Voltage control of magnetism in La$_{0.67}$Sr$_{0.33}$MnO$_3$/PMN-PT heterostructures

T. Bhatnagar5, A. Sarkar5, E. Kentzinger1, A. Kovács2, Q. Lan7, P. Schöffmann1, M. Waschk1, B. Kirby3, A. Grutter6, R. E. Dunin-Borkowski2 and Th. Brückel1

1Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCMS-2) and Peter Grünberg Institute (PGI-4), JARA-FIT, 52425 Jülich, Germany

2Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

3NIST Center for Neutron Research, NIST, Gaithersburg, MD

Motivation

- Current information devices based on spin and charge
- Complex oxides - strong coupling between lattice, charge, spin & orbital degrees of freedom
- Ferromagnetic/Ferroelectric heterostructures (FM/FE)
- Quest for higher data density without need of magnetic field to manipulate magnetization
- Voltage control of magnetism
- Magnetolectric coupling

System

- La$_{0.67}$Sr$_{0.33}$MnO$_3$
- PMN-PT (Substrate)

FM layer - La$_{0.66}$Sr$_{0.34}$MnO$_3$ (LSMO-30nm)
- Piezoelectric substrate – PMN-PT (0.7Pb (Mg$_{0.33}$Nb$_{2/3}$)O$_3$ - 0.3PbTiO$_3$ (001)

Magnetoelectric SQUID measurements

- Strain-mediated magnetoelectric coupling
- Rich correlation between magnetization and applied voltage
- Low temperature magnetoelectric coupling

Polarized Neutron Reflectometry

- The magnetic depth profile deduced from PNR datasets indicate the presence of interlayer between LSMO/PMN-PT.
- Spin-flip signal indicates presence of canting magnetic moments due to the strain imparted by the substrate.

Transmission Electron Microscopy

- Darker contrast regions show La- deficiency at the interface.
- LSMO has grown epitaxially on PMNPT and is strained at the interface.

Conclusions and outlook

- Clear proof of strain-mediated magnetoelectric coupling.
- Possible indication of charge-mediated magnetoelectric coupling due different magnetization values for opposite polarity of applied voltage.
- Presence of interlayer with reduced SLD and La-deficiency at the interface.
- Analysis of PNR curves with voltages is in progress.
- Further structural investigation will be done using TEM.

Acknowledgement

- PNR measurements were performed at NIST Center for Neutron Research, Gaithersburg, Maryland, USA
- All other measurements were performed at Forschungszentrum Jülich GmbH, Germany

Contact: t.bhatnagar@fr-juelich.de

Member of the Helmholtz Association