Neutron protein crystallography at the Heinz Maier-Leibnitz Zentrum (MLZ): New developments and recent application examples

T.E. Schrader, A. Ostermann, M. Monkenbusch, B. Laatsch, Ph. Jüttner, W. Petry, D. Richter

Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCSN) at Heinz Maier-Leibnitz Zentrum (MLZ), 52425 Jülich; Germany

Technische Universität München, 85748 Garching, Germany

Institute for Complex Systems, D-52425 Jülich, Germany

Neutron structure determination:

- Hydrogen atoms can be resolved even at a resolution of \(d_{\text{H}} = 2.5\AA \)
- Protonation states of amino acid side chains
- Deuteration exchange as a measure of flexibility and accessibility (discrimination between H/D)
- So-called structure including hydrogen atoms can be analysed
- Discrimination between neighbors in the periodic table is possible: e.g., N, Fe, and Mn
- B-factors \((\sigma^2=\sigma^2(\text{H})^2)\) of the hydrogen atoms can be compared with data of other techniques
- No radiation damage compared to measurements at synchrotrons

Comparison of form factors (X-ray) and scattering lengths (neutrons):

<table>
<thead>
<tr>
<th>Element</th>
<th>X-ray</th>
<th>Neutron</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.74</td>
<td>0.75</td>
</tr>
<tr>
<td>C</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>N</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>O</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Amino acid protonation states:

- X-ray: \(d_{\text{H}} = 1.5\AA \)
- Neutron: \(d_{\text{H}} = 1.5\AA \)

Hydration structure analysis:

- Example: myoglobin
- All species of shapes can be found on the protein surface
- Protonated shapes are only found in close contact with the protein surface

The diffractometer BIODIFF:

- Neutron image plate (NIP) - CCD-camera
- Velocity selector (higher order filter)
- Monochromator

Charges shift protonation: Inhibitor binding to trypsin

- Trypsin as model system for the important family of serine proteases
- Question: do inhibitors with less basic properties become protonated upon binding?

- Despite its low pKa, 4.6 the amino group of aniline becomes protonated: Asp188 induces a \(\Delta pK_a \) shift of four orders of magnitude
- Whereas in anilinopyridine (pKa 6.9), the pyridine nitrogen picks up the proton although its amino group is 1.6 closer to Asp188
- Therefore, apart from charge-charge distances, tautomer stability is essential for the resulting protonation pattern

Facilitating processing of biomass

- Plant biomass is pre-treated in a very alkaline environment. The goal is to alter the enzymes’ cytosol to allow it to function effectively in a basic environment. This requires detailed knowledge of the reaction sequence of the enzymes

- The catalytic glutamate residue alternates between two conformations bearing different basicities. First to obtain a proton from the bulk solvent and then to deliver it to the glycosidic oxygen to initiate the hydrolase reaction

- Using this knowledge, work on altering the enzyme in a way that allows efficient biomass decomposition even in high pH environments can begin

Next proposal deadline: September 13th, 2019
user.frm2.tum.de
fz.frm2.tum.de

Contact:
Andreas Ostermann
E-mail: Andreas.Ostermann@frm2.tum.de
Phone: +49.89.289.14702

Tobias E. Schrader
E-mail: tschrader@fz-juelich.de
Phone: +49.89.289.10743