Competition between wall anchoring and yielding of nematic platelets under LAOStress and Strain, revealed by 3D Rheo-SAXS

O. Korculanina, H. Hirsemannb, B. Struthb, D. Morenoc, S. Rogersd, M. P. Lettingab

aInstitute of Complex Systems (ICS-3), Forschungszentrum J\"{u}lich, Germany; Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium; bDESY, Hamburg, Germany; cDubble, ESPR, Grenoble, France; dDepartment of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA

blettinga@fz-juelich.de

Introduction

Nematic dispersion of colloidal gibbsite platelets show yielding behavior

- **Goal:**
 Study the structural response underlying the yielding behavior
- **Tool:**
 Large Amplitude Oscillatory Strain/Stress measurements combined with a vertical small angle X-ray scattering set-up to probe structure
- **Novelty:**
 3D re-orientational motion and local information

Possible configurations

Materials

- **Gibbsite platelets (AIOOH):**
 - Charged, sides and faces carry the same charges (positive)
 - Relatively thick (\(R=125 \pm 16\) nm, \(d=11 \pm 4\) nm)
 - Relatively monodispersed (-13-20%)
 - Dispersed in glycerol

Setup

- **Rheo-SAXS [2]**
 Vertically deflected X-ray beam is passed through platelet or couvette geometry of a Haake Mars stress controlled rheometer.
- **Advantage**
 Simultaneous Small Angle X-ray Scattering and Rheological measurements
- **Probe**
 - Flow-vorticity plane
 - Low-gradient plane, plus gap scanning

Wall anchoring vs. Director motion

LAOStress:

- Full 3-D reorientational motion
- Structural response at low strain: no propagation throughout the gap
- Structural response at high strain: full response through gap, but erratic in the middle
- Stress response mainly due to wall response

LAOStress:

- Strong asymmetrical behaviour both in the rheological and the microscopic response [3] (not shown).

Cartoon of the dynamic behavior

- **Response at low strain:**
 - 1st harmonic response \(\Rightarrow\) Dynamic bifurcation
 - High effect of wall anchoring

- **Response at high strain:**
 - 2nd harmonic response
 - Widening followed by flipping
 - Smaller effect of wall anchoring
