SEARCHES FOR ELECTRIC DIPOLE MOMENTS (EDM) AT A STORAGE RING WITH JEDI

17 AUGUST 2018 MARIA ŻUREK FOR THE JEDI COLLABORATION

NUFACT2018, BLACKSBURG, VIRGINIA, 13-18 AUGUST 2018
MOTIVATION

Baryon Asymmetry Problem

<table>
<thead>
<tr>
<th>Baryon Asymmetry</th>
<th>Observation</th>
<th>Standard Cosmological Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(N_B - N_{\bar{B}}) / N_\gamma$</td>
<td>6×10^{-10}</td>
<td>$\sim 10^{-18}$</td>
</tr>
</tbody>
</table>

Preconditions needed to explain it (Sakharov):
- \mathcal{C} and $\mathcal{C}\mathcal{P}$ violation
- Baryon number violation
- Thermal non-equilibrium in the early Universe

$\mathcal{C}\mathcal{P}$ violation in Standard Model

- **Electroweak sector** (CKM matrix well established)
- **Strong interactions** (θ-term, strong-$\mathcal{C}\mathcal{P}$ puzzle)

Predictions orders of magnitude too small to explain the asymmetry!

New sources of $\mathcal{C}\mathcal{P}$ violation can be seen in EDM of particles
ELECTRIC DIPOLE MOMENT

CP-symmetry violation

\[\vec{d} = \eta \cdot \frac{q}{2mc} \vec{S} \]
\[\vec{\mu} = g \cdot \frac{q}{2m} \vec{S} \]

Pseudo vectors

The observable quantity - Energy:
- of electric dipole in electric field
- of magnetic dipole in magnetic field

\[H = H_M + H_E = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E} \]
\[P : H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E} \]
\[T : H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E} \]

H violates \(\mathcal{T} \) and \(\mathcal{P} \)-symmetry if \(d \neq 0 \)

\(\mathcal{T} \) violation

\(\mathcal{CP} \) violation (\(\mathcal{CPT} \) conserved)
ELECTRIC DIPOLE MOMENT

Current limits

![Graph showing EDM limits for different particles and models with upper limits indicated for SUSY, Standard Model, and various particles like electron, muon, tau, neutron, proton (199Hg), and deuteron.]

- Upper limits

Maria Żurek – EDMs with JEDI
MOTIVATION

Disentanglement the fundamental source(s) of EDMs

Experiment Where is the EDM? How do we understand it? Dream

- Neutron, Proton
- Nuclei: $^1\text{H}, ^3\text{H}, ^3\text{He}$
- Diamagnetic atoms: Hg, Xe, Ra
- Paramagnetic atoms: TI, Cs
- Molecules: YbF, ThO, HFF
- Leptons: muon

atomic theory → nuclear theory → QCD (including Θ-term)

- quark EDM
- quark chromo-EDM
- gluon chromo-EDM
- four-quark operators
- lepton-quark operators
- lepton EDM
PRINCIPLE OF EDM MEASUREMENT

Charged Particles in a Storage Ring

General idea: Observation of EDM interaction with electric field

Simplified case – pure E field:

$d \neq 0$: spin rotation out of horizontal plane

\[
\frac{d\vec{S}}{dt} \sim d\vec{E} \times \vec{S}
\]

Build-up of vertical polarization

$d \propto$ spin rotation angle

EDM $\sim 10^{-29}$ e·cm

Effect of the order of μdeg/hour

Extremely small effects!

“Frozen spin” - Spin parallel to momentum
EXPERIMENTAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>High precision storage ring</td>
<td>alignment, stability, field homogeneity</td>
</tr>
<tr>
<td>Polarized hadron beams</td>
<td>$P = 0.8$</td>
</tr>
<tr>
<td>High intensity beams</td>
<td>$N = 4 \times 10^{10}$ per fill</td>
</tr>
<tr>
<td>Large electric fields</td>
<td>$E = 10$ MV/m</td>
</tr>
<tr>
<td>Long spin coherence time</td>
<td>$\tau = 1000$ s</td>
</tr>
<tr>
<td>Polarimetry</td>
<td>analyzing power $A = 0.6$, acc. $f = 0.005$</td>
</tr>
</tbody>
</table>

\[
\sigma_{\text{stat}} \approx \frac{1}{\sqrt{N f \tau P A E}} \implies \sigma_{\text{stat}}(1 \text{ year}) \approx 10^{-29} \text{ ecm}
\]

Challenge: systematic uncertainties on the same level!

Even in Pure Electric Ring – lots of sources of systematic uncertainties

Very small radial B field can mimic an EDM effect: $\mu B_r \sim dE_r$
STORAGE RING EDM MEASUREMENTS

- Only EDM storage ring measurement: muon (parasitic measurement to g-2)

- **Cooler Synchrotron COSY**
 at Forschungszentrum Jülich, Germany
 - magnetic storage ring
 - polarized proton and deuteron beams up to 3 GeV/c

 Ideal **starting point** for proof of principle experiment

EDMs of charged hadrons: p, d

R&D with deuterons

\[p = 1 \text{ GeV/c} \]
\[G = -0.14256177(72) \]
\[f_s \approx 120 \text{ kHz} \]
\[f_{\text{rev}} \approx 750 \text{ kHz} \]

\[\nu_s = \frac{\text{spin revolutions}}{\text{turn}} \approx G \gamma \approx -0.16 \]
Thomas-BMT equation:
In storage rings (magnetic field – vertical, electric field - radial)

\[
\frac{d\hat{S}}{dt} = \hat{\Omega} \times \hat{S} = -\frac{q}{m_0}\left\{G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G\right)\frac{\vec{\beta} \times \vec{E}}{c} + d \frac{m_0}{q\hbar S} (\vec{E} + c\vec{\beta} \times \vec{B})\right\} \times \hat{S}
\]

MDM causes fast spin precession in horizontal plane
EDM causes small vertical polarization buildup oscillating up and down
SPIN IN PURELY MAGNETIC RING

50% of time
momentum \uparrow \downarrow \text{spin} \quad \text{Spin tilted up}

50% of time
momentum \downarrow \uparrow \text{spin} \quad \text{Spin tilted down}

no vertical polarisation build-up
					
tiny oscillation

Maria Żurek – EDMs with JEDI
SPIN IN PURELY MAGNETIC RING

50% of time

momentum ↑ spin Spin tilted up

50% of time

momentum ↓ spin Spin tilted down

Wien Filter has to be always **in phase** with the horizontal spin precession!
ACTIVITY AT COSY

Jülich Electric Dipole moment Investigations (JEDI)

- Precise determination of spin tune

- Spin coherence time

- Phase lock of spin precession

- Wien filter commissioning
- Polarimetry development
- Beam instrumentation
- Spin-tracking simulations

http://collaborations.fz-juelich.de/ikp/jedi/
Scattering from Carbon target

\[\sigma^\text{pol}(\theta, \phi) = \sigma_0(\theta)[1 + \frac{3}{2} PA_y(\theta) \cos \phi] \]

Right/Left asymmetry \(\propto \) vertical component of polarization \(P_y \)

\[c_{LR} = \frac{N_L - N_R}{N_L + N_R} = P_y A_y \]

EDM signal appears here

Up/Down asymmetry \(\propto \) horizontal component of polarization \(P_x \)

\[c_{UD} = \frac{N_U - N_D}{N_U + N_D} = P_x A_y \]

Needed to maintain “frozen spin” condition

Typically \(A_y \sim 0.6 \)
\[\nu_s = \frac{\text{spin revolutions}}{\text{turn}} \approx G \gamma \approx -0.16 \quad \text{Deuteron spin precesses with } \sim 120 \text{ kHz!} \]

Detector signal and measured asymmetry oscillates

\[\epsilon_{UD} = \frac{N_U - N_D}{N_U + N_D} = P_x A_y \sin(2\pi \cdot f_{\text{prec}}t) = P_x A_y \sin(2\pi \cdot \nu_s n_{\text{turn}}) \]

With event rates \(\sim 5000 \text{ s}^{-1} \) we have \(\sim 1 \text{ hit / 25 precessions} \)

Too few polarimeter events to resolve oscillation directly!

Map events to one cycle

Monitoring phase of asymmetry with fixed spin tune

Relative precision:
Muon (g-2): $\sim 10^{-6}$
Deuteron (JEDI): $\sim 10^{-9}$

Much longer measurement: 600μs vs 100 s

Precise determination of G impossible:
Ring imperfections \rightarrow MDM rotations about non-vertical axes
SPIN COHERENCE TIME

Beginning of measurement

- All spin vectors aligned
- Polarization vanishes

After some time

- Spin vectors all out of phase
- Measurement time limited
SPIN COHERENCE TIME

Beginning of measurement

All spin vectors aligned

After some time

Spin vectors all out of phase

Polarization vanishes \[\frac{\Delta \gamma}{\gamma} = \beta^2 \frac{\Delta p}{p} \approx 10^{-4} = \frac{\Delta \nu}{\nu} \] measurement time limited \[\Rightarrow \Delta \varphi \approx 60 \text{ rad/s} \]

- unbunched beam: \[\frac{\Delta \gamma}{\gamma} \approx 10^{-5} \] \(\Rightarrow \) decoherence in \(< 1 \text{s} \)

- bunching: eliminate effects on \(\frac{\Delta p}{p} \) in 1\text{st} order \(\Rightarrow \tau \approx 20 \text{ s} \)

- correcting higher order effects using sextupoles and (pre-) cooling \(\Rightarrow \tau \approx 1000 \text{ s} \)
SPIN COHERENCE TIME

Beginning of measurement

All spin vectors aligned

After > 1000 s

Spin vectors all out of phase

Graph:

- X-axis: Time [s]
- Y-axis: Normalized polarization
- Data points at 0, 200, 400, 600, 800, 1000, 1200, 1400 s with values close to 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0.0, and 0.0 respectively.

Reference:

CONTROLLING SPIN DIRECTION

Feedback system

Goal: Maintain resonance frequency and phase between spin precession and Wien filter

1st test at COSY:
control spin tune via COSY rf: \(\nu_s = G \gamma \)

Now:
We change directly Wien filter frequency!

\(\sigma \approx 12^\circ \)

WIEN FILTER COMMISSIONING
Wien Filter Commissioning

EDM Mode

MDM precession
COSY + WF
We see vertical polarization buildup - EDM-like signal
We see vertical polarization buildup - EDM-like signal

Two systematic contributions:
1. Residual, radial magnetic field from WF
 - effect equivalent to WF rotation
2. Field imperfections in COSY
 - transverse contribution: equivalent to WF rotation
 - longitudinal contribution: equivalent to additional static solenoid field

Stability of COSY conditions within 24 hours
We see vertical polarization buildup - EDM-like signal

Two systematic contributions:
1. Residual, radial magnetic field from WF
 - effect equivalent to WF rotation
2. Field imperfections in COSY
 - transverse contribution: equivalent to WF rotation
 - longitudinal contribution: equivalent to additional static solenoid field

Stability of COSY conditions within 24 hours
OUTLOOK

2019

COSY

1st deuteron EDM measurement
Sensitivity: $\sim 10^{-19} \text{e}\cdot\text{cm}$

Prototype ring

- Proof of principle
- Test deflectors/instrumentation
- Check lifetime
- Test CW/CCW operation
- Test frozen spin (additional B-field at low energy)

? Dedicated ring

Highly sensitive EDM measurement
SUMMARY

• EDMs of elementary particles key for understanding sources of CP violation
 ⇒ explanation of matter – antimatter imbalance
• Extremely ambitious measurement for charged particles
• Preparations for proof-of-principle experiment at COSY
 ⇒ Extended R&D program
• First measurement of deuteron EDM in progress
THANK YOU!

http://collaborations.fz-juelich.de/ikp/jedi/

mariakzurek@gmail.com
@mariakzurek
BACKUP
POLARIMETRY FOR AN EDM EXPERIMENT

Challenge: measurement of tiny polarization build-up

For proton EDM $\sim 10^{-29} \, \text{e} \cdot \text{cm}$ and ~ 1 year of measurement

$$\Delta \varepsilon_{LR} = \varepsilon_t - \varepsilon_0$$

$$= \Delta P_y A_y \approx 10^{-6}$$

Systematics count!

Polarimetry requirements

Long term reproducibility:

\rightarrow Continuous measurement for a long time

Minimization of asymmetry error:

\rightarrow Maximization of FoM

Figure of Merit

Efficiency \downarrow

High A_y \downarrow

$\delta \varepsilon_{LR}^{(\text{stat})} \propto \frac{1}{\sqrt{N |A_y|}} = \frac{1}{\sqrt{\text{FoM}}}$

Maria Żurek – EDMs with JEDI
ACTIVITY AT COSY

Jülich Electric Dipole moment Investigations (JEDI)

R&D with towards first proof-of-principle EDM experiment for deuterons and protons

Polarimetry-group activity:
- Development of dedicated polarimeter based on LYSO crystals
- Database experiment with WASA detector

Motivation:
- Optimal configuration of the polarimeter

Goal: A_y, A_{yy}, $d\sigma/d\Omega$ for
- dC elastic scattering
- main background reactions (deuteron breakup)

http://collaborations.fz-juelich.de/ikp/jedi/
DEUTERON DATABASE EXPERIMENT WITH WASA

Detector Setup

Beamtime in November 2016 (2 weeks)

Deuteron energies: 170, 200, 235, 270, 300, 340, 380 MeV

Nominal beam polarization: \((P_y, P_{yy}) = (0,0), (-\frac{2}{3},0), (\frac{2}{3},0), (\frac{1}{2}, -\frac{1}{2}), (-1, 1)\)

Targets: C and CH\(_2\)

Setup: Modified WASA Forward Detector

- Full \(\phi\) coverage
- \(\theta\) range 4° - 17°
DATABASE EXPERIMENT WITH WASA

Analyzing power for elastic dC scattering
POLARIMETRY

Detector signal

\[N_{up,down} = 1 \pm PA \sin(2\pi \cdot f_{prec} t) \]
\[= 1 \pm PA \sin(2\pi \cdot v_s n_{turns}) \]

P: polarisation, A: analysing power

Asymmetry

\[\varepsilon = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = PA \sin(2\pi \cdot v_s n_{turns}) \]

Challenges

- precession frequency \(f_{prec} \approx 120 \) kHz
- \(v_s \approx -0.16 \) \(\rightarrow \) 6 turns / precession
- event rate \(\approx 5000 \) s\(^{-1}\) \(\rightarrow \) 1 hit / 25 precessions
 \(\rightarrow \) no direct fit of the rates
R&D AT COSY

EDMs of charged hadrons: p, d

R&D with deuterons

$p = 1 \text{ GeV/c}$

$G = -0.14256177(72)$

$\nu_s \approx -0.161 \, f \approx 120 \text{ kHz}$

study spin tune $\nu_s = \frac{|\Omega|}{|\omega_{cyc}|} = \gamma G$

\rightarrow phase advance per turn

WASA polarimeter

EDDA polarimeter

precession

\vec{d}

rf solenoid
WIEN FILTER METHOD

- **Magnetic Dipole Moment**
 - Fast horizontal precession

- **Electric Dipole Moment**
 - Very slow vertical precession

- **E* field tilts spin due to EDM**
 - 50% of time up
 - 50% of time down

\[
\frac{d\vec{S}}{dt} \propto \left(G\vec{B} + \frac{m_0c}{q\hbar S} \vec{\beta} \times \vec{B} \right) \times \vec{S}
\]

- **Horizontal precession angular velocity**
 - No vertical polarisation build-up

- **Vertical spin direction**
 - Tiny oscillation

Maria Żurek – EDMs with JEDI
WIEN FILTER METHOD

- Wien Filter: introduces B and E field oscillating with radio frequency
- Lorentz force vanishes: no effect on EDM rotation
- Effect: Adds extra horizontal precession

Wien Filter has to be always in phase with the horizontal spin precession!

Resonant frequency controlled, precession of spin phase locked
WIEN FILTER COMMISSIONING – 90° MODE

SPIN ROTATIONS WITH PHASE LOCK

\[\varphi(t) = 2\pi \nu_s f_c t \]

\[B_{WF}(t) = B_0 \sin(\omega t + \Delta\varphi) \]

Task: maintain \(\omega = 2\pi |k + \nu_s| f_c \)

and fix \(\Delta\varphi \)

Controlled via WF frequency

Spin build-up as a function of phase \(\sim \sin\Delta\varphi \) → Feedback system works properly!
We see vertical polarization buildup - EDM-like signal

Two **systematic** contributions:
1. **Residual, radial magnetic field from WF**
 - effect equivalent to WF rotation

2. **Field imperfections in COSY**
 - transverse contribution: equivalent to WF rotation
 - longitudinal contribution: equivalent to additional static solenoid field

The measurement shows the stability of COSY conditions within 24 hours