Observation of $\Upsilon(2S) \to \gamma \eta_0(1S)$ Decay

B. G. Fulsom,71 T. K. Pedlar,50 I. Adachi,19,15 H. Aihara,90 S. Al Said,83,40 D. M. Asner,4 H. Atmacan,79 V. Aulchenko,5,69 T. Aushev,58 R. Ayad,83 V. Babu,54 I. Badhrees,33,39 A. M. Bakich,82 V. Bansal,71 P. Behera,27 C. Beleño,14 M. Berger,80 V. Bhardwaj,23 B. Bhuyan,25 T. Bilka,6 J. Biswal,35 A. Bondar,5,69 G. Bonvicini,94 A. Bozek,66 M. Bračko,52,35 T. E. Browder,18 L. Cao,37 D. Červenkov,6 V. Chekelian,53 A. Chen,63 B. G. Cheon,17 K. Chilikin,47 K. Cho,41 S.-K. Choi,16 Y. Choi,81 S. Choudhuri,26 D. Cinabro,5 S. Cunliffe,9 N. Dash,24 S. Di Carlo,94 J. Dingfelder,3 Z. Doleţal,6 T. V. Dong,19,15 Z. Drásaš,8 S. Eidelman,5,69,47 D. Epifanov,5,69 J. E. Fast,71 T. Ferber,9 R. Garg,72 V. Gaur,93 N. Gabyshev,5,69 A. Garmash,5,69 M. Gelb,37 A. Giri,26 P. Goldenzewig,37 E. Guido,33 J. Haba,19,15 K. Hayasaka,68 H. Hayashii,62 S. Hirose,59 W.-S. Hou,65 T. Iijima,60,59 K. Inami,5 G. Inguglia,9 A. Ishikawa,88 R. Itoh,19,15 M. Iwasaki,70 Y. Iwasaki,19 W. Jacobs,28 H. B. Jeon,44 S. Jia,2 Y. Jin,90 D. Joffe,38 K. K. Joo,7 T. Julius,54 T. Kawasaki,68 H. Kichimi,19 C. Kiesling,53 D. Y. Kim,78 H. J. Kim,44 J. B. Kim,42 K. T. Kim,42 S. H. Kim,17 K. Kinoshita,8 P. Kodyš,6 S. Kordina,5,69 D. Kotchetkov,18 P. Kušnir,48,35 R. Kroeger,55 P. Krokovny,5,69 T. Kuhr,49 R. Kulasini,38 A. Kuzmin,5,69 Y.-J. Kwon,96 J. S. Lange,12 I. S. Lee,17 S. C. Lee,44 L. K. Li,29 Y. B. Li,73 L. Li Gioi,53 J. Libby,27 D. Liventsev,93,19 M. Lubej,35 T. Luo,11 M. Masuda,89 T. Matsuda,36 D. Matvienko,5,69,47 M. Merola,32,61 K. Miyabayashi,62 H. Miyata,68 R. Mizuk,47,57,58 G. B. Mohanty,84 H. K. Moon,42 R. Mussa,33 M. Nakao,19,15 T. Nanut,35 K. J. Nath,32 Z. Natkaniec,66 M. Nakao,47 M. Niiyama,43 N. K. Nisar,94 S. Nishida,19,15 S. Ogawa,97 S. Okuno,36 H. Ono,57,68 P. Pakhlov,75,77 G. Pakhlova,47,58 B. Pal,4 S. Pardi,32 H. Park,44 S. Paul,86 R. Pestonik,35 L. E. Piilonen,93 V. Popov,47,58 E. Prencipe,21 A. Rabusov,86 M. Ritter,49 A. Rostomyan,9 G. Russo,32 Y. Sakai,19,15 M. Salehi,51,49 S. Sandilya,8 L. Santelj,19 T. Sanuki,88 V. Savinov,74 O. Schneider,46 G. Schnell,1,22 C. Schwa,30 Y. Seino,68 K. Senyo,95 M. E. Sevior,54 V. Shebalin,5,69 C. P. Shen,2 T.-A. Shibata,91 J.-G. Shiu,65 B. Shwartz,5,69 F. Simon,35 J. B. Singh,72 A. Sokolov,51 E. Solovieva,47,58 M. Starič,35 J. F. Strube,71 M. Sumihama,13 K. Sumisawa,19,13 T. Sumiyoshi,92 W. Sutcliffe,37 M. Takizawa,77,20,75 U. Tamponi,33 K. Tanida,34 F. Tenchini,54 M. Uchida,91 T. Uglov,47,58 Y. Unno,17 S. Uno,19,15 P. Urquijo,54 S. E. Vahsen,18 C. Van Hulse,1 R. Van Tonder,37 G. Varner,18 A. Vinokurova,5,69 V. Vorobyev,5,69,47 A. Vossen,10 B. Wang,2 C. H. Wang,64 P. Wang,29 X. L. Wang,11 M. Watanabe,68 S. Watanuki,88 E. Widmann,80 E. Won,42 H. Ye,9 J. H. Yin,29 C. Z. Yuan,29 Z. P. Zhang,76 V. Zhilich,5,69 V. Zhukova,47,5,69 and A. Zupanc48,35

(Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Beihang University, Beijing 100191
3Brookhaven National Laboratory, Upton, New York 11973
4Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
5Faculty of Mathematics and Physics, Charles University, 121 16 Prague
6Chonnam National University, Kwangju 660-701
7Deutsches Elektronen-Synchrotron, 22607 Hamburg
8Justus-Liebig-Universität Gießen, 35392 Gießen
9Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
10University of Hawaii, Honolulu, Hawaii 96822
11University of the Basque Country UPV/EHU, 48080 Bilbao
12University of Bonn, 53115 Bonn
13University of Cincinnati, Cincinnati, Ohio 45221
14II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
15Brookhaven National Laboratory, Upton, New York 11973
16High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
17University of the Basque Country UPV/EHU, 48080 Bilbao
18High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
19University of Hawaii, Honolulu, Hawaii 96822
20Forschungszentrum Jülich, 52425 Jülich
21IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
22Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306

0031-9007/18/121(23)/232001(8) 232001-1 Published by the American Physical Society
We report the observation of $\Upsilon(2S) \to \gamma \eta_b(1S)$ decay based on an analysis of the inclusive photon spectrum of 24.7 fb^{-1} of e^+e^- collisions at the $\Upsilon(2S)$ center-of-mass energy collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We measure a branching fraction of $B[\Upsilon(2S) \to \gamma \eta_b(1S)] = (6.1^{+0.7+0.9}_{-0.7-0.6}) \times 10^{-4}$ and derive an $\eta_b(1S)$ mass of $9394.8^{+2.7+1.5}_{-3.0-2.6} \text{ MeV}/c^2$, where the uncertainties are statistical and systematic, respectively. The significance of our measurement is greater than 7 standard deviations, constituting the first observation of this decay mode.

DOI: 10.1103/PhysRevLett.121.232001

Bottomonium is the system consisting of a b and \bar{b} quark bound by the strong force [1]. The heavy b quark mass allows this system to be described by nonrelativistic field theory, in addition to phenomenological and lattice methods. e^+e^- colliders can directly produce excited bottomonium states Υ, whose radiative decays access the lowest-energy spin-singlet bottomonium state $\eta_b(1S)$. The properties of the ground state are expected to be reliably theoretically calculable. Study of the $\eta_b(1S)$ can further our understanding of the nature of quantum chromodynamics (QCD) in the nonperturbative regime.

The $\eta_b(1S)$ was discovered by the BABAR experiment in $\Upsilon(3S) \to \gamma \eta_b(1S)$ decay [2]. Further evidence was provided by BABAR in $\Upsilon(2S) \to \gamma \eta_b(1S)$ decay [3] and subsequently by the CLEO experiment [4]. These analyses studied the inclusive photon spectrum from Υ decays to measure the $\eta_b(1S)$ mass ($m_{\eta_b(1S)}$) and production branching fractions based on the photon line associated with the hindered M1 radiative transition. In contrast, subsequent $m_{\eta_b(1S)}$ measurements from the Belle experiment have used $h_b(nP) \to \gamma \eta_b(1S)$ decays produced via $\Upsilon(5S) \to \pi^+\pi^- h_b(nP)$ [5] and $\Upsilon(4S) \to \eta h_b(1P)$ [6], where $n = 1$ and 2. By measuring the recoil mass against $\pi^+\pi^-\gamma$ and the mass difference between the $\pi^+\pi^-$ and $\pi^+\pi^-\gamma$, and η and η_b, recoil masses, the Belle experiment was able to make a complementary measurement of $m_{\eta_b(1S)}$. Other recent measurements have offered compelling but circumstantial information [7,8].

A striking feature of these results is that BABAR and CLEO find $m_{\eta_b(1S)} = 9391.1 \pm 2.9 \text{ MeV}/c^2$, whereas Belle measures $9401.6 \pm 1.7 \text{ MeV}/c^2$. This discrepancy is at the level of 3.1 standard deviations (σ). This may be due to experiment-specific systematic effects or perhaps line shape distortion in the $M1$ transition analogous to $J/\psi \to \gamma \eta(1S)$ [9,10]. There are a large number of $\eta_b(nS)$ (where $n = 1$ and 2) mass and width predictions from phenomenological quarkonium potential models, nonrelativistic QCD, and lattice calculations [11]. Theory predictions of the branching fractions vary widely for $\Upsilon(2S) \to \gamma \eta_b(1S)$ decays in the range of $(2-20) \times 10^{-4}$ [12], and the single experimental measurement is $(3.9 \pm 1.5) \times 10^{-4}$ [3]. Further $\eta_b(1S)$ measurements are necessary for resolving these issues and reducing the experimental uncertainty in order to discriminate between competing theoretical predictions.

In this Letter, we report a new measurement of $\Upsilon(2S) \to \gamma \eta_b(1S)$ decay. By examining the inclusive photon spectrum, we identify the energy peak associated with this radiative transition and use it to determine $m_{\eta_b(1S)}$ and the branching fraction $B[\Upsilon(2S) \to \gamma \eta_b(1S)]$. This analysis is based on 24.7 fb^{-1} of e^+e^- collision data at the $\Upsilon(2S)$ center-of-mass (c.m.) energy collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider [13]. This data set is equivalent to $(157.8 \pm 3.6) \times 10^6 \Upsilon(2S)$ events [14], the largest such sample currently in existence.

The Belle detector is a large-solid-angle magnetic spectrometer consisting of a silicon vertex detector (SVD), a
50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters, a barrel-like arrangement of time-of-flight scintillation counters, and an electromagnetic calorimeter (ECL) comprised of CsI(Tl) crystals. All these are located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. The ECL is divided into three regions spanning θ, the angle of inclination in the laboratory frame with respect to the direction opposite the e^+ beam. The ECL backward end cap, barrel, and forward end cap cover ranges of $-0.91 < \cos \theta < -0.65$, $-0.63 < \cos \theta < 0.85$, and $0.85 < \cos \theta < 0.98$, respectively. An iron flux return located outside of the magnet coil is instrumented with resistive plate chambers to detect K^0_L mesons and muons. The detector is described in detail elsewhere [15]. The data collected for this analysis used an inner detector system with a 1.5 cm beam pipe, a four-layer SVD, and a small-cell inner drift chamber.

A set of event selection criteria is chosen to enhance the $\eta(1S)$ signal while reducing backgrounds from poorly detected photons, π^0 decays, nonresonant production, and other Υ decays. These criteria are determined by maximizing the figure of merit $S/\sqrt{S+B}$ (where S and B are the number of expected signal and background events, respectively) for each variable under consideration in an iterative fashion. A subset of $\sim 5\%$ of the total $\Upsilon(2S)$ data is used as the control sample for optimizing the selection. To avoid potential bias, these events are discarded from the final analysis. Large Monte Carlo (MC) samples of simulated $\Upsilon(2S) \rightarrow \eta\eta(1S)$ events are used as the signal input, assuming the branching fraction from Ref. [3] and $\eta(1S)$ decaying to a pair of gluons. Particle production and decays are simulated using the EVTGEN [16] package, with PHOTOS [17] for modeling final-state radiation effects, and PYTHIA [18] for inclusive $b\bar{b}$ decays. The interactions of the decay products with the Belle detector are modeled with the GEANT3 [19] simulation toolkit.

This analysis studies radiative bottomonium transitions based on the energy spectrum of the photons in each event. Photon candidates are formed from clusters of energy deposited in crystals grouped in the ECL. Clusters are required to include more than a single crystal. The ratio of the energy deposited in the innermost 3×3 array of crystals compared to the complete 5×5 array centered on the most energetic crystal is required to be greater than or equal to 0.925. Clusters must be isolated from the projected path of charged tracks in the CDC, and the associated electromagnetic shower must have a width of less than 6 cm. Because of increased beam-related backgrounds in the forward end cap region and insufficient energy resolution in the backward one, we consider only clusters in the ECL barrel region for this analysis, reducing the geometric acceptance by approximately half.

The inclusive photon sample is drawn from events passing a standard Belle definition for hadronic decays. This requires at least three charged tracks, a visible energy greater than 20% of the c.m. beam energy (\sqrt{s}), and a total energy deposition in the ECL between 0.2 \sqrt{s} and 0.8 \sqrt{s}.

We consider the cosine of the angle θ_T between the photon and the thrust axis calculated in the e^+e^- c.m. frame as a discriminant. In a given event, the thrust axis is calculated based on all charged particle tracks and photons except the candidate photon. For continuum background events, the photon direction tends to be aligned or anti-aligned along the thrust axis, whereas the distribution for signal events is isotropic. Therefore, to reduce this background, we require $|\cos \theta_T| < 0.85$.

To remove backgrounds from $\pi^0 \rightarrow \gamma\gamma$ decays, each photon candidate is sequentially paired with all remaining photon candidates in the event and vetoed if the resulting invariant mass ($M_{\gamma\gamma}$) is consistent with that of a $\pi^0 (m_{\gamma\gamma})$ [20]. In order to improve the purity and reduce combinatorial background, a requirement on the minimum energy of the second photon ($E_{\gamma2}$) is applied. We require $E_{\gamma2} > 60$ MeV, and $|M_{\gamma\gamma} - m_{\gamma\gamma}| > 15$ MeV/c2.

The resulting spectrum of photon energies in the c.m. frame (E_γ^*) is shown in Fig. 1. Below 200 MeV, there are three prominent peaks related to $\Upsilon(2S) \rightarrow \gamma\chi_{bJ=0,1,2}(1P)$ [21] transitions. The region of interest for this analysis is $300 < E_\gamma^* < 800$ MeV, where six components are expected. Photons from the $\Upsilon(2S) \rightarrow \eta\eta(1S)$ signal transition will produce a peak in this distribution near 600 MeV. Direct production of $\Upsilon(1S)$ via initial-state radiation (ISR), $e^+e^-\gamma_{ISR} \rightarrow \Upsilon(1S)$, results in a second peak at

![FIG. 1. E_γ distribution from the data for the photons passing the selection criteria. The visible peaking structures are due to radiative transitions to and from the $\Upsilon(1S)$ states. This analysis is concerned with the $300 < E_\gamma^* < 800$ MeV region, indicated by vertical lines. Because of its relative size, an $\Upsilon(2S) \rightarrow \eta\eta(1S)$ signal expected near 600 MeV is not seen at this scale.](image-url)
$E_\gamma^* \sim 547$ MeV. A series of three peaks due to $\chi_{bJ}(1P) \to \gamma \Upsilon(1S)$ transitions are centered at ~ 391, ~ 424, and ~ 442 MeV. These peaks are Doppler broadened, because the $\chi_{bJ}(1P)$ states originate from $\Upsilon(2S) \to \gamma \chi_{bJ}(1P)$ decays, and are therefore not at rest in the c.m. frame to which we boost the photon energy for this analysis. As such, they also overlap one another. These peaking features are all found above a very large, smooth, inclusive photon background that diminishes as the energy increases.

The line shape parameters and efficiencies are determined from the MC samples. The $\eta_b(1S)$ and $\chi_{bJ}(1P)$ transitions are described by a variation on the Crystal Ball function [22]: a bifurcated Gaussian with individual line shapes. The ground that diminishes as the energy increases. The line shape parameters and efficiencies are determined from the MC samples. The $\eta_b(1S)$ ground that diminishes as the energy increases.

The photon energy scale and resolution are verified with a series of three peaks due to $\chi_{bJ}(1P) \to \gamma \Upsilon(1S)$ transitions. The hadronic and photon selections vary in order to reproduce the expected $\chi_{bJ}(1P)$ transition energies in both of the periods. To account for differences between the MC simulation and data, we fit the energy spectrum with the MC-determined line shapes for the $\Upsilon(2S) \to \gamma \chi_{bJ}(1P)$ and $\chi_{bJ}(1P) \to \gamma \Upsilon(1S)$ transitions, allowing the energy scale and resolution to vary in order to reproduce the expected $\chi_{bJ}(1P)$ transitions. We perform a binned maximum-likelihood fit to data in the region of $300 < E_\gamma^* < 804$ MeV including all six peaking components and the exponential background. The yields, energy peak values, and background polynomial coefficients are allowed to vary. In $\chi_{bJ}(1P) \to \gamma \Upsilon(1S)$ transitions, we find the $J = 0$ component, known to be suppressed compared to the $J = 1$ and 2 transitions, to be absorption into the nearby peaks. We fix the $J = 0$ peak position in the fit and measure a yield consistent with zero. The results of the fit are shown in Fig. 2 and summarized in Table I. Branching fractions are calculated by dividing the yield by the MC-determined efficiency and number of $\Upsilon(2S)$ events [(149.6 \pm 3.4) $\times 10^6$ with the optimization sample excluded]. The value for $\chi_{bJ}(1P)$ transitions includes the $\Upsilon(2S) \to \chi_{bJ}(1P)$ transition. The goodness of fit is given by a χ^2 per degrees of freedom of 261.5/237, giving a p value of 0.132.

We consider three categories of systematic uncertainties in this analysis: those related to energy calibration, fit parametrization, and all other uncertainties. These are listed in Table II and are summed in quadrature.

As a verification of the energy calibration, we consider a complementary method based on the photon energy in the laboratory frame, similar to previous Belle studies [5,6]. We derive E_γ^*-dependent corrections to the photon energy according to the comparison between MC simulations and data for $D^{*0} \to D^{0}(K^+\pi^-)\gamma$, inclusive $\eta \to \gamma \gamma$, and exclusive $\chi_{bJ}(1P) \to \gamma \Upsilon(1S)(\mu^+\mu^-)$ decays. After applying these corrections, only a small remaining resolution broadening, taken as a systematic uncertainty, is required to be applied to the related E_γ^* values to best reproduce the $\chi_{bJ}(1P) \to \gamma \Upsilon(1S)$ transitions in the data. The $\eta_b(1S)$ results obtained by these two independent methods agree closely (within 0.2 MeV), providing confidence in our assessment of the energy calibration.

Measurement of the ISR peak position is used to estimate the uncertainty of the $\eta_b(1S)$ transition energy. For this purpose, we adopt the symmetrized combination of the statistical uncertainty from the fit and contributions from the world average Υ mass uncertainties [20]. This value is greater than the maximal difference obtained by repeating the analysis under both energy calibration methods and while varying the derived calibration parameters within $\pm 1\sigma$, providing the most conservative bound on this uncertainty.

Table I. Summary of results. Yield is expressed in thousands of events, with statistical uncertainty only. B represents the relevant branching fraction and E_γ^* the corrected transition energy.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Yield (10^3)</th>
<th>ϵ (%)</th>
<th>B (%)</th>
<th>E_γ^* (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_{bJ}(1P) \to \gamma \Upsilon(1S)$</td>
<td>964 ± 8</td>
<td>26.4</td>
<td>2.45 ± 0.02 $^{+0.11}_{-0.15}$</td>
<td>423.1 ± 0.1 ± 0.5</td>
</tr>
<tr>
<td>$\chi_{bJ}(1P) \to \gamma \Upsilon(1S)$</td>
<td>503 ± 6</td>
<td>28.9</td>
<td>1.17 ± 0.01 $^{+0.06}_{-0.07}$</td>
<td>442.1 ± 0.2 ± 0.5</td>
</tr>
<tr>
<td>ISR $\Upsilon(1S)$</td>
<td>29.2 $^{+2.9}_{-3.2}$</td>
<td>30.0</td>
<td>61.8 $^{+5.3}_{-5.3}$</td>
<td>547.3 $^{+0.6+1.3}_{-2.3-3.2}$</td>
</tr>
<tr>
<td>$\Upsilon(2S) \to \gamma \eta_b(1S)$</td>
<td>28.8 $^{+2.6}_{-3.2}$</td>
<td>31.6</td>
<td>(6.1 $^{+0.6+0.9}_{-0.7-0.6}$) $\times 10^{-2}$</td>
<td>606.1 $^{+2.3+3.6}_{-2-4.3}$</td>
</tr>
</tbody>
</table>

232001-5
Alternative parametrizations of the $\eta_b(1S)$ transition line shape are considered by refitting the data using a Breit-Wigner functional form, including the case with additional E_γ^2 corrections suggested for some quarkonium transitions [10]. The latter leads to a $+2.6$ MeV shift in the interpretation of the $\eta_b(1S)$ transition energy. The fit is repeated with higher-order E_γ contributions considered, but their relative strength cannot be resolved in this analysis and lead to a small additional systematic uncertainty. We account for uncertainty in the natural $\eta_b(1S)$ width by refitting the data according to MC samples generated with the nominal value varied by $\pm \sigma$ [20]. By comparing χ^2 goodness-of-fit results under a variety of different assumed values in this range, we verify that our data are consistent with this nominal value. We vary the background shape by changing the degree of the polynomial in the exponential to five and seven and refitting the data. We also repeat the fit with the background shape fixed to the parameters determined by using only the ISR and $\eta_b(1S)$ sidebands: $300 < E_\gamma < 500$ MeV and $650 < E_\gamma < 800$ MeV. The fit is repeated with a $\chi_{b(1)}^2(1P)$ yield fixed to the expected value, and the difference in results from its effect on the background shape is taken as a systematic uncertainty. The systematic effects of fitting with a finer binning of 1 MeV and with an extended range to 900 MeV are also considered.

We assign an overall photon reconstruction efficiency uncertainty of 2.8% based on previous Belle studies of photons in a similar energy range [23]. The uncertainty on the number of $Y(2S)$ events was determined from a study of hadronic decays to be 2.3% [14]. We repeat the

![Graph showing inclusive photon spectrum after subtraction of the background component of the fit. The black curve indicates the fit to the data, and the gray curves indicate the individual signal components. The $\chi_{b1,2}(1P) \rightarrow \gamma Y(1S)$ transitions at ~ 242 and ~ 442 MeV are dominant. The inset contains the same information with the scale chosen to highlight the ISR and $\eta_b(1S)$ signal peaks, appearing at ~ 550 and ~ 600 MeV, respectively.]

FIG. 2. The inclusive photon spectrum after subtraction of the background component of the fit. The black curve indicates the fit to the data, and the gray curves indicate the individual signal components. The $\chi_{b1,2}(1P) \rightarrow \gamma Y(1S)$ transitions at ~ 242 and ~ 442 MeV are dominant. The inset contains the same information with the scale chosen to highlight the ISR and $\eta_b(1S)$ signal peaks, appearing at ~ 550 and ~ 600 MeV, respectively.

<table>
<thead>
<tr>
<th>E_γ^2 (MeV)</th>
<th>$\chi_{b1}(1P)$</th>
<th>$\chi_{b2}(1P)$</th>
<th>ISR</th>
<th>$\eta_b(1S)$</th>
<th>Branching fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\chi_{b1}(1P)$</td>
<td>$\chi_{b2}(1P)$</td>
<td>ISR</td>
<td>$\eta_b(1S)$</td>
<td></td>
</tr>
<tr>
<td>E_γ calibration</td>
<td>± 0.5</td>
<td>± 0.5</td>
<td>$+1.2$</td>
<td>-2.2</td>
<td>$+2.5$</td>
</tr>
<tr>
<td>$\Gamma_{\eta_b(1S)}$</td>
<td>± 0.0</td>
<td>± 0.0</td>
<td>$+0.2$</td>
<td>-0.2</td>
<td>$+0.3$</td>
</tr>
<tr>
<td>Signal shape</td>
<td>± 0.0</td>
<td>± 0.0</td>
<td>$+0.3$</td>
<td>-0.3</td>
<td>$+2.6$</td>
</tr>
<tr>
<td>Background shape</td>
<td>$+0.1$</td>
<td>-0.2</td>
<td>$+0.1$</td>
<td>-0.1</td>
<td>$+0.0$</td>
</tr>
<tr>
<td>Bin/Range</td>
<td>-0.0</td>
<td>-0.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>$N[Y(2S)]$</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>γ efficiency</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>Selection criteria</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>Total</td>
<td>± 0.5</td>
<td>-0.5</td>
<td>$+1.3$</td>
<td>$+3.4$</td>
<td>$+3.6$</td>
</tr>
</tbody>
</table>

TABLE II. Summary of systematic uncertainties, divided into those affecting the photon-energy measurement and the overall branching fractions.
measurement of the \(\chi_{b1,2}(1P) \) transitions with each selection criterion excluded in turn and take the difference as the systematic uncertainty related to our modeling of the efficiency. Derived quantities related to masses and expected c.m. energies use the world average values and their associated uncertainties [20].

The corrected peak \(E_\gamma \) values of the \(\chi_{b1,2}(1P) \) transitions are in good agreement with the world average values (in parentheses) [20]: 423.1 ± 0.1 (423.0 ± 0.5) and 442.1 ± 0.2 (441.6 ± 0.5) MeV, where the experimental uncertainties are statistical only. For the \(\chi_{b1,2}(1P) \rightarrow \gamma \Upsilon(1S) \) branching fractions, we measure \((2.45 \pm 0.02^{+0.11}_{-0.15})\% \) and \((1.17 \pm 0.01^{+0.06}_{-0.07})\% \). These values are consistent with the average of the most recent directly measured values from CLEO [24] and BABAR [7,25]: \((2.40 \pm 0.08)\% \) and \((1.33 \pm 0.05)\% \). A significant peak from ISR signal yield is \((29.2^{+2.9+5.4}_{-3.2-2.0}) \times 10^3 \) events. This corresponds to the expectation of \((27 \pm 3) \times 10^3 \) events based on the second-order calculation from Ref. [26] and our photon efficiency and ECL angular coverage.

We measure \((28.8^{+2.6+4.2}_{-3.2-2.7}) \times 10^3 \) \(\Upsilon(2S) \rightarrow \eta_b(1S) \) events, equivalent to a branching fraction of \((6.1^{+0.6+1.3}_{-0.7-0.6}) \times 10^{-4} \). This is in agreement with the most recent lattice QCD calculation of \((5.4 \pm 1.8) \times 10^{-4} \) [12]. This value is compatible with the previous BABAR measurement of \((3.9 \pm 1.5) \times 10^{-4} \) [3]. We measure a transition energy of \(E_\gamma = 606.1^{+2.3+3.6}_{-2.4-3.4} \) MeV, to be compared with 609.3\(^{+5.0}_{-4.5} \) MeV in the similar decay mode in BABAR. If we consider a transition line shape proportional to \(E_\gamma^{35} \), unlike previous analyses of the \(M1 \) radiative transition [2–4], the interpretation of the data produces a mass measurement of \(m_{\eta_b(1S)} = 9394.8^{+2.7+4.5}_{-3.1-2.7} \) MeV/c\(^2 \). This is in agreement with the current world average value of 9399.0 ± 2.3 MeV/c\(^2 \) [20]. This is between previous Belle \(b \rightarrow \gamma \) measurements [5,6] and those from radiative \(\Upsilon \) decays [2–4], consistent with the former at the level of 1.2\(\sigma \) and 0.7\(\sigma \) for the latter. The statistical significance of this measurement is estimated to be \(8.4\sigma \), determined from the difference in the likelihood between the results with and without an \(\eta_b(1S) \) component included. Even after considering yield-related systematic uncertainties, the signal significance exceeds 7\(\sigma \). This result represents the first significant observation of the \(\Upsilon(2S) \rightarrow \eta_b(1S) \) decay mode. We look forward to additional dedicated bottomonium data samples from the Belle II experiment to mitigate energy scale uncertainties and provide greater ability to interpret radiative \(M1 \) transition line shape effects.

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including Grants No. DP180102629, DP170102389, DP170102204, DP150103061, FT130100303; Austrian Science Fund under Grant No. P 26794-N20; the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2015H1A2A1033649, No. 2016R1D1A1B01010135, No. 2016K1A3A7A09005 603, No. 2016R1D1A1B0201 2900, No. 2018R1A2B3003 643, No. 2018R1A6A1A0602 4970, No. 2018R1D1 A1B07047294; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/ GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Grant of the Russian Federation Government, Agreement No. 14.W03.31.0026; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the U. S. Department of Energy and the National Science Foundation.

A review is provided in T. J. Burns, Phys. Rev. D 87, 034022 (2013).

[21] We use the notation χ_{bJ} to collectively refer to the $J = 0, 1, 2$ transitions.