Impurity Transport Studies at Wendelstein 7-X by Means of X-ray Imaging Spectrometer Measurements

A. Langenberg1, N.A. Pablant2, A. Dinklage1, Th. Wegner1, P. Traverso3, O. Marchuk4, B. Geiger5, B. Buttenschön1, C. Brandt1, H. Thomsen1, M. Kubkowska5, A. Czarnecka5, S. Jabłoński5, U. Neuner1, N. Tamura6, J.L. Valesco7, J.A. Alonso7, A. Mollén1, D. Zhang1, R. Burhenn1, R.C. Wolf1 and the W7-X team

1Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
2Princeton Plasma Physics Laboratory, Princeton, NJ, USA
3Auburn University, Auburn, Alabama, USA
4Institut für Energie und Klimaforschung-IEK-4, Forschungszentrum Jülich, 52425 Jülich, Germany
5Institute of Plasma Physics and Laser Microfusion, Hery 23 St. 01-497 Warsaw, Poland
6National Institute for Fusion Science, 322-6, Oroshi-cho, Toki-City, Gifu 509-5292, Japan
7Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, Madrid, Spain

Due to non axis symmetric 3D magnetic fields, impurity transport in the hot plasma core in stellarators is fundamentally different to tokamaks. In view of reactor-like operation, understanding the impurity transport is a prerequisite for steady-state operation. These aspects motivate initial impurity transport studies in W7-X at previously - in optimized stellarators – unexplored, reactor-relevant collisionalities. New effects, like potential variations on flux-surfaces [1] or screening effects due to species dependent transport regimes [2] are examples for aspects which attracted recent interest. Spatio-temporal impurity emissivities were measured by the x-ray imaging spectrometers XICS [3] and HR-XIS [4], optimized to detect He-like impurity emission. These spectrometers provide measurements of the radial electric field [5] and also allow for a direct determination of diffusive and convective transport parameters D and v [6]. Therefore, impurity transport in various stellarator specific transport regimes can be studied. In this paper, a systematic parameter scan varying the electron cyclotron resonance (ECR) heating power and the electron density n_e has been carried out. Furthermore, the specific settings of the power deposition reveal a significant impact on impurity confinement time, possibly driven by changes in the radial electric field at very low collisionalities – uniquely addressable in large stellarators like W7-X. Experimental findings are compared to neoclassical theory [7] and modeled with the 1D transport analysis code STRAHL. The study aims to reveal the impact of aspects entering stellarator optimization (e.g. ripples, magnetic mirrors) on the impurity fluxes.