
- **Libraries** (modules): MKL, SIONlib, HDF5, netcdf, PETSc …
- **Domain specific packages**: NAMD, QuantumExpresso,…

Support: sc@fz-juelich.de
On-line documentation: http://www.fz-juelich.de/ias/jsc/jureca
JUQUEEN – Software

- **Operating system**: Linux
- **Scheduler**: SLURM
- **Filesystem**: GPFS ($HOME, $WORK, $ARCH)
- **Compilers** (C/C++, Fortran): Intel, GNU, PGI
- **Debuggers**: TotalView, STAT, MUST
- **Programming**: MPICH2, OpenMP, CUDA
- **Performance analysis tools**: Score-P, Scalasca, Vampir, TAU, Darshan,…
- **Libraries** (modules): MKL, SIONlib, HDF5, netcdf, PETSc …

Support: sc@fz-juelich.de

On-line documentation: http://www.fz-juelich.de/ias/jsc/juqueen
SYSTEMS USE
System Usage

JURECA Cluster

Launch of JURECA, phase 1: 260 nodes: Jul 13, 2015
Launch of JURECA, phase 2: 1,884 nodes: Nov 2, 2015
Research fields – Current projects

General-Purpose Cluster

Massively Parallel system

JURECA
ca. 170 Projects

JUQUEEN
ca. 95 Projects

Granting periods
11/2016 – 10/2017
05/2017 – 04/2018

1 Earth & Environment
2 Biophysics
3 Particle Physics
4 Soft Matter
5 Condensed Matter
6 Plasma Physics
7 Chemistry
8 Fluid Dynamics
9 Materials Science
10 Computer Science
11 Astrophysics
How to get access – peer review process

- To JURECA via:
 - JARA-HPC: for FZJ + RWTH staff members only
 - Vergabegremium (VGG) and/or Kommission zur Vergabe von SC Ressourcen (VSR)
 - John von Neumann Institute for Computing (NIC)

- To JUQUEEN via:
 - JARA-HPC (for FZJ + RWTH staff only): VGG and/or VSR
 - Gauss Centre for Supercomputing (GCS)
 - Proposals evaluated by NIC
 - PRACE: European Research Infrastructure
 - Project Access: Biannual CfPs since June 2010
 - Call for preparatory access open, no closing dates
How to use the systems

- Introductory courses every 6 months
- Detailed documentation (slides) on JSC website:

Further training events

- Very varied training events: jsc-events-join@fz-juelich.de

Events at JSC

If you would like to receive regular information on our events per e-mail, please send an e-mail to: jsc-events-join@fz-juelich.de.

More events

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Sep 2017 - 29 Sep 2017</td>
<td>International HPSC TerrSys Fall School 2017</td>
</tr>
<tr>
<td>09 Oct 2017 - 11 Oct 2017</td>
<td>Training course "Einführung in Python"</td>
</tr>
<tr>
<td>09 Oct 2017 - 10 Oct 2017</td>
<td>Training course "Porting code from Matlab to Python"</td>
</tr>
<tr>
<td>16 Oct 2017 - 17 Oct 2017</td>
<td>Training course "Introduction to GPU programming using OpenACC"</td>
</tr>
<tr>
<td>19 Oct 2017 - 20 Oct 2017</td>
<td>GAMM CSE Workshop 2017</td>
</tr>
<tr>
<td>06 Nov 2017 - 15 Nov 2017</td>
<td>Training course "Programmierung in C"</td>
</tr>
<tr>
<td>15 Nov 2017</td>
<td>Training course "JusD - JusNet/Internet Security Day"</td>
</tr>
<tr>
<td>20 Nov 2017</td>
<td>Training course "Software Development in Science"</td>
</tr>
<tr>
<td>21 Nov 2017 - 22 Nov 2017</td>
<td>Training course "Vectorisation and portable programming using OpenCL"</td>
</tr>
<tr>
<td>23 Nov 2017 - 24 Nov 2017</td>
<td>Training course "Introduction to the Programming and usage of the supercomputer resources at Jülich"</td>
</tr>
<tr>
<td>27 Nov 2017 - 28 Nov 2017</td>
<td>Training course "Advanced Parallel Programming with MPI and OpenMP"</td>
</tr>
<tr>
<td>29 Nov 2017</td>
<td>Training course "Das Programmierwerkzeug make"</td>
</tr>
</tbody>
</table>

http://www.fz-juelich.de/ias/jsc/EN/News/Events
High-Q-Club: >30 generic codes at scale!

dynQCD Gysela JusPIC MP2C μφ

PEPC PMG+PFASST TeraNEO WalBerla

Gyrokinetic code
Laser-Plasma
CFD with Particles
Water in Porous Media
Particle Tree Code
ODE-Solver
MG for Geophysics
Lattice Boltzmann etc.

Non-trivial kernels only!
From dual to Modular Supercomputing

ARCHITECTURE EVOLUTION
Dual Architecture

- **JUMP**
 - IBM Power p690
 - 9 TFlop/s

- **JUROPA**
 - Intel Nehalem
 - 300 TFlop/s

- **JURECA Cluster**
 - Intel Haswell
 - ~2.2 PFlop/s

- **JUBL**
 - IBM Blue Gene/L
 - 5 TFlop/s

- **JUGENE**
 - IBM Blue Gene/P
 - 1 PFlop/s

- **JUQUEEN**
 - IBM Blue Gene/Q
 - 5.9 PFlop/s

General purpose clusters

- Deeply parallel architecture
Both combine:
- Hardware
- Software
- Applications
in a strong co-design

EU-Exascale projects
27 partners
Total budget: 44 M€
EU-funding: 30 M€
Nov 2011 – Jun 2020

www.deep-projects.eu
Homogeneous cluster
Heterogeneous cluster
Cluster-Booster architecture
DEEP Prototype

- Installed at JSC
- 1.5 racks
- 500 TFlop/s peak perf.
- 3.5 GFlop/s/W
- Water cooled

Cluster (128 Xeon)

Booster (384 Xeon Phi KNC)
Software environment

- **Scheduler**: Torque/Maui → future moving to SLURM
- **Filesystem**: BeeGFS
- **Compilers**: Intel, gcc, PGI
- **Debuggers**: Intel Inspector (threading, memory), TotalView (source code, memory debugger)
- **Programming**: ParaStation MPI (mpich), OpenMP, OmpSs
- **Performance analysis tools**: Extrae/Paraver, Scalasca, Intel Advisor, Intel, VTune…
- **Libraries**: SIOnlib, SCR, E10, HDF5, netCDF, PETSc…
Application-driven approach

DEEP projects applications (15):

- Brain simulation (EPFL + NMBU)
- Space weather simulation (KULeuven)
- Climate simulation (Cyprus Institute)
- Computational fluid engineering (CERFACS)
- High temperature superconductivity (CINECA)
- Seismic imaging (CGG + BSC)
- Human exposure to electromagnetic fields (INRIA)
- Geoscience (LRZ)
- Radio astronomy (Astron)
- Lattice QCD (University of Regensburg)
- Molecular dynamics (NCSA)
- Data analytics in Earth Science (UoI)
- High Energy Physics (CERN)

CO-DESIGN
Cluster-Booster architecture advantages

- **Full user flexibility** – many different use modes
 - Dynamic ratio of processors/coprocessors
 - Use Booster as pool of accelerators (globally shared)
 - Discrete use of the Booster
 - Discrete use + I/O offload
 - Specialized symmetric mode

- **More efficient use of system resources**
 - Only resources really needed are blocked by applications
 - Dynamic allocation further increases system utilization

- Better I/O performance and resiliency
Dual Architecture

JUMP
IBM Power p690
9 TFlop/s

JUROPA
Intel Nehalem
300 TFlop/s

JURECA Cluster
Intel Haswell
~ 2,2 PFlop/s

JUBL
IBM Blue Gene/L
5 TFlop/s

JUGENE
IBM Blue Gene/P
1 PFlop/s

JUQUEEN
IBM Blue Gene/Q
5.9 PFlop/s

JURECA Booster
DELL/Intel Xeon Phi
*Fictive picture

General purpose cluster

Massively parallel architecture
Dual Architecture

JUMP
IBM Power p690
9 TFlop/s

JUROPA
Intel Nehalem
300 TFlop/s

JURECA Cluster
Intel Haswell
~ 2.2 PFlop/s

JUBL
IBM Blue Gene/L
5 TFlop/s

JUGENE
IBM Blue Gene/P
1 PFlop/s

JUQUEEN
IBM Blue Gene/Q
5.9 PFlop/s

JURECA Booster
DELL/Intel Xeon Phi
5 PFlop/s
* Fictive picture

25 September 2017
TerrSys Workshop – JSC Introduction
37
Dual Architecture

- **JUMP**
 - IBM Power p690
 - 9 TFlop/s

- **JUROPA**
 - Intel Nehalem
 - 300 TFlop/s

- **JURECA Cluster**
 - Intel Haswell
 - ~2.2 PFlop/s

- **JUBL**
 - IBM Blue Gene/L
 - 5 TFlop/s

- **JUGENE**
 - IBM Blue Gene/P
 - 1 PFlop/s

- **JUQUEEN**
 - IBM Blue Gene/Q
 - 5.9 PFlop/s

- **JURECA Booster**
 - DELL/Intel Xeon Phi
 - 5 PFlop/s

Fictive picture

General purpose cluster

Massively parallel architecture
MODULAR SUPERCOMPUTING
Cluster – Booster architecture

Module 0: Storage

Module 1: Cluster

Module 2: Many core Booster

Disk

CN

Disk

BN

BN

BN

BN

BN

BN

BN

CN
Modular Supercomputing

Generalization of the Cluster-Booster concept
Modular Supercomputing

Module 0
Exascale Storage

Module 1
HPC Cluster

Module 2
Extreme Scale Booster

Module 3
Data Analytics Module

Module 4
Graphics Module

Module 5
Neuromorphic

Module n:
Modular Supercomputing

Module 1
HPC Cluster

Module 2
Extreme Scale Booster

Module 0
Exascale Storage

Module 3
Data Analytics Module

Module 4
Graphics Module

Module 5
Neuromorphic

Workload 1

Workload 2

Workload 3

Module n:
JSC Vision

Neuromorphic

Cluster

Quantum Computer

Data Analytics Module

Booster