Session 1: Introduction to Python from the Matlab perspective

October 9th, 2017 | Sandra Diaz
Working with examples in this course

• Git repository
 - Work: Exercises we will be interactively working on
 - Slides
Starting with Python

- IDEs: Pyzo, PyCharm, Spyder, Wing

- https://www.python.org/
- https://docs.python.org/3/
- https://www.scipy.org/
- https://matplotlib.org
Executing code in python

- The python interpreter
 - `$ python my-program.py`
- Ipython
 - Interactive shell for the python interpreter
- Jupyter notebooks
 - HTML-based notebook environment for Python, similar to the Matlab frontend
Running Python

• Versions 2 and 3 are commonly found
• In this course we focus on Python 3
 - $ python --version
Introduction to Python

• Modules
 - import math
 - from math import *
 - from math import cos
 - print(dir(math))
 - help(math.cos) or help(math)
Introduction to Python

• Indentation is very important!
 - Do not use tabs

• Variable names

• Variable types
 - Fundamental types: int, float, bool, complex
 - Type casting

• Operators
 - All works the same as Matlab but:
 • / is always a floating point division in Python 3 (Python 2: from __future__ import division)
 • // integer division
 • ** power
 • Booleans: and, not, or
 • = identical (objects or fundamental types)
Introduction to Python

• List of equivalent operations:
Introduction to Python

• Indexing
 - In Python indexing starts at 0
 - In Python, indexing is done with [] not ().
 - Use one [] for each dimension to index.
 - [start:stop] extract a portion of an indexable object from start until stop-1
 - [start:end:step] also works
 • Omitting one gives defaults
 - Index -1 is the last element, -2 the second last and so on so forth
Introduction to Python

• Indexable objects and basic data structures
 - Strings are arrays of characters
 - Lists are arrays of any type and do not have to be all of the same type: \(x = [5, 'h', 2.0] \)
 - Numerical arrays:
 • range(start, stop, step)
 • drange
 - Dictionaries: \{‘key1’: ‘value’, ‘key2’: 3\}
Introduction to Python

• Sending output to the screen: unlike Matlab, in Python we use the print command to send variable values and text to the screen

 - print (variable)
 - print(“Hello Python!”)
 - print('{} {} {}'.format(2, 2*2, 2*2*2))
 - print('Port your code from {} to {}'.format('Matlab', 'Python'))
Introduction to Python

- Open a file
 - `file = fopen('myfile.dat', 'w')` → `file = open('myfile.dat', 'w')`

- Output to a file
 - `fprintf(file,'From Matlab')` → `file.write("To Python")`
 - Variables must be converted to a string:
 `file.write('{} {} {}'.format(2, 2*2, 2*2*2))`

- Read from a file
 - `content = fread(file)` → `content = file.read()`
 - `line = file.readline()`

- Close a file
 - `fclose(file)` → `file.close()`
Introduction to Python

- Flow control
 - Important that the scope of the flow control structure is defined by the indentation. There is no ‘end’ statement like in Matlab
 - Loops
 - for x in range(10):
 - while x<10:
 - parfor can be implemented in many ways in python: MPI or OpenMP
 - http://www.reddit.com/r/Python/comments/j3qjb/parformatlabpool_replacement/
 - Control
 - if, elif, else
 - no real switch statement but can use a dictionary
Introduction to Python

• Tip: Code in Python is not checked for syntax errors before execution because it is an interpreted language

• Code that is not executed is not verified

• Test your code for all cases (unit testing)
Introduction to Python

• Functions
 - Use the `def` keyword to identify a function
 - Be careful, the extent of the function is defined by indentation
 - Use the return statement to send back one or more values from your function
 - Lambda functions are special functions without a name
References

(1) Based on the work by J.R. Johansson http://jrjohansson.github.io