Beitrag zum Verständnis der biologischen Wirksamkeit des Auger-Elektronen emittierenden Radionuklids 125I in menschlichen Zellen

Sandra Zerhusen
Beitrag zum Verständnis der biologischen Wirksamkeit des Auger-Elektronen emittierenden Radionuklids 125I in menschlichen Zellen

Sandra Zerhusen
Berichte des Forschungszentrums Jülich ; 3882
ISSN 0944-2952
Institut für Medizin JüI-3882
D8 (Diss., Kiel, Univ., 2001)

Zu beziehen durch: Forschungszentrum Jülich GmbH · Zentralbibliothek
52425 Jülich · Bundesrepublik Deutschland
☎ 02461/61-5220 · Telefax: 02461/61-6103 · e-mail: zb-publikation@fz-juelich.de
Beitrag zum Verständnis der biologischen Wirksamkeit des Auger-Elektronen emittierenden Radionuklids 125I in menschlichen Zellen

Der Auger-Elektronen-Emitter 125I wurde mit Hilfe von drei Trägermolekülen in unterschiedlichen Kompartmenten humaner Zellen positioniert (125Iododesoxyuridin zur DNA-Inkorporation, 125I-Antipyrin zur Verteilung in der gesamten Zelle und Na125I zur extrazellulären Positionierung) und die Effekte mit denen nach 137Cs-γ-Bestrahlung verglichen. Im Hinblick auf einen klinischen Einsatz in Form einer adjuvanten Strahlentherapie von Tumoren wurden alle Versuche unter physiologischen Bedingungen durchgeführt. Als biologische Endpunkte wurden vor allem das klonogene Überleben und die DNA-Schädigung betrachtet, die mit dem alkalischen Comet Assay gemessen wurde.

Im Vergleich der Trägermoleküle wirkte 125IUdR am stärksten radiotoxisch, während 125I-Antipyrin deutlich schwächere Effekte zeigte und Na125I nahezu keine biologische Wirkung hervorrief. Die abnehmende Radiotoxizität der 125I-markierten Trägermoleküle wurde mit dem ansteigenden Abstand des 125I-Zerfallsortes zur DNA begründet. Es wurde ein enger Zusammenhang zwischen ansteigender DNA-Schädigung und vermindeter Koloniebildungsfähigkeit nachgewiesen.

Die biologischen Wirkungen des 125I wurden mit der Referenzstrahlung 137Cs-γ verglichen, wobei nur für 125I-Antipyrin, das seine Energie nahezu gleichmäßig über die Zelle verteilt, eine korrekte Dosisberechnung möglich war. Eine quantitative Beurteilung der biologischen Wirksamkeit des 125IUdR erfolgte stattdessen erstmals über die Berechnung von Wirksamkeitsfaktoren bei definierten Endpunkten. Es ergaben sich bei 125IUdR Wirksamkeitsfaktoren von 24 - 28, bezogen auf die 37%-Überlebensfraktionen und verglichen mit 137Cs-γ-Bestrahlung.
Contribution towards understanding the biological efficacy of the Auger-electron-emitting radionuclide 125I in human cells

The Auger-electron-emitter 125I was positioned in different compartments of human cells by the use of three carrier molecules (125I-iododeoxyuridine for DNA-incorporation, 125I-antipyrine for distribution throughout the whole cell, and Na125I for extracellular positioning) and the effects were compared with those of 137Cs-γ-radiation. With regard to a clinical application in the adjuvant radiotherapy of tumors, all experiments were carried out under physiological conditions. The two dominant biological endpoints were clonogenic survival and molecular DNA damage measured by the alkaline comet assay.

In a comparison of the carrier molecules 125IUDR demonstrated the most radiotoxic effect whereas 125I-antipyrine was obviously less effective. Na125I hardly produced any biological effect. The declining radiotoxicity of the 125I-labeled carrier molecules was explained by the increasing distance of the 125I-decay site from the DNA. A strong correlation was found between increasing DNA damage and reduced colony-forming ability.

The biological effects of 125I were compared with those of the reference radiation 137Cs-γ, but only for 125I-antipyrine, which distributed its energy nearly homogeneously throughout the cell, was a dose calculation possible. A quantitative assessment of the biological efficacy for 125IUDR was made for the first time by efficacy factors focusing on a definite endpoint. Efficacy factors of 24 - 28 were found for 125IUDR relative to the 37%-surviving fraction and compared with 137Cs-γ-radiation.
<table>
<thead>
<tr>
<th>1</th>
<th>Einleitung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Physikalische Grundlagen zur Auger-Elektronen-Emission</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Biologische Strahlenwirkung</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Grundlagen</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Klonogener Zelltod</td>
<td>7</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Auger-Elektronen-Effekte durch 125I</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Dosimetrie und Relative Biologische Wirksamkeit</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>Medizinischer Einsatz von Auger-Elektronen-Emittern</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>Zielsetzung</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Material und Methoden</td>
<td>16</td>
</tr>
<tr>
<td>2.1</td>
<td>Zellkultur</td>
<td>16</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Vermehrung</td>
<td>16</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Wachstumskurven</td>
<td>17</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Protein-/DNA-Gehalt und Durchmesser der Zellen</td>
<td>18</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Durchflußzytometrie</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Strahlenexposition</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1</td>
<td>137Cs-γ-Strahlung</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2</td>
<td>125Iododesoxyuridin</td>
<td>21</td>
</tr>
<tr>
<td>2.2.3</td>
<td>125I-Antipyrin</td>
<td>25</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Na125I</td>
<td>27</td>
</tr>
<tr>
<td>2.2.5</td>
<td>3H/ 125I UrdMarkierung</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Biologische Endpunkte</td>
<td>28</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Farbtest auf „Lebensfähigkeit“</td>
<td>28</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Acetylcholinesterase-Test</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Koloniebildungstest</td>
<td>30</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Comet Assay</td>
<td>31</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Hydroxylapatit-Chromatographie</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>Ergebnisse</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Anteile an den Zellzyklusphasen</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>137Cs-γ-Strahlung</td>
<td>40</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Viabilitätsraten</td>
<td>40</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Acetylcholinesterase-Aktivitätsraten</td>
<td>41</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Klonogenes Überleben</td>
<td>42</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Bestimmung von DNA-Schäden mit dem Comet Assay</td>
<td>43</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Strangbruchmessung mittels Hydroxylapatit-Chromatographie</td>
<td>45</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

3.3 *Iododesoxyuridin* __ 46
 3.3.1 Inkorporationsstudien ___ 46
 3.3.2 Klonogenes Überleben und DNA-Schädigung (Comet Assay) __________ 50
 3.3.3 Hydroxylapatit-Chromatographie nach Doppelmarkierung ____________ 56
3.4 *125I-Antipyrin* ___ 58
 3.4.1 Effekte durch nicht-radioaktives Antipyrin _________________________ 58
 3.4.2 Effekte nach *125I*-AP-Exposition _________________________________ 59
3.5 *Na*125I ___ 61
 3.5.1 30 h-Exposition mit Mediumwechsel _______________________________ 61
 3.5.2 28 h-Exposition ohne Mediumwechsel _____________________________ 63
3.6 *Korrelation zwischen Koloniebildungstest und Comet Assay* __________ 64
4 Diskussion __ 65
 4.1 *Biologische Endpunkte nach* 137Cs-γ-Bestrahlung ___________________ 65
 4.1.1 Acetylcholinesterase-Test ______________________________________ 65
 4.1.2 Koloniebildungstest __ 67
 4.1.3 Comet Assay __ 67
 4.1.4 Hydroxylapatit-Chromatographie _________________________________ 70
 4.2 *Vergleich der Trägermoleküle* _____________________________________ 72
 4.2.1 Koloniebildungstest nach *125I*UdR- und *125I*-AP-Exposition ________ 72
 4.2.2 Comet Assay nach *125I*UdR- und *125I*-AP-Exposition ____________ 77
 4.2.3 Koloniebildungstest und Comet Assay nach Na*125I*-Exposition ________ 83
 4.2.4 Korrelationen zwischen biologischen Endpunkten _________________ 85
 4.3 *Quantifizierung der biologischen Wirksamkeit von* 125I* __________________ 86
 4.3.1 Energieberechnungen zum *125I*-Zerfall (Literaturvergleich) __________ 87
 4.3.2 Dosisberechnung und Wirksamkeitsfaktoren _________________________ 88
 4.4 *Tierexperimente und klinische Studien mit* 125I* ______________________ 94
Zusammenfassung __ 96

Abbildungs- und Tabellenverzeichnis ______________________________________ 98
Anhang ___ 102
Literaturverzeichnis __ 112
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AChE</td>
<td>Acetylcholinesterase</td>
</tr>
<tr>
<td>AE</td>
<td>Auger-Elektron(en)</td>
</tr>
<tr>
<td>CdR</td>
<td>Desoxycytidin</td>
</tr>
<tr>
<td>D₀</td>
<td>Dosis für Reduktion des Überlebens auf 37% des Ausgangswertes im linearen Teil der Überlebenskurve</td>
</tr>
<tr>
<td>D₃₇</td>
<td>Dosis für Reduktion des Überlebens von 100% auf 37%</td>
</tr>
<tr>
<td>d/c</td>
<td>Zerfälle pro Zelle (decays per cell)</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DSB</td>
<td>Doppelstrangbrüche</td>
</tr>
<tr>
<td>ds-DNA</td>
<td>doppelstrangige DNA</td>
</tr>
<tr>
<td>ESB</td>
<td>Einzelstrangbrüche</td>
</tr>
<tr>
<td>es-DNA</td>
<td>einzelstrangige DNA</td>
</tr>
<tr>
<td>5-FU</td>
<td>5-Fluorouracil</td>
</tr>
<tr>
<td>FUDR</td>
<td>Fluorodesoxyuridin</td>
</tr>
<tr>
<td>GPI</td>
<td>Glycosylphosphatidylinositol</td>
</tr>
<tr>
<td>HA</td>
<td>Hydroxylapatit</td>
</tr>
<tr>
<td>I-AP</td>
<td>Iod-Antipyrin</td>
</tr>
<tr>
<td>IUDR</td>
<td>Iododesoxyuridin</td>
</tr>
<tr>
<td>KPP</td>
<td>Kaliumphosphatpuffer</td>
</tr>
<tr>
<td>LET</td>
<td>Linearer Energie-Transfer</td>
</tr>
<tr>
<td>OTM</td>
<td>Olive Tail Moment</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphat Buffered Saline</td>
</tr>
<tr>
<td>RBW</td>
<td>Relative Biologische Wirksamkeit</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodiumdodecylsulfat</td>
</tr>
<tr>
<td>SE</td>
<td>Standardfehler (standard error)</td>
</tr>
<tr>
<td>SF₂</td>
<td>Überlebensfraktion (Surviving Fraction) nach 2 Gy</td>
</tr>
<tr>
<td>T-25</td>
<td>Zellkulturschalen mit 25 cm² Wachstumsfläche</td>
</tr>
<tr>
<td>TdR</td>
<td>Desoxythymidin</td>
</tr>
<tr>
<td>TS</td>
<td>Thymidilatsynthetase</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Physikalische Grundlagen zur Auger-Elektronen-Emission

![Abbildung 1](image)

Schematische Darstellung von Auger- und Coster-Kronig-Übergängen

Abbildung 2
Schematischer Ablauf einer AE-Kaskade nach Elektroneneinfang aus der K-Schale (Humm, 1984); x: Elektronen \(\Theta \); durch Elektronen-Übergänge gefüllte Fehlstellen, O: positive Ladungen nach Ablauf der Kaskade, \(\rightarrow \): AE-Emission, \(\rightarrow \): Photonenemission

\(^{125}\text{I}\) ist in der Strahlenbiologie das am häufigsten untersuchte AE emittierende Radionuklid. Es zerfällt ausschließlich über Elektroneneinfang, wobei hauptsächlich die K-Schale beteiligt ist, und geht unter Ablauf der AE-Kaskade in den metastablen \(^{125m}\text{Te}\)-Zustand mit einer Lebensdauer von 1,6 ns über (Abb. 3). Während überwiegend (zu 93%) durch innere Konversion ein weiteres Elektron (Konversionselectron) ausgesendet wird, erfolgt in 7% der Fälle der Übergang in den stabilen Tellur-Grundzustand unter \(\gamma \)-Emission. Der Prozeß der inneren Konversion findet mit hoher
Einleitung

Wahrscheinlichkeit (>80%) in der K-Schale statt und initierte durch die erneute Fehlstelle eine zweite AE-Kaskade (für eine zusammenfassende Darstellung s. z.B. Sastry, 1992).

\[
\begin{array}{ccc}
\text{\(125^{m}\text{Te}\)} & (1,6 \text{ ns}) \\
3/2^+ & 0,04 \text{ MeV} \\
1/2^+ & 0,0 \\
\end{array}
\]

\[
\begin{array}{cc}
\text{\(125^{m}\text{Te}\)} & (60,14 \text{ d}) \\
5/2^+ & 0,0 \\
\end{array}
\]

Elektronen-
Einfang

Innere Kon-
version oder
\(\gamma\)-Strahlung

\text{\(125\text{Te}\)} (stabil)

\text{Abbildung 3}
MIRD: Zerfallsschema für \(125\text{I}\)
(Weber et al., 1989)

Durch die beiden AE-Kaskaden entsteht ein sehr komplexes Energie-Emissionsspektrum, das nur mit hohem Rechenaufwand zu simulieren ist. Ein Monte Carlo-Programm für die Simulation des \(125\text{I}\)-Zerfalls (erstmals entwickelt von Charlton und Booz, 1981) ermöglichte die Generierung eines Zerfallsspektrums für \(125\text{I}\) (Tab. 1), bei dem u.a. die einzelnen beteiligten Strahlungskomponenten mit den mittleren Energien und absoluten Häufigkeiten pro Zerfall berechnet wurden. Dieses \(125\text{I}\)-Zerfallsspektrum wird von einer großen Anzahl niedereenergetischer Elektronen mit geringer Reichweite in biologischem Material dominiert. Die am häufigsten emittierten Auger- und Coster-Kronig-Elektronen besitzen Energien von unter 500 eV und Reichweiten in biologischem Gewebe von unter 30 nm.

In der modell-theoretischen Vorstellung baut sich im Falle eines isolierten Atoms ein Ladungspotential auf, das nach Ablauf der AE-Kaskade auf dem \(125\text{Te}\)-Tochternuklid zurückbleibt (Abb. 2). Für dieses Potential wurde eine mittlere Energie von 1,07 keV pro \(125\text{I}\)-Zerfall berechnet (Pomplun et al., 1987). In kondensierter Phase wird dagegen unterstellt, daß Fehlstellen in den äußeren Schalen durch freie Ladungsträger neutralisiert werden, so daß erneut Elektronen für weitere Emissionsprozesse zur Verfügung stehen. Dadurch ändert sich die Anzahl der berechneten emittierten Elektronen. Es wurden beim isolierten Atom im Mittel 15 emittierte AE pro \(125\text{I}\)-Zerfall und in kondensierter Phase eine mittlere Anzahl von 21 AE gefunden (Pomplun, 2000).
Tabelle 1
Zerfallsspektrum von 125I in kondensierter Phase
(Pomplun, 1987 und 2000)

<table>
<thead>
<tr>
<th>Strahlung</th>
<th>mittlere Energie (keV)</th>
<th>Häufigkeit/ Zerfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gammastrahlung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_1</td>
<td>35,48</td>
<td>0,068</td>
</tr>
<tr>
<td>Konversions-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>elektronen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>3,643</td>
<td>0,803</td>
</tr>
<tr>
<td>L₁</td>
<td>30,51</td>
<td>0,0969</td>
</tr>
<tr>
<td>L₂</td>
<td>30,9</td>
<td>0,00751</td>
</tr>
<tr>
<td>L₃</td>
<td>31,1</td>
<td>0,00193</td>
</tr>
<tr>
<td>M₁</td>
<td>34,5</td>
<td>0,0165</td>
</tr>
<tr>
<td>M₂</td>
<td>34,6</td>
<td>0,00321</td>
</tr>
<tr>
<td>M₃</td>
<td>34,7</td>
<td>0,00088</td>
</tr>
<tr>
<td>N₁</td>
<td>35,3</td>
<td>0,0039</td>
</tr>
<tr>
<td>N₂</td>
<td>35,3</td>
<td>0,00081</td>
</tr>
<tr>
<td>Röntgenstrahlung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kₐ₁</td>
<td>27,46</td>
<td>0,759</td>
</tr>
<tr>
<td>Kₐ₂</td>
<td>27,22</td>
<td>0,612</td>
</tr>
<tr>
<td>Kₐ₃</td>
<td>30,99</td>
<td>0,132</td>
</tr>
<tr>
<td>K₉₁</td>
<td>31,69</td>
<td>0,0394</td>
</tr>
<tr>
<td>K₉₂</td>
<td>30,93</td>
<td>0,0680</td>
</tr>
<tr>
<td>K₉₃</td>
<td>31,23</td>
<td>0,00186</td>
</tr>
<tr>
<td>L₉</td>
<td>3,95</td>
<td>0,141</td>
</tr>
<tr>
<td>Auger-Elektronen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KLL AE</td>
<td>22,5</td>
<td>0,133</td>
</tr>
<tr>
<td>KLLX AE</td>
<td>26,4</td>
<td>0,058</td>
</tr>
<tr>
<td>KXY AE</td>
<td>30,2</td>
<td>0,00548</td>
</tr>
<tr>
<td>LLX CKE</td>
<td>0,285</td>
<td>0,267</td>
</tr>
<tr>
<td>LMM AE</td>
<td>3,04</td>
<td>1,25</td>
</tr>
<tr>
<td>LMX AE</td>
<td>3,67</td>
<td>0,344</td>
</tr>
<tr>
<td>LXY AE</td>
<td>4,29</td>
<td>0,0221</td>
</tr>
<tr>
<td>MMX CKE</td>
<td>0,0942</td>
<td>1,49</td>
</tr>
<tr>
<td>MXY AE</td>
<td>0,405</td>
<td>3,31</td>
</tr>
<tr>
<td>NNX CKE</td>
<td>0,0316</td>
<td>3,33</td>
</tr>
<tr>
<td>NXY AE</td>
<td>0,0161</td>
<td>8,12</td>
</tr>
</tbody>
</table>

AE = Auger-Elektron, CKE = Coster-Kronig-Elektron

1.2 Biologische Strahlenwirkung

1.2.1 Grundlagen

Durch ionisierende Strahlung kann Energie auf biologisches Material übertragen werden. Es kommt zu Veränderungen in den Molekülen und Molekulverbänden, die hauptsächlich auf Ionisationen und Anregungen zurückzuführen sind. Ein charakteristisches Maß für die biologische Strahlenwirkung stellt deshalb die Ionisationsdichte dar, die mit dem Linearen Energie-Transfer (LET) als mittlerer Energieverlust entlang eines Weges beschrieben wird. Der LET beträgt beispielsweise für 60Co-γ-Strahlen 0,3 keV/μm und liegt im Vergleich...

Bei der Energiedeposition in biologischem Gewebe wird zwischen direkter und indirekter Strahlenwirkung unterschieden (Abb. 4). Die direkte Wirkung beinhaltet eine unmittelbare Energieabsorption und biologische Schädigung am betrachteten Molekül, während bei der indirekten Wirkung die Strahlenenergie zunächst auf andere Moleküle (vor allem \(H_2O\)) unter Bildung von Radikalen übertragen wird, die dann mit dem betrachteten Molekül reagieren und einen Schaden herbeiführen (s. z.B. Hall, 1994).

![Abbildung 4](image)

Es können im wesentlichen folgende DNA-Schäden auftreten (Abb. 5):

1. Einzelstrangbrüche (ESB), die wenig biologische Konsequenzen ergeben, da sie schnell durch z.B. ein „Rejoining“ (Schneeweiß et al., 1987) oder eine Exzisionsreparatur behoben werden (s. z.B. Tubiana, 1990),

2. Doppelstrangbrüche (DSB), die entweder durch eine einzelne genügend große Energiedeposition (ca. 300 eV) oder durch zwei ESB entstehen, die sich direkt oder mit nur wenig Basenabstand gegenüberliegen (s. z.B. Hall, 1994); auch DSB sind reparabel, wobei eine homologe und eine nicht-homologe Rekombination, sowie eine End-zu-End-Verbindung in Frage kommen (Frankenberg-Schwager, 2001),

3. Basenschäden, die eine irreversible Strukturveränderung einer Base beinhalten und

4. lokal-multiple Schäden, bei denen z.B. mehrere Strangbrüche gehäuft oder in Kombination mit Basenschäden auftreten können (gehäufte Läsion oder „Cluster“).

Als eine der wichtigsten biologischen Schädigungen nach Bestrahlung gelten nicht oder falsch reparierte DSB. Dies kann zu Mutationen und Zelltod führen, die aus biologischer und klinischer Sicht die bedeutendsten zellulären Strahlenwirkungen darstellen (s. z.B. Steel, 1997). Mutationen, als vererbbare Änderungen der genetischen Information der Chromosomen bis zu maligner Transformation, werden im Gegensatz zum klonogenen Zelltod hier nicht näher erläutert.
1.2.2 Klonogener Zelltod

1.2.3 Auger-Elektronen-Effekte durch ^{125}I

> Vergleich von $^{125}\text{I}\text{UdR}$ mit anderen inkorporierten Radionukldiden

Burki et al. (1973) verglichen ^3H (als reinen β-Strahler) mit ^{125}I, wobei beide Radionuklide als ^3H-Thymidin ($^3\text{H}\text{-TdR}$) und als $^{125}\text{I}\text{UdR}$ in die DNA von V79-Hamsterzellen inkorporiert wurden. Sie fanden im Koloniebildungstest eine deutlich stärkere Wirkung des $^{125}\text{I}\text{UdR}$, das zudem eine Überlebenskurve vom Hoch-LET-Typ aufwies. Dies wurde auf Effekte
Einleitung

durch AE zurückgeführt. Chan et al. (1976) unterstützten diese Aussage, da sie bei der gleichen Zelllinie eine viel stärkere Radiotoxizität des 125I UdR, sowohl bezogen auf den klonogenen Zelltod als auch auf Chromosomenaberrationen, gegenüber 3H-TdR fanden. Zu dem gleichen Schluß kamen Geselowitz et al. (1995) bei synchronisierten CHO-Hamsterzellen. 125I UdR wurde in weiteren Studien auch mit den β-Strahlern 131I als 131I UdR (Bradley et al., 1975) und 14C als 4C-TdR (LeMotte et al., 1984) verglichen, die ebenfalls eine deutlich geringere biologische Wirkung als 125I UdR zeigten.

125I-induzierte DNA-Strangbrüche

Durch den Einsatz von Radikalfängern (wie Dimethylsulfoxid (DMSO), Cysteamin und Vitamin C) zum Schutz vor DNA-Schädigungen während der 125I-Exposition scheint erwiesen,

- daß nicht nur die absolute Anzahl der DSB, die als wichtigste lethale Läsionen angesehen werden, sondern auch die Schädigung der Chromatinstruktur beim Zelltod eine Rolle spielt (Hofer und Bao, 1995; Hofer et al. 1996, 2000) und
Die Untersuchungen mit Radikalfängern haben die Diskussion zur Berechnung der $^{125\text{I}}$-induzierten DSB erneut angeregt. Während Kassis et al. (2000 b) an isolierter Plasmid-DNA ebenfalls 1 DSB pro $^{125\text{I}}$-Zerfall nachwiesen und DMSO dabei keine Schutzwirkung zeigte, konnte das Chromatin von Hamsterzellen jedoch durch DMSO vor $^{125\text{I}}$-erzeugten DSB geschützt werden. Es wurde deshalb angenommen, daß DSB auch durch indirekte Effekte erzeugt wurden und mehr als ein DSB pro $^{125\text{I}}$-Zerfall eintrat. Computersimulationen von Nikjoo et al. (1996) und Pomplun et al. (1996) zeigten in diesem Zusammenhang, daß Direkttreffer hauptsächlich in der Nähe des $^{125\text{I}}$-Zerfalls stattfinden, während durch Radikale induzierte Schäden in weiterer Entfernung (>10 Basenpaare) vorkommen.

> Positionierungseffekte von $^{125\text{I}}$ in der Zelle

Warters et al. (1977) verglichen die Wirkungen des $^{125\text{I}}$-Zerfalls im Zellkern ($^{125\text{I}}$UdR) und in der Membran ($^{125\text{I}}$-Concanavalin A), wobei letztendes nur einen minimalen radiotoxischen Schaden bezüglich des klonogenen Überlebens aufwies. Ähnliches fanden auch Commerford et al. (1980) sowie Miyazaki und Shinohara (1993), die gleichmäßig in der Zelle verteiltes $^{125\text{I}}$-Antipyrin ($^{125\text{I}}$-AP) und extrazelluläres $^{125\text{I}}$-Albumin untersuchten. Dabei zeigte $^{125\text{I}}$-AP im Koloniebildungstest eine 5-10-fach höhere Effektivität als $^{125\text{I}}$-Albumin, das außerhalb der Zelle verblieb. Sie folgerten ebenso wie Bloomer et al. (1981), daß die Radiotoxizität des $^{125\text{I}}$ von der subzellulären Lokalisation abhängt und mit zunehmender Nähe zur DNA ansteigt. Dies konnte von Kassis et al. (1987 a) und auch von Sedelnikowa et al. (1998) anhand von Überlebenskurven bestätigt werden. Die erstgenannten Autoren fanden beim Zellüberleben einen deutlichen Unterschied zwischen $^{125\text{I}}$UdR und dem im Zytosol lokalisierten $^{125\text{I}}$-Dihydrorhodamin, das eine Niedrig-LET-ähnliche Überlebenskurve hervorrief. Sedelnikowa et al. (1998) wiesen nach, daß auch im Zellkern lokalisierte $^{125\text{I}}$-ODN 3-fach weniger effektiv als $^{125\text{I}}$UdR wirkten, da sie nicht kovalent an die DNA gebunden waren.

Martin (1977, 1979) hatte bereits angenommen, daß die Radiotoxizität von $^{125\text{I}}$ in unmittelbarer Nähe zur DNA (z.B. als interkallierendes $^{125\text{I}}$-Acridin) auf der Erzeugung von DSB beruht. Diese Ergebnisse wurden von Adelstein und Kassis (1996) sowie von Kassis et al. (1999) durch Untersuchungen an isolierter DNA in Form von Plasmiden bestätigt. Beim Vergleich von $^{125\text{I}}$-AP, $^{125\text{I}}$-Hoechst 33342 (lockere DNA-Bindung, „minor groove binding“) und $^{125\text{I}}$-Acridin war die Produktion von Strangbrüchen abhängig vom Abstand zur DNA. $^{125\text{I}}$-Hoechst 33342 produzierte 1,08 DSB pro Zerfall, während $^{125\text{I}}$-AP 0,16 DSB hervorrief. $^{125\text{I}}$-Acridin war sogar 7-fach effektiver als $^{125\text{I}}$-AP. Die Autoren bewerteten Versuche mit isolierter DNA jedoch als zu wenig aussagekräftig, um daraus biologische Schlußfolgerungen für die gesamte Zelle zu ziehen.
1.3 Dosimetrie und Relative Biologische Wirksamkeit

Die Dosis ist als absorbierte Energie einer ionisierenden Strahlung pro Masseeinheit definiert und wird in Gy (J/kg) angegeben (vgl. 4.3.2). Gleiche Dosen verschiedener Strahlenarten müssen jedoch nicht den gleichen biologischen Effekt hervorrufen. Ein Vergleich zwischen verschiedenen Strahlenarten ist über die Relative Biologische Wirksamkeit (RBW) möglich. Die RBW ist als Quotient aus der Dosis einer Referenzstrahlung (250 kV Röntgenstrahlung oder 60Co-γ-Strahlung) und der Dosis der untersuchten Strahlung, die den gleichen biologischen Effekt hervorruft definiert (s. z.B. Kiefer, 1989).

$$RBW = \frac{D_{\text{Referenzstrahlung}}}{D_{\text{untersuchte Strahlung}}} \quad \text{(bei gleichem biologischen Endpunkt)}$$

RBW-Faktoren werden für die Aufstellung von Qualitätsfaktoren zur Bewertung unterschiedlicher Strahlenarten unter Strahlenschutzaspekten herangezogen (Tab. 2), die wiederum der Berechnung von Äquivalentdosen dienen (s. Alpen, 1990):

$$H = q \times D \quad \text{und} \quad q = Q \times N$$

($H = Äquivalentdosis, q = Bewertungsfaktor, D = Energiedosis, Q = Qualitätsfaktor und N = Modifikationsfaktor$)

Tabelle 2
Qualitätsfaktoren verschiedener Strahlenarten
(Strahlenschutzverordnung; Veith, 1996)

<table>
<thead>
<tr>
<th>Strahlenart</th>
<th>Qualitätsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Strahlung aus Radionukliden</td>
<td>20</td>
</tr>
<tr>
<td>Neutonen nicht bekannter Energie</td>
<td>10</td>
</tr>
<tr>
<td>Röntgen- und γ-Strahlen, β-Strahlen,</td>
<td>1</td>
</tr>
<tr>
<td>Elektronen und Positronen</td>
<td></td>
</tr>
</tbody>
</table>

Es ist notwendig, bei der Bestimmung der RBW die Stärke des biologischen Effektes sowie den betrachteten Endpunkt genau zu definieren, da sich beispielsweise bei Überlebenskurven mit nicht-linearen Funktionen aufgrund des Schulterbereiches bedeutende Unterschiede ergeben können. So steigt die RBW einer Hoch-LET-
Einleitung

verglichen mit einer Niedrig-LET-Kurve zu kleineren Dosen hin an (s. z.B. Steel, 1997). Trotz dieser Problematik ist die RBW immer noch die einzige allgemein akzeptierte Vergleichsmöglichkeit für verschiedene Strahlenarten. Die für die Bestimmung der RBW benötigte Dosisangabe beruht auf einer homogenen Verteilung der Energie, wie sie bei Photonenstrahlung gegeben ist. Bei einer kovalenten Bindung von \(^{125}\text{I}\) an die DNA ergibt sich beispielsweise beim \(^{125}\text{I}\text{UdR}\) das Problem, daß die Energie nicht gleichmäßig im Zellkern deponiert wird und dadurch die Dosis in bestimmten DNA-Abschnitten nicht der Zellkerndosis entspricht (Humm, 1994). Es ist bis jetzt nicht möglich, die deponierten Energien entlang eines DNA-Stranges experimentell zu bestimmen, weshalb immer nur ein Vergleich zwischen modell-theoretisch ermittelten Dosiswerten und experimentellen biologischen Wirkungen stattfinden kann. Diesbezüglich stellt das Zerfallsspektrum eines AE emittierenden Radionuklids eine wichtige theoretische Grundlage für Energie- und Dosisangaben dar, die in der Strahlenbiologie, der Strahlentherapie und im Strahlenschutz verwendet werden.

Tabelle 3
Dosis pro akkumulierter Aktivität von \(^{125}\text{I}\) in Gy/Bq x h (n. Howell, 1992)

<table>
<thead>
<tr>
<th>Autoren</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(d = 10,\text{nm})</td>
</tr>
<tr>
<td>Sastry und Rao, 1984</td>
<td>(8,37 \times 10^8)</td>
</tr>
<tr>
<td>Pomplun, 1987(^a)</td>
<td>(17,4 \times 10^8)</td>
</tr>
<tr>
<td>Weber et al., 1989 (MIRD)</td>
<td>(2,32 \times 10^8)</td>
</tr>
<tr>
<td>Howell, 1992</td>
<td>(8,55 \times 10^8)</td>
</tr>
</tbody>
</table>

\(^a\) Annahme, daß sämtliches Ladungspotential in einem betrachteten Kugelvolumen deponiert wird
1.4 Medizinischer Einsatz von Auger-Elektronen-Emissnern

- Spezifität; d.h. die radioaktive Substanz sollte ausschließlich auf Tumorzellen einwirken,
- Universalität; d.h. die radioaktive Substanz sollte auf alle Tumorzellen unabhängig von deren Lokalisierung einwirken,
- zytotoxisches Potential; d.h. die radioaktive Substanz sollte mit hoher Effektivität auf die Tumorzellen einwirken,
- Effekt der kurzen Reichweite; d.h. die radioaktive Substanz sollte umliegendes Normalgewebe nicht schädigen.

AE-Emitter würden die beiden letztgenannten Anforderungen erfüllen, während den beiden erstgenannten Punkten mit der richtigen Auswahl der Trägermoleküle Rechnung getragen werden könnte. Unter den für einen klinischen Einsatz verfügbaren AE-Emittern würde 125I aus strahlenhygienischen Gründen wegen seiner relativ langen Halbwertszeit nicht ohne weiteres ausgewählt werden. Da es aber ausschließlich durch Elektroneneinfang zerfällt und die Anzahl der emittierten AE, ebenso wie die pro Zerfall abgegebene Energie vergleichsweise hoch ist (Tab. 4), liegt eine beträchtliche Radiotoxizität in der Nähe des 125I-Zerfallsortes vor.

Die Wahl des geeigneten Trägermoleküls ist für die Wirkung und klinische Anwendung des 125I von ausschlaggebender Bedeutung. Da in der Radiotherapie die Aktivitätsaufnahme in das Tumorgewebe im Verhältnis zum Normalgewebe eine wichtige Rolle spielt, sind nur solche zytotoxischen Reagenzien klinisch relevant, von denen wesentlich mehr in die Tumorzellen als in die gesunden Zellen gelangt. Das Thymidinanalogan IUdR würde sich anbieten, da es ausschließlich von S-Phase-Zellen eingebaut wird und bei
Einleitung

Tabelle 4

<table>
<thead>
<tr>
<th>Radionuklid</th>
<th>Physikalische Halbwertszeit</th>
<th>AE-Anzahl</th>
<th>mittlere AE – Energie (keV) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>51Cr</td>
<td>27,7 Tage</td>
<td>5,4</td>
<td>3,653</td>
</tr>
<tr>
<td>55Fe</td>
<td>2,76 Jahre</td>
<td>5,1</td>
<td>4,177</td>
</tr>
<tr>
<td>67Ga</td>
<td>3,26 Tage</td>
<td>4,7</td>
<td>6,264</td>
</tr>
<tr>
<td>75Se</td>
<td>120 Tage</td>
<td>7,4</td>
<td>5,740</td>
</tr>
<tr>
<td>77Br</td>
<td>2,38 Tage</td>
<td>6,7</td>
<td>5,218</td>
</tr>
<tr>
<td>99mTc</td>
<td>6,01 Stunden</td>
<td>4,0</td>
<td>0,899</td>
</tr>
<tr>
<td>111In</td>
<td>2,8 Tage</td>
<td>14,7</td>
<td>6,750</td>
</tr>
<tr>
<td>113mIn</td>
<td>1,66 Stunden</td>
<td>4,3</td>
<td>2,047</td>
</tr>
<tr>
<td>115mIn</td>
<td>4,5 Tage</td>
<td>6,1</td>
<td>2,847</td>
</tr>
<tr>
<td>123I</td>
<td>13,2 Stunden</td>
<td>14,9</td>
<td>7,419</td>
</tr>
<tr>
<td>125I</td>
<td>60,1 Tage</td>
<td>24,9</td>
<td>12,241</td>
</tr>
<tr>
<td>193Pt</td>
<td>4,33 Tage</td>
<td>26,4</td>
<td>10,353</td>
</tr>
<tr>
<td>195Pt</td>
<td>4,02 Tage</td>
<td>32,8</td>
<td>22,526</td>
</tr>
<tr>
<td>201Tl</td>
<td>3,04 Tage</td>
<td>36,9</td>
<td>15,273</td>
</tr>
<tr>
<td>203Pb</td>
<td>2,16 Tage</td>
<td>23,3</td>
<td>11,630</td>
</tr>
</tbody>
</table>

* Summe der mittleren AE- und CKE-Energien

AE-Emitter wie 67Ga, 75Se, 111In, 123I und 201Tl eignen sich bei extrazellulärer Positionierung für die medizinische Diagnostik, da sie nur einen äußerst geringen, vernachlässigbaren Schaden auf zellulärer Ebene anrichten und szintigrafische Eigenschaften aufweisen (O’Donoghue und Wheldon, 1996). Bei einer Lokalisation im Zellkern würde sich aufgrund der starken Zytotoxizität dagegen ein Einsatz von AE-Emittern in der Tumortherapie anbieten.

Mit 123I und 125I wurden diesbezüglich bereits Versuche an Mäusen, Ratten und Schweinen mit zum Teil erfolgversprechenden Resultaten durchgeführt, die eine Anwendung von 123IUDR und 125IUDR in Diagnostik und Therapie rechtfertigen (Kassis und Adelstein, 1996). Es liegen auch Ergebnisse von ersten klinischen Studien mit 123IUDR und 125IUDR an Patienten mit Lebermetastasen, Gehirntumoren und Kolonkrebs vor, die eine positive klinische Tendenz zeigen (Mariani et al., 1996, Kassis et al., 1996).
Einleitung

Der praktische Einsatz des AE-Emitters 125I in der Strahlentherapie befindet sich noch in der Versuchsphase und benötigt zudem die Angabe einer genauen volumenspezifischen Dosis. Mit der konventionellen Dosimetrie wird jedoch nicht die hohe lokale Energiedeposition bzw. die subzelluläre Positionierung des AE-Emitters berücksichtigt, wodurch die starken biologischen Effekte, z.B. von DNA-gebundenem 125I-UdR, unterschätzt werden.

1.5 Zielsetzung

Am Beispiel des 125I soll ein Beitrag zur Beurteilung der biologischen Wirksamkeit von AE emittierenden Radionukliden anhand von zwei menschlichen Zelllinien (Nieren-T1-Zellen und 86HG-39-Glioblastomzellen) geleistet werden. Es wird angestrebt, 125I mit geeigneten Trägermolekülen in verschiedenen Zellkompartimenten zu positionieren und gesamtzelluläre sowie molekulare Effekte zu bestimmen. Als 125I-markierte Trägermoleküle sind 125I-iodo-desoxyxyuridin (125I-UdR) für eine Inkorporation des 125I in die DNA, 125I-Antipyrin (125I-AP) für eine gleichmäßige Verteilung innerhalb der Zelle und Na125I für eine extrazelluläre Lokalisation vorgesehen.

Als biologische Endpunkte nach 125I-Exposition sollen vor allem die Koloniebildungsfähigkei der gesamten Zellpopulation (klonogenes Überleben) und Schäidigungen der DNA dienen, die individuell durch den Comet Assay messbar sind. Die gewonnenen Ergebnisse werden jeweils denjenigen nach 137Cs-γ-Strahlung gegenübergestellt. Im Hinblick auf eine mögliche klinische Anwendung sollen alle geplanten Experimente unter physiologischen Bedingungen, d.h. mit nicht-synchronisierten Zellkulturen und Temperaturen von 37°C (ohne Akkumulation von 125I-Zerfällen in tiefgefrorenen Zellen) durchgeführt werden.

Durch die gleichmäßige Verteilung des 125I-AP in der Zelle mit einer annähernd homogenen Energiedeposition wird eine Dosisberechnung und ein Vergleich der radiotoxischen Wirkungen von 125I-AP mit denen von 137Cs-γ-Strahlung am gleichen Zellmodell und bei Betrachtung der gleichen definierten biologischen Endpunkte angestrebt. Darüberhinaus soll auch eine Möglichkeit gefunden werden, die biologische Wirksamkeit von DNA-inkorporiertem 125I-UdR zu quantifizieren.
2 Material und Methoden

2.1 Zellkultur

2.1.1 Vermehrung

Materialien:

- Waschen der Zellen: PBS-Dulbecco (1x) ohne Ca²⁺ und Mg²⁺ Ionen
- Ablösen der 86HG-39-Zellen: Trypsin/ EDTA Lösung 0,05% / 0,02% (w/v) in PBS
- Ablösen der T1-Zellen: Trypsin 2,5% (w/v) in PBS auf 0,25% verdünnt
- T1- Wachstumsmedium: BME-Earle (1x) 2,2 g/l NaHCO₃ ohne L-Glutamin
 + 1% N-acetyl-L-alanyl-L-Glutamin
 + 10% Serum neugeborener Kälber
 + 1% Penicillin-Streptomycin 1×10⁴ U/ 1×10⁴ µg/ml

- 86HG-39-Wachstumsmedium: Basal Iscove-Medium (1x) 3,024 g/l NaHCO₃ +Glutamin
 + 10% Fötales Kälberserum
 + 1% Penicillin-Streptomycin 1×10⁴ U/ 1×10⁴ µg/ml (alles Biochrom KG)

- Kulturgefäße: Zellkulturflaschen, 25 cm² (T-25, TPP⁵)
 Leighton-Kulturrührchen, 5 cm² (Nunc)
2.1.2 Wachstumskurven

\[
t_d = \log 2 \times \frac{t_1 - t_0}{\log N_1 - \log N_0}
\]

\(t_d \) = Verdopplungszeit, \(N_0 \) = Zellzahl zum Zeitpunkt \(t_0 \) und \(N_1 \) = Zellzahl zum Zeitpunkt \(t_1 \)

Abbildung 7
Wachstumskurven der T1- und 86HG-39-Zellen mit Phaseneinteilung
(I = lag-Phase, II = exponentielle Phase, III = stationäre Phase)
2.1.3 Protein/- DNA-Gehalt und Durchmesser der Zellen

- Um den Gesamtproteingehalt der Zellen zu erfassen, wurde die Methode nach Bradford mit einem fertigen Farbreagenz (Bioquant-Reagenz nach Bradford, Merck) angewandt. Als Standard diente Rinder-Serumalbumin (Fraktion V, Sigma).

In einer Kuvette wurden 0,25 ml Standard- oder Probelösung und 2,5 ml Bradford-Reagenzlösung gründlich gemischt und die Extinktion nach 2 min bei 595 nm mit einem Spektrophotometer (DU®-50, Beckman) gemessen. Für die Zellproben wurden 2×10^6 T1- oder 86HG-39-Zellen in serumfreiem Medium suspendiert und danach 10 min mit 167\timesg zentrifugiert (900 U/min, Minifuge T, Heraeus/ Kendro). Der Überstand wurde verworfen und das Zellpellet mit 1-2 ml NaOH (1N) gemischt. Nach 30 min Inkubation im Wasserbad bei 100°C ergab sich eine weitgehend klare Lösung. Aus dieser Stocklösung wurde eine Verdünnungsreihe aufgestellt, die Extinktionen gemessen und die Proteingehalte mit Hilfe der Serumalbumin-Eichkurve ermittelt. Als Durchschnittswert ergab sich für die T1-Zellen ein Gehalt von $4,6 \times 10^{-7}$ mg Protein/ Zelle und für die 86HG-39-Zellen ein Gehalt von $4,5 \times 10^{-7}$ mg Protein/ Zelle. Der Proteingehalt wurde später für die Angabe der Acetylcholinesterase-Aktivität verwendet (s. 2.3.2).

Abbildung 8
Mit Giemsa und May-Grünwald-Lösung angefärbte T1- und 86HG-39-Zellrasen zur Bestimmung der Kern durchmesser (Vergrößerung 400x)

2.1.4 Durchflußzytometrie

Der Zellzyklus, den die Zellen während einer Verdopplung durchlaufen, teilt sich in folgende Phasen auf: die G1-Phase als postmitotische Neurodungsphase, die S-Phase zur DNA-Synthese, die G2-Phase als prämitotischer Zeitraum und die sich anschließende M-Phase mit der Mitose. Neben der G1-Phase existiert noch die G0-Phase, bei der sich die Zellen in Ruhe befinden, jedoch jederzeit erneut in den Zellzyklus eingeschleust werden können (Lodish et al., 1996).

T1- und 86HG-39-Zellen in Leighton-Kulturröhrchen (Einsaat 0,3×10⁶ Zellen) wurden verschiedenen Wachstumsphasen entnommen. Davon wurden etwa 1,5×10⁶ Zellen für 10 min bei 167×g zentrifugiert und der Überstand verworfen. Die Zellen wurden dann solange mit kaltem PBS gewaschen, bis alle Mediumreste entfernt waren. Anschließend wurden 2 ml Ethanol (70%) zum Pellet hinzugefügt, gut gemischt und die Zellen bei −20°C für mindestens zwei Tage fixiert. Durch den Alkohol wurden die Zellmembranen derart permeabilisiert, daß die Zellkerne ohne einen weiteren Lysierschritt angefärbt werden konnten. Dies geschah nach erneutem Waschen des fixierten Pellets mit PBS durch Zugabe von 1 ml Propidiumiodidlösung (DNA-Prep-Stain, Coulter), die gleichzeitig

2.2 Strahlenexposition

2.2.1 137Cs-γ-Strahlung

![Diagramm der Strahlenexposition](image)

Abbildung 9
Schema zu den Zellversuchen mit Strahlenexposition und anschließender Untersuchung der biologischen Endpunkte

Um eine Referenzstrahlung zugrunde zu legen und die nachfolgend beschriebenen Methoden wie z.B. den Koloniebildungs- und den Comet Assay zu kalibrieren, wurden die Zellen mit 137Cs-γ-Strahlung (Gammacell 40, Atomic Energy Canada; mittlere Dosisleistung 0,9 Gy/ Minute) exponiert: Suspensionen der T1- und 86HG-39-Zellen (1×10^6/ ml Medium) wurden auf Eis bestrahlt (0,5 - 20 Gy), wobei das Hauptinteresse dem
niedrigen und klinisch relevanten Dosisbereich bis maximal 4 Gy galt. Der Transport bzw.
die Aufbewahrung bis zum Versuchsbeginn erfolgte ebenfalls auf Eis, um die Versuche
reproduzierbar zu gestalten und Reparaturvorgänge in den Zellen zu unterdrücken.
Während der Bestimmung der biologischen Endpunkte (Abb. 9) waren die Temperatur-
bedingungen mit denen der 125I-Versuchen identisch.

2.2.2 125Iododesoxyuridin

Um bei den Versuchen mit 125I physiologische Bedingungen einzuhalten, wurden nicht-
synchronisierte Zellpopulationen verwendet und die mehrstündigen 125I-Expositionen bei
Körpertemperatur (37°C) durchgeführt. Sämtliche Inkubationen fanden deshalb im
Brutschrank bei 37°C und 5% CO$_2$-Begasung statt.

![Strukturformeln von Thymidin und 125Iododesoxyuridin](image)

125Iododesoxyuridin (125I UdR) ist ein Thymidinanalogan, bei dem das 125I-Nuklid (Radius
0,215 nm) eine Methylgruppe (Radius 0,2 nm) an der Position 5 ersetzt (Abb. 10). Es wird
anstelle des Thymidins in die DNA proliferierender Zellen eingebaut. 125I UdR wurde in
einer wässrigen Lösung mit einer spezifischen Aktivität von 74 TBq/mmol (2000 Ci/mmol,
ICN) geliefert und in sterilem PBS verdünnt.

> Inkorporationsstudien

Da 125I UdR nur von S-Phase-Zellen in die DNA inkorporiert wird, wurden für die 125I UdR-
Versuche Zellen der exponentiellen Phase (3 Tage alte T1-Zellen und 4 Tage alte 86HG-
39-Zellen mit einer Einsaat von 1×10^6 bzw. $0,8 \times 10^6$ Zellen in T-25-Flaschen) verwendet.
Der Einbau von 125I UdR in die zelluläre DNA wurde sowohl in zeit- als auch in
kontraintrationsabhängiger Hinsicht und unter Einfluß des Zusatzes FUdR (5'-Fluoro-2'-desoxyuridin, Fluka) untersucht, das durch Hemmung der de novo-Pyrimidinsynthese die Inkorporation von 125IUDR in die DNA förderte. Zur Komplettierung der Basen wurde außerdem CdR (2'-Desoxycytidin, Sigma) zugesetzt. Zellen der exponentiellen Phase wurden mit je 10 ml schwach radioaktivem Medium (0,74 - 1,9 kBq 125IUDR/ ml) und ansteigenden Konzentrationen an FUdR und CdR (10$^{-12}$M - 10$^{-4}$M) inkubiert. Über einen Zeitraum von 30 h wurden zu verschiedenen Zeitpunkten die Zellen von mehreren T-25-Flaschen abgelöst und deren Aktivität im Gammazähler (BF Gammszint 5300, Berthold) gemessen. Der Gammazähler (ein Szintillationszähler mit NaI-Kristall) ließ sich auf die Charakteristik des 125I-Zerfalls u.a. mit dem passenden Energiefenster (20-80 keV) einstellen. Aus den gemessenen Impulsen pro Minute wurden unter Berücksichtigung der Effizienz des Gerätes die Zerfälle pro Sekunde errechnet:

$$\frac{^{125}I - \text{Impulse pro Minute}}{\text{Effizienz } \times 60} = \text{Zerfälle/s} = \text{Bq}$$

Die Effizienz des Gammazählers wurde mit Hilfe eines 129I-Standards bestimmt, dessen Halbwertszeit mit 1,57\times107 Jahren so hoch war, daß keine Zerfallskorrektur berücksichtigt werden mußte. Es ergab sich eine Effizienz von 64%.

Nach dem Trocknen wurden die gewaschenen und ungewaschenen Filter im Gammazähler gemessen, um die inkorporierte Aktivität zu bestimmen. Als Ergebnis waren stets 95 - 98% der Aktivität im gewaschenen Filter bzw. in der DNA enthalten.
Material und Methoden

➤ Standardverfahren zur 125I UdR-Inkorporation

Nicht-synchronisierte T1- oder 86HG-39-Zellen der exponentiellen Phase wurden für eine Verdopplungszeit mit 125I UdR exponiert, damit möglichst alle Zellen die S-Phase erreichten, um 125I UdR zu inkorporieren. Ein Versuchsansatz bestand aus vier Röhrchen mit Medium ansteigender 125I UdR-Aktivität (0,74 - 15 kBq 125I UdR/ml), das zudem 10^{-8} M FUdR und 10^{-8} M CdR enthielt. Die Kontrolle war mit nicht-radioaktiven Zusätzen an FUdR, CdR und IUdR versetzt, und die Zellen wurden für 30 h inkubiert. Während der Inkubationsdauer wurde das radioaktive Medium zweimal komplett ausgetauscht, um einer Einbausättigung vorzubeugen, die nach 8 - 10 h nachgewiesen werden konnte (vgl. Abb. 29, 3.3.1). Am Ende der 125I UdR-Exposition wurden die Zellen abgelöst, gezählt und aliquotiert. Ein Aliquot wurde stets zur Messung der zellulären Aktivität im Gammazähler verwendet.

➤ Anzahl der 125I UdR-Zerfälle pro Zelle

Die Zerfälle pro Zelle (d/c) nach 125I UdR-Inkorporation wurden anhand der Inkubationsdauer folgendermaßen berechnet:

$$d / c = \frac{^{125}I - Impulse_{pro\ min} \times t_{ink} \times F}{Effizienz \times N_{Z}}$$

t_{ink} = Inkubationsdauer in min (im Falle der 125I UdR-Standardmethode 1800 min),

N_{Z} = Zellzahl, F = Ausgleichsfaktor (0,5)

Erläuterung zum Ausgleichsfaktor F:
Abbildung 11
Modell der zeitabhängigen 125IUDR-Inkorporation mit und ohne Mediumwechsel

> **125IUDR-Inkorporation für 1½ Verdopplungszeiten:**
Um die 125IUDR-Inkorporation zu erhöhen, wurde die Inkubationsdauer auf mehr als eine Verdopplungszeit der Zellen ausgedehnt und die T1- und 86HG-39-Monolayer für 49 h (ca. 1½ Verdopplungszeiten) mit 125IUDR inklusive FUDR- und CdR-Zusatz (beides 10^{-6}M) exponiert. Während dieser Zeit wurde das Medium dreimal ausgetauscht.

> **125I-Akkumulation:**
Für einen Vergleich mit Experimenten der Literatur wurden Versuche mit einer Akkumulation der 125IUDR-Zerfälle bei -196°C durchgeführt. T1- und 86HG-39-Zellen wurden zur Inkorporation, wie im Standardverfahren, für 30 h mit 125IUDR sowie 10^{-6}M FUDR- und CdR-Zusatz exponiert. Dabei wurde eine einzelne Konzentration von 0,37 kBq 125I/ ml Medium verwendet. Nach der Inkorporation wurden die Zellen aliquotiert und in flüssigem Stickstoff bei -196°C bis zu 50 Tage eingefroren. Jede Woche wurden eine Kontrolle und eine radioaktive Probe entnommen, rasch bei 37°C im Wasserbad aufgetaut und für den Comet Assay verwendet. Die Bestimmung der akkumulierten 125IUDR-Zerfälle (d_i) zum Zeitpunkt des Auftauens erfolgte nach der Gleichung:

$$d_i = A_0 \times \left(1 - e^{-\frac{t}{T_{1/2}}\ln 2}\right) \times \frac{T_{1/2}}{2}$$
(Walicka et al., 1998 b)

A_0 = Ausgangsaktivität (gemessen am Ende der Inkorporationsperiode in d/c pro Tag),
t = Akkumulationszeit in Tagen und $T_{1/2}$ = Halbwertszeit von 125I mit 60,14 Tagen.
Nicht-radioaktive Zusätze

2.2.3 ¹²⁵I-Antipyrin

¹²⁵I-Antipyrin (¹²⁵I-AP) ist ein Dimethyl-iodo-phenyl-pyrazolin, bei dem das ¹²⁵I am Fünfferring in Stellung 4 positioniert ist (Abb. 12). Im Gegensatz zur aktiven ¹²⁵I-UdR-Inkorporation diffundiert ¹²⁵I-AP frei durch die Zellmembran und verteilt sich innerhalb weniger Minuten gleichmäßig in der gesamten Zelle (Talso et al., 1955, Thompson et al., 1958). ¹²⁵I-AP wurde als Sonderanfertigung der Firma ICN in 0,25% Na-Bicarbonat mit einer spezifischen Aktivität von 56 - 74 GBq/ mmol (1,5 - 2 Ci/ mmol) geliefert.

Abbildung 12
Strukturmformel des ¹²⁵I-Antipyrins

Expositionsverfahren

0,5×10⁶ Zellen wurden in 2 ml Medium verschiedener radioaktiver Konzentrationen (1,8 - 9,3 MBq ¹²⁵I-AP) suspendiert. Die Kontrolle enthielt eine mittlere Konzentration an nicht-radioaktivem Antipyrin (10⁻⁴M, Sigma) und Bicarbonat (0,02%, Biochrom KG). Für eine bessere Vergleichbarkeit mit den ¹²⁵I-UdR-Versuchen wurden Zellen der exponentiellen Wachstumsphase verwendet. Die radioaktive Zellsuspension wurde in Leighton-Kulturröhrchen pipettiert und für 28 h bei 37°C im Brutschrank inkubiert. Nach Beendigung
der 125I-AP-Exposition wurde das radioaktive Medium entfernt, die Zellen mehrfach gewaschen, abgelöst und aliquotiert.

Am Beispiel der T1-Zellen wurde zusätzlich eine Akkumulation der 125I-AP-Zerfälle auf Eis (0°C) durchgeführt, um einen Vergleich zu den Comet Assay-Ergebnissen nach 137Cs-γ-Bestrahlung zu ermöglichen, die ebenfalls auf Eis erfolgte. 1×10^8 Zellen wurden in einem Eppendorf-Tube in 500 μl 125I-AP mit einer Gesamtaktivität von 18,5 MBq resuspendiert und nach 3 - 5 min auf Eis gestellt. Die Kontrolle enthielt gleiche Konzentrationen an nicht-radioaktivem Antipyrin und Bicarbonat. Alle 2 h wurden 100 μl der Zellsuspension entnommen, die Aktivität durch mehrfaches Waschen entfernt und die Zellen für den Comet Assay in Agarose eingebettet. Die gesamte Inkubationsdauer betrug 8 h.

➤ **Anzahl der 125I-AP-Zerfälle pro Zelle**

Für die Berechnung der 125I-AP-Zerfälle lagen folgende Annahmen zugrunde:
- 125I-AP verteilt sich homogen in der gesamten Zelle; d.h. intrazellulär und im umgebenden Medium ist die 125I-AP-Konzentration gleich.
- Die Verteilung von 125I-AP findet innerhalb weniger Minuten statt, und die Aktivität pro Zelle bleibt dann über den gesamten Inkubationszeitraum konstant.

Am Ende der Inkubation wird die Summe der eingetretenen Zerfälle (d) zunächst über die radioaktive Konzentration im Medium und die Zeitkomponente berechnet:

$$d / \mu m^3 = \frac{A \times t_{ink}}{V_M}$$

$A =$ eingesetzte Aktivität in Bq, $t_{ink} =$ Inkubationsdauer in s (also $28 \times 60 \times 60$), $V_M =$ Volumen des eingesetzten Mediums (2 ml = $2 \times 10^{12} \mu m^3$).

Für die Berechnung der Anzahl der Zerfälle pro Zelle wurde mit dem Zellvolumen multipliziert:

$$d / c = \frac{A \times t_{ink} \times V_Z}{V_M}$$

$V_Z =$ Zellvolumen (T1-Zellen = 3054 μm3 und 86HG-39-Zellen = 1770 μm3).

➤ **Nicht-radioaktives Antipyrin**

Um auch bei 125I-AP den chemischen Einfluß des Trägermoleküls auf die Zellen zu testen, wurde eine Inkubation mit den entsprechenden Konzentrationen an nicht-radioaktivem Antipyrin ($10^{-6} - 10^{-4}$M) durchgeführt. Antipyrin wurde dafür in Aqua bidest. gelöst und dann in Medium verdünnt. Die weitere Prozedur einschließlich der Inkubationszeit entsprach genau den radioaktiven 125I-AP-Versuchen.
2.2.4 Na125I

\textbf{30 h-Exposition mit Mediumwechsel:}

Die Exposition der T1- und 86HG-39-Monolayer mit extrazellulärem Na125I erfolgte durch eine 30-stündige Inkubation einschließlich Mediumwechsel, um einen direkten Vergleich zu den Ergebnissen der 125IUdR-Standardmethode zu erhalten. Na125I (in NaOH, pH 10; ICN) wurde auf 1,9 - 15 kBq/ml Medium verdünnt und zu exponentiell wachsenden Zellen gegeben, wobei das Medium während der Inkubation zweimal ausgetauscht wurde. Anschließend wurden die Zellen mehrfach mit PBS gewaschen, abgelöst und gezählt.

\textbf{28 h-Exposition ohne Mediumwechsel:}

Für einen Vergleich mit den 125I-AP-Versuchen wurden entsprechend 0,5×106 Zellen in 2 ml Medium mit Na125I (1,8 - 9,3 MBq) suspendiert und in Leighton-Kulturrohren ausgesät. Die Inkubationsdauer betrug ebenfalls 28 h. Da das Na125I-Molekül aufgrund seiner Anionenladung und -größe die Zellmembran nicht durchdringen konnte und deshalb extrazellulär verblieb, wurde die Effektivität des Na125I in Einheiten der Aktivitätskonzentration (Bq/ ml Medium) anstelle von Zerfällen pro Zelle bestimmt.

2.2.5 3H/125IUdR-Doppelmarkierung

Für die in 2.3.5 beschriebene Hydroxylapatit (HA) -Chromatographie wurden die Zellen zuvor mit 3H-Thymidin ([Methyl-3H]-TdR, spezifische Aktivität 185 GBq/ mmol; Amersham Pharmacia) markiert. 3H-TdR wird sehr gleichmäßig über die DNA verteilt eingebaut und ermöglicht verlässliche Aktivitätsmessungen der markierten DNA (Yasui et al., 1985). Für die 137Cs-\textgamma-Versuche wurden Monolayer der exponentiellen Phase in T-25-Flaschen mit 10 ml tritiumhaltigem Wachstumsmedium (3,7 kBq 3H-TdR / ml Medium) versetzt und für 24 h inkubiert. Das Medium enthielt je 10-6M FUdR und CdR zur Förderung des 3H-TdR-Einbaus in die DNA. Dabei wurde ähnlich wie im 125IUdR-Standardprotokoll verfahren, indem das radioaktive Medium zur Vorbeugung einer Inkorporationssättigung einmal nach 8-10 h erneuert wurde. Anschließend wurden die Zellen aliquotiert und als Suspension auf Eis mit 137Cs-\textgamma bestrahlt (2 - 10 Gy). Bei den 125IUdR-Versuchen erfolgte eine Doppelmarkierung der zellulären DNA mit 125IUdR und 3H-TdR, indem beide radioaktiven Substanzen in Medium verdünnt und gleichzeitig zu exponentiell wachsenden Monolayer gegeben wurden (3,7 - 30 kBq 125IUdR und 3,7 kBq 3H-TdR). Sowohl im Falle der einfachen 3H-TdR-Markierung als auch im Falle der Doppelmarkierung wurde die Inkorporationsphase auf 24 h beschränkt, weil bei der sich anschließenden HA-Chromatographie eine Unterbrechung des Ablaufes ohne Genauigkeitseinbußen nicht möglich war.
2.3 Biologische Endpunkte

2.3.1 Farbtest auf „Lebensfähigkeit“

Trypanblau (0,4%-Lösung, Fluka) wurde 1:1 mit einer serumfreien Zellsuspension von 1×10^6 Zellen/ml Medium gemischt und für 4 min bei Raumtemperatur inkubiert. Danach erfolgte die Zählung der Zellen in einer Bürker-Zählkammer unter dem Mikroskop und die Berechnung des Prozentsatzes lebender Zellen:

$$\text{Anteil lebender Zellen (\%)} = \frac{\text{ungefärbte Zellen}}{\text{gefärbte + ungefärbte Zellen}} \times 100$$

2.3.2 Acetylcholinesterase-Test

➤ Probenvorbereitung

T1- und 86HG-39-Monolayer der stationären Phase in Leighton-Kulturrröhrchen wurden mit PBS gewaschen, mit 2 ml serumfreiem Medium überschichtet und auf Eis mit 137Cs-γ bestrahlt. Das überstehende Medium wurde nach der Bestrahlung zentrifugiert (5 min,
167×g) und die AChE-Aktivität bestimmt. Als Standard diente membranegebundene AChE aus Rinder-Erythrozyten. Um ausschließlich die Aktivität der membrandgebundenen AChE zu erhalten, wurde bei einigen Versuchen Ethopropazin (Fluka) zugesetzt, das die unspezifische Cholinesterase hemmt. Es ergaben sich dabei keine Veränderungen.

Durchführung
Zwei Natriumphosphatpuffer-Lösungen mit 0,1 M Na₂HPO₄ (Merck) in Aqua bidest. wurden auf die pH-Werte 7,0 und 8,0 eingestellt und bei 4°C gelagert. Ellman's Reagenz, bestehend aus 10 mM DTNB (5,5'-Dithiobis-2-nitrobenzoic-acid, Fluka) und 17,9 mM NaHCO₃ (Merck), wurde in 10 ml Natriumphosphatpuffer (pH 7,0) gelöst. Es wurde in einer dunklen Flasche maximal 3 Wochen aufbewahrt. Das Substrat, 75 mM Acetylcholiniodid (Fluka) gelöst in Aqua bidest., wurde alle 7 Tage neu angesetzt und bei 4°C gelagert.

| 2,5 ml Na₂HPO₄ + 20 µl Acetylcholiniodid + 100 µl Ellman's Reagenz |
|-------------|----------------|----------|
| 10 min Inkubation |
| Zugabe von 0,5 ml Probe (Überstandsmedium) |
| Alle 20 s Extinktionsmessung im Spektrofotometer (412 nm) |

Abbildung 13
Durchführung der AChE-Bestimmung mit Ellman's Reagenz

Zu 2,5 ml Natriumphosphatpuffer (pH 8,0) wurden 20 µl Acetylcholiniodid-Lösung und 100 µl Ellman's Reagenz in eine Makrokuvette pipettiert und für 10 min bei Raumtemperatur inkubiert. Dann wurden 0,5 ml Probe (überstehendes Medium oder reines Medium als Leerwert) hinzugefügt und bei 412 nm alle 20 s die Extinktionen im Spektrofotometer gemessen (Abb. 13). Die Aktivitätsrate (R) der AChE – ausgedrückt als Mol Substrat hydrolysiert pro Minute und g Protein – wurde folgendermaßen berechnet:

\[
R = \left[\frac{\Delta E/\text{min}}{1,36 \times 10^4 \times C_{\text{Prot}}} \right] \times F
\]

(Elman, 1961)
Dabei beträgt der Extinktionskoeffizient des „gelben Anions“ $1,36 \times 10^4$ l pro Mol und cm, während C_{Pro}, die Protein-Konzentration in g/l, bezogen auf den Gesamtproteingehalt der Zellen, und F den Verdünnungsfaktor (Küvettenvolumen/Probevolumen) darstellen.

2.3.3 Koloniebildungstest

Abbildung 14
T1- und 86HG-39-Kolonien nach Hämatoxilinfärbung (Vergrößerung 40x und 100x)

Für die Überlebensfraktion nach Strahlenexposition gilt (Hall, 1994):

$$\text{Überlebensfraktion (\%)} = \frac{\text{Anzahl der Kolonien pro Dosis bzw. Konzentration}}{\text{Anzahl der eingesäten Zellen}} \times \frac{\text{PE}}{100}$$

2.3.4 Comet Assay

Der Comet Assay bietet die Möglichkeit, DNA-Schäden einzelner Zellen nach einer horizontalen Gel-Elektrophorese quantitativ zu erfassen. In der vorliegenden Arbeit wurde der alkalische Comet Assay mit einer modifizierten Methode nach Singh et al. (1988) eingesetzt, mit dem vor allem Einzelstrangbrüche detektiert werden. Bei der Messung der DNA-Schäden nach 137Cs-γ-Bestrahlung auf Eis wurde direkt im Anschluß der Comet Assay mit den noch kalten Zellsuspensionen begonnen. Es wurden aber auch Untersuchungen zur Reparaturkinetik durchgeführt, um eine experimentelle Bestätigung zur Art der gemessenen Strangbrüchen zu erhalten. In dem Fall wurden die Zellen nach 137Cs-γ-Bestrahlung (4 Gy) und dem Transport auf Eis bis zu 30 min in ein 37°C warmes Wasserbad gestellt und alle 2 min eine Probe für den Comet Assay entnommen.

➢ Vorbereitung

2,5 M NaCl (p.a., Merck), 100 mM Na₂-EDTA (Titripex III p.a., Merck) und 10 mM Tris (Tri(hydroxymethyl)aminomethan p.a., Merck) wurden bei 95°C für ca. 45 min gelöst. Diese Lyselösung wurde nach dem Abkühlen mit NaOH auf pH 10,0 eingestellt und anschließend mit 1% Na-Sarcosinat (N-Laurylsarcosin-Natriumsalz, 30% Lösung, Serva) versetzt. Bei Raumtemperatur konnte die Lösung dann 5 - 6 Tage ohne Ausfällungen aufbewahrt werden. Kurz vor Gebrauch wurde 1% Triton-X (Triton® X-100, Merck) zur Lyse-Lösung hinzugefügt. Der Elektrophoresepuffer wurde aus 0,3 M NaOH (Natriumhydroxid-Plätzchen p.a., Merck) und 1 mM Na₂-EDTA hergestellt. Der Puffer wies stets einen pH >12 auf und konnte bei 4°C mehrere Wochen ohne Veränderungen
aufbewahrt werden. Für die Neutralisation wurden 0,4 M Tris-HCl (Merck) in Aqua bidest. gelöst, der pH-Wert auf 7,0 - 7,5 eingestellt und die Lösung bei 4°C gelagert. Handelsübliche Glasobjektträger (76 x 26 x 1 mm, Marienfeld) wurden mit einer normalschmelzenden Agarose vorbeschichtet, indem 1% Agarose in PBS (Agarose für DNA-Elektrophorese, Serva) in einem Mikrowellengerät aufgelöst und davon 100 µl pro Objektträger ausgestrichen wurden. Die Objektträger wurden für mindestens 45 min zum Trocknen auf eine 50°C warme Platte gelegt.

> **Versuchsablauf (Abb. 15)**

Zellsuspensionen mit 0,5 - 1,0×10⁶ Zellen/ml wurden 1:10 mit einer niedrig-schmelzenden Agarose (0,75% in PBS, low melting Agarose, Serva) verdünnt, die nach dem Löschen auf ca. 50°C heruntergekühlt worden war. Von dieser Agarosesuspension wurden 100 µl (5×10³ - 1×10⁴ Zellen) als zweite Schicht auf je zwei der vorbereiteten Objektträger pipettiert und durch schnelles Abdecken mit einem Deckglas (24 x 50 mm, Marienfeld) verteilt. Die nun zweifach beschichteten Objektträger wurden für 10 min auf Eis gelegt, um die low melting Agarose zu verfestigen. Danach wurde das Deckglas wieder entfernt. Die Objektträger wurden in eine flache Schale gelegt und mit der vorbereiteten Lyselösung überschichtet (Überstand einige mm).

Abbildung 15

Ablauf des Comet Assays mit den wichtigsten Versuchsschritten
Während der Inkubation bei 4°C für 70 min wurden die in Agarose eingebetteten Zellen lysiert. Danach wurde die Lyselösung vorsichtig aus der Schale abgesaugt, um Bewegungen zu vermeiden, die zum Ablösen der Agarose vom Objektträger geführt hätten. Die Objektträger wurden in eine Horizontal-Elektrophorese-Apparatur (DNA Sub Cell™, Bio Rad) gelegt und einige Millimeter mit dem vorbereiteten alkalischen Elektrophoresepuffer bedeckt. Es folgte eine Inkubation für 25 min, die ein „Unwinding“ der DNA bewirken sollte. Dann wurde für 25 min die Elektrophorese mit 0,8 V/cm (Power Pac 3000, Bio Rad) durchgeführt, ohne dabei die Pufferlösung zu wechseln. Im elektrischen Feld wanderten die negativ geladenen DNA-Fragmente in Richtung Anode und bildeten sogenannte Kometen.

Abbildung 16
Aufnahmen von 86HG-39-Kometen: a) ohne Bestrahlung, b) nach ¹³⁷Cs-γ-Bestrahlung (8 Gy)
Die Kometen wurden unter einem Fluoreszenzmikroskop (10 x 16, Filter BP 546, FT 580, LP 590, Zeiss) mit Hilfe einer Analysesoftware (Komet 3.1, Optilas) ausgewertet. Eine CCD-Kamera war am Mikroskop befestigt und übertrug das Bild der Kometen auf einen Monitor. Ungeschädigte DNA zeigte sich in Form heller, runder Kometen, während geschädigte DNA an einem deutlichen Kometenschweif geringerer Intensität zu erkennen war (Abb. 16). Für die Analyse wurden die Kometen einem visuellen Rahmen auf dem Monitor zugeordnet. Pro Dosis bzw. Konzentration wurden zwei Objektträger mit je 100 Einzelzellen ausgewertet und deren Daten gespeichert. Für die mikroskopische Auswertung wurden ca. 5 - 8 min pro Objektträger benötigt, wobei ein längeres Verweilen des Fluoreszenzluchtes auf einzelnen Kometen wegen des sogenannten „fading“ (Ausbleichen) vermieden werden mußte.

> **Das Olive Tail Moment**

Unter der Vielzahl der zur Verfügung stehenden Parameter im Comet Assay wurde das dimensionslose Olive Tail Moment (OTM) zur Quantifizierung der DNA-Schädigung gewählt. Es setzt sich als Produkt aus dem Anteil der DNA-Fragmente im Kometenschweif und der Wanderungsstrecke d als Distanz von der Mitte des Kometenkopfes bis zur Mitte des Kometenschweifes zusammen (Abb. 17). Analog dazu ergibt sich die Formel:

\[OTM = d \times \text{DNA-Anteil}_{\text{Schweif}} \]
(\text{Olive et al., 1990})

Das OTM nimmt zu, wenn einerseits mehr Fragmente in den Schweif wandern und/ oder diese eine längere Strecke zurücklegen, indem sie kleiner werden.

![Diagramm](attachment:diagram.jpg)

Abbildung 17
Schematische Darstellung eines Kometen mit den Parametern des OTM
Technische Erläuterungen

Grundsätzlich werden in der Software-Auswertung der Kometen die optischen Intensitäten gemessen, die durch den Fluoreszenzfarbstoff Propidiumiodid erzeugt werden. Zugrunde liegt eine Grauskala, mit der auch die Hintergrundfärbung berücksichtigt wird.

Der Abstand zwischen Kopf- und Schweifmitte entspricht nicht der Kometenschweiflänge. Sie können zufällig übereinstimmen, sind aber unterschiedlich definiert.

Kopf- und Schweifmitte sind jeweils die Leuchtdichteschwerpunkte des Kometenkopfes und des Kometenschweifes, die nach der physikalischen Schwerpunktsdefinition (Schwerpunkt = Summe der Massepunkte \(m_i \) an den Stellen \(x_i \) dividiert durch die Gesamtmasse \(M \)) berechnet werden:

\[
\text{Schweif } - \text{ bzw. Kopfmitte } = \frac{\sum H_i \times x_i}{P}
\]

Es wird die Summe aus Grauwerten \(H(i) \) gebildet, die jeweils mit dem Positionspixelwert \(i \) multipliziert wurden, wobei sich die Summe aller Grauwerte des Kopf- oder Schweifprofils ergibt. Dieses Produkt wird nochmals zur Normierung durch die einfache Summe der Grauwerte, auch Population \(P \) genannt, dividiert. Durch die relative Differenz zwischen Schweif- und Kopfmitte spielt die absolute Position auf der \(x \)-Achse keine Rolle. Das System muß deshalb nicht kalibriert sein und ist zudem unempfindlicher gegen Schweiflängenvariationen.

Der zweite Teil des OTM-Produktes, der Anteil der DNA im Kometenschweif, berechnet sich aus der optischen Intensität des Schweifes dividiert durch die optische Intensität des gesamten Kometen (Kopf und Schweif). Im Gegensatz zum geschädigten Anteil der DNA, der während der Elektrophorese in den Schweif gewandert ist, befindet sich der weitgehend ungeschädigte Anteil noch im Kometenkopf.

2.3.5 Hydroxylapatit-Chromatographie

Diese Methode ermöglicht die Auftrennung der DNA in einzelsträngige (es) und doppelsträngige (ds) Anteile nach Adsorption an Hydroxylapatit (HA) und Elution mit 0,125 M und 0,250 M Kaliumphosphatpuffer (KPP). Die Auswertung erfolgt durch Messung der radioaktiv 3H-TdR oder 125I-UdR)-markierten DNA-Bruchstücke.

➢ **Probenvorbereitung (Abb. 18)**

Von den einfach- oder doppelmarkierten Zellen (s. 2.2.5) wurden nach Strahlenexposition jeweils 1×10^6 Zellen bei 4°C für 5 min zentrifugiert (132×g). Der Überstand wurde verworfen und das Pellet in 200 μl PBS resuspendiert. Diese Zellsuspension wurde in ein Falcon-Röhrchen (Becton Dickinson) mit 5 ml Lyselösung (0,01 M Na$_2$HPO$_4$ und 0,9 M NaCl in einer 0,03 M Natronlauge, pH-Wert 12,0) pipettiert und sofort gemischt. Es ergab sich eine weitgehend homogene Lösung. In dieser stark alkalischen Salzlösung wurden die Zellen für 30 min bei Raumtemperatur lysiert, wobei gleichzeitig die DNA denaturiert wurde (Unwinding).

Während und nach dieser Behandlung zeigte sich die DNA äußerst anfällig für Scherkräfte, weshalb Bewegungen oder gar Schütteln vermieden wurde, um keine zusätzlichen Strangbrüche zu erzeugen.

![Abbildung 18](image.jpg)

Schematischer Ablauf der Probenvorbereitung für die HA-Säulenchromatographie
Nach der Lyse wurde die Suspension mit 2 ml einer NaH₂PO₄-Lösung (0,8 M) neutralisiert, wobei die Neutralisationslösung vorsichtig am Rand des Falcon-Röhrchens einlief und das Röhrchen zum Mischen einmal gewendet wurde. Da es während des Neutralisationsvorganges zur Gelbildung kam, mußte die Probe so schnell wie möglich weiterverarbeitet werden. Die gesamte Probe wurde in ein kleines Becherglas umgefüllt und für 10 s mit gepulstem Ultraschall (Sonifier, Cell Disruptor B15, Branson) auf der Energiestufe „2“ behandelt. Durch die Beschallung wurde sowohl eine Homogenisierung der zur Gelbildung neigenden Probe als auch eine Zertrümmerung der DNA in gleichgroße Teilstücke erreicht. Ebenfalls wurde es-DNA abgetrennt, die durch die Alkalibehandlung freilag. Anschließend wurden die DNA-Bruchstücke durch Zugabe von 3 ml SDS-Lösung (1%, Sodiumdodecylsulfat, Serva) stabilisiert, da SDS eine Renaturierung der DNA und die Bildung von DNA-Protein-Komplexen reduziert. Für eine bessere Reproduzierbarkeit wurden die Proben bis zur HA-Chromatographie bei 4°C aufbewahrt. Dabei kam es zur Ausfällung des SDS, das sich nach kurzem Erwärmen wieder auflöste.

HA-Säulenchromatographie

Die unterschiedlich konzentrierten KPP (0,125 - 0,500 M) für die HA-Säulenchromatographie wurden äquimolar aus einer basischen K₂HPO₄ und einer sauren KH₂PO₄ hergestellt, um einen neutralen pH-Wert zu erhalten. Alle Lösungen wurden stets einen Tag vorher angesetzt.

750 mg HA (DNA grade Biogel® HTP Gel, Bio Rad) konnte für 10 min in 0,01 M KPP (Startpuffer) quellen. In dieser Zeit sammelten sich sehr feine, störende HA-Partikel in der oberen Phase an und konnten dekantiert werden. Dieser Vorgang wurde gegebenenfalls wiederholt. Das HA wurde dann nochmals in etwas Startpuffer verdünnt auf die Säule (open-ended jacketed Column, 1 x 30 cm, Bio Rad) geladen, die bereits auf 60°C vorgeheizt war. Es wurde darauf geachtet, daß die Säule niemals austrocknete (wg. Luftblasen, Rißbildung). Dann wurden 2 ml der Probenlösung aufgegeben und mit 1 ml Startpuffer nachgespült, um nicht-gebundene Aktivität herunterzuwaschen. Im Probenüberstand und Startpuffer war jedoch bei allen Versuchen kaum³H- und/ oder ¹²⁵I-Aktivität vorhanden, was bewies, daß die gesamte Radioaktivität in die DNA inkorporiert und diese wiederum an das HA adsorbiert war. Zuerst wurde die es-DNA dreimal mit 3 ml 0,125 M KPP und anschließend die ds-DNA ebenfalls dreimal mit 3 ml 0,250 M KPP eluiert. Danach wurden die HA-Säule mit 3 ml 0,50 M KPP nachgewaschen und mit 2 ml NaCl-Lösung (1 M) gereinigt, um eventuelle Aktivitätsreste zu entfernen. Nach jeweils zwei kompletten Durchläufen wurde das HA erneuert.
Die Eluate wurden 1:10 mit Szintillationscocktail gemischt und im Flüssigkeits-
szintillationszähler (Tri-Carb 2550, Packard) gemessen. Im Eluat der es-DNA fiel nach
Erkalten das SDS aus, was für die radioaktive Messung jedoch keine Rolle spielte.

\[\textit{Berechnung der DNA-Fraktionen} \]

Die Gesamtaktivität der es- und ds-Eluate wurde gleich 100% gesetzt (Dikomey et al.,
1998). Eine zunehmende DNA-Schädigung spiegelt sich in der Abnahme der ds-DNA-
Fraktion wieder, welche die ungeschädigte DNA darstellt. Kontrollen sollten Werte von
etwa 80-90% ds-DNA-Fraktionen aufweisen. Im Falle der \(^{137}\text{Cs} \gamma\)-Strahlung wurden reine
\(^{3}\text{H}\)-Aktivitäten gemessen, während nach \(^{3}\text{H} / \text{}_{125}\text{I} \text{UdR-Inkorporation die Aktivitäten der}
Radionuklide auseinanderdividiert werden mussten.}

Für das Gemisch \(^{3}\text{H} / \text{}_{125}\text{I}\) wurden am Tri-Carb (automatisch) folgende Energiebereiche
gewählt: Region A = 0-12 keV und Region B = 12-70 keV. \(^{3}\text{H}\) war dabei das energie-
ärmere Nuklid.

Bei der Messung einer Probe mit zwei verschiedenen Radionukliden gilt für die
Berechnung der einzelnen Bestandteile:

\[Y = \frac{BE_1 - AE_2}{(E_1E_4 - E_2E_3)} \quad \text{und} \quad X = \frac{AE_4 - BE_3}{(E_1E_4 - E_2E_3)} \]

mit:

\[E_1 = \text{Effizienz von } ^{3}\text{H} \text{ in der Region A (betrug 64,3\%)} \]
\[E_2 = \text{Effizienz von } ^{3}\text{H} \text{ in der Region B} \]
\[E_3 = \text{Effizienz von } ^{125}\text{I} \text{ in der Region A (betrug 42,2\%)} \]
\[E_4 = \text{Effizienz von } ^{125}\text{I} \text{ in der Region B (betrug 28,3\%)} \]
\[A = \text{Zählerate (Messwert des Gemisches) in der Region A} \]
\[B = \text{Zählerate (Messwert des Gemisches) in der Region B} \]
\[X = \text{Zerfallsrate des energieärmere Nuklids; also } ^{3}\text{H} \]
\[Y = \text{Zerfallsrate des energiereichereren Nuklids; also } ^{125}\text{I} \]

Da \(^{3}\text{H}\) im zweiten Energiebereich (12-70 keV) keine Zählerate mehr aufwies, vereinfachte
sich die Formel, da \(E_2 = 0 \) und damit:

\[Y = \frac{B}{E_4} \quad \text{und} \quad X = \frac{(A - E_3Y)}{E_1} \]

Für X bzw. \(^{3}\text{H}\) wurden die ds-DNA-Anteile (\%) errechnet und verglichen.
3 Ergebnisse
Die grafische Darstellung der Ergebnisse – meist in Form von Kurven – und die zugehörigen Regressionsrechnungen wurden mit der Software Sigma Plot 4.01 für Windows durchgeführt. Die statistischen Tests (t-Test) und die Korrelationsanalysen wurden mit Hilfe von Sigma Stat 2.0 angefertigt. Für den Signifikanz-Test wurde eine maximale Irrtumswahrscheinlichkeit von $\alpha \leq 0.05$ angenommen. In einigen Grafiken wird der Fehlerbalken durch das Symbol verdeckt.

3.1 Anteile an den Zellzyklusphasen

![Abbildung 19](image1)
Abbildung 19
Verteilung der Zellzyklusphasen von T1-Zellen im Alter von 3 bis 8 Tagen

![Abbildung 20](image2)
Abbildung 20
Verteilung der Zellzyklusphasen von 86HG-39-Zellen im Alter von 4, 7 und 8 Tagen

Für den Vergleich der Zellzyklusverteilung von Zellen verschiedener Wachstumsphasen wurden die Mittelwerte aus den Messungen 4 und 7 Tage alter Zellen als Beispiele für die exponentielle und die stationäre Wachstumsphase gegenübergestellt (Tab. 5). Bei den 86HG-39-Zellen wiesen 4 Tage alte Zellen mit 23,9 % einen deutlich höheren S-Phase-Gehalt auf als 7 Tage alte Zellen mit nur 6,6%. Gleichzeitig stieg der G1-Anteil von 69%
auf 89,4 % an, und der G2/ M-Phase-Anteil nahm leicht von 7,1% auf 4,1% ab. Es ergab sich somit bei den 86HG-39-Zellen eine vom Wachstumsalter der Zellpopulation abhängige Zellzyklusverteilung. Bei T1-Zellen konnte diese Zuordnung zu den Wachstumsphasen dagegen nicht gefunden werden, da die Zellen trotz unterschiedlichen Alters eine ähnliche Verteilung im Zellzyklus zeigten. Der S-Phase-Anteil nahm bei 7 Tage alten T1-Zellen der stationären Phase um 3% von 22,1% auf 25,1% zu, während der G1-Phase-Anteil entsprechend von 40,6% auf 38,3% abnahm. Der G2/ M-Phase-Anteil blieb in etwa gleich.

Tabelle 5
Zellzyklusphasenanteile (%) von T1- und 86HG-39-Zellen nach 4 und 7 Tagen Wachstum in Leighton-Kulturröhrchen (n = 1-3; ± SE)

<table>
<thead>
<tr>
<th>Alter</th>
<th>G1/ G0-Phase</th>
<th>S-Phase</th>
<th>G2/ M-Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-Zellen</td>
<td>4 Tage</td>
<td>40,6 ± 5,0</td>
<td>22,1 ± 4,7</td>
</tr>
<tr>
<td></td>
<td>7 Tage</td>
<td>38,3 ± 5,2</td>
<td>25,1 ± 2,4</td>
</tr>
<tr>
<td>86HG-39-Zellen</td>
<td>4 Tage</td>
<td>69,0</td>
<td>23,9</td>
</tr>
<tr>
<td></td>
<td>7 Tage</td>
<td>89,4 ± 1,4</td>
<td>6,6 ± 0,8</td>
</tr>
</tbody>
</table>

3.2 137Cs-γ-Strahlung

3.2.1 Viabilitätsraten

![Diagramm](image)

Abbildung 21
Viabilitätsraten der T1- und 86HG-39-Zellen nach 137Cs-γ-Bestrahlung (n = 10; ± SE)

3.2.2 Acetylcholinesterase-Aktivitätsraten

Die kolorimetrische Methode nach Ellman (1961) wurde zunächst mit einem AChE-Standard aus Rinder-Erythrozyten überprüft. Mit ansteigender Konzentration des in Medium verdünnten Standards wurde proportional eine Zunahme der AChE-Aktivität ($\mu\text{Mol Substrat hydrolysiert pro Minute und ml Probe}$) gefunden (Abb. 22).

![Abbildung 22
AChE-Aktivitätsrate des Standards aus Rinder-Erythrozyten](image)

Abbildung 23
ACHe-Aktivitätsraten der T1- und 86HG-39-Zellen nach 137Cs-γ-Bestrahlung
(µMol Substrat hydrolysiert pro Minute und g Protein, n = 10; ± SE)

3.2.3 Klonogenes Überleben

Tabelle 6
Charakteristische Kennzahlen der T1- und 86HG-39-Überlebenskurven nach 137Cs-γ-Bestrahlung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D_0</td>
<td>0,9 Gy</td>
<td>1,2 Gy</td>
</tr>
<tr>
<td>SF 2</td>
<td>40,5 %</td>
<td>51 %</td>
</tr>
<tr>
<td>D_{37}</td>
<td>1,6 Gy</td>
<td>2,7 Gy</td>
</tr>
</tbody>
</table>
Abbildung 24
Überlebenskurven nach 137Cs-γ-Bestrahlung der T1- und 86HG-39-Zellen ($n = 6-9; \pm SE$)

3.2.4 Bestimmung von DNA-Schäden mit dem Comet Assay

Comet Assay ohne DNA-Reparatur

Abbildung 25
Comet Assay nach 137Cs-γ-Bestrahlung der T1- und 86HG-39-Zellen
(n = 200-600; ± SE)

Abbildung 26
Aufnahme von 86HG-39-Kometen nach 137Cs-γ-Bestrahlung (8 Gy)
Zusätzlich wurde nach 4 Gy die Reparatur von DNA-Schäden bei 37°C mit dem Comet Assay ausgewertet. Es zeigte sich bereits in den ersten Minuten ein starke Abnahme der DNA-Schädigung auf 30 - 40%, was auf eine schnelle Reparatur von DNA-Strangbrüchen hinwies (Abb. 27). Nach etwa 6 min verlangsamt sich die Reparaturtätigkeit der Zellen und die Schädigung nahm bei den T1-Zellen nur noch um weitere 10 - 15% ab. Die Reparaturkinetik wies dadurch einen biphasischen Verlauf auf. Aufgrund der kurzen Reparaturzeit scheint es sich bei den mit dem Comet Assay gemessenen DNA-Schäden überwiegend um Einzelstrangbrüche zu handeln (Schneeweiss et al., 1987).

3.2.5 Strangbruchmessung mittels Hydroxylapatit-Chromatographie

Abbildung 28
HA-Chromatographie nach $^{137}\text{Cs-\gamma}$-Bestrahlung der T1- und 86HG-39-Zellen (n = 3; ± SE)

3.3 $^{125}\text{Iododesoxyuridin}$

3.3.1 Inkorporationsstudien

> Zeitkomponente

Um die Inkorporationskinetik von $^{125}\text{I}UdR$ in T1- und 86HG-Zellen zu untersuchen, wurden Monolayer der exponentiellen Phase mit radioaktivem Medium (0,74 kBq $^{125}\text{I}UdR$/ml, sowie 10^{-8}M FUrR und 10^{-6}M CdR) versetzt und die aufgenommene Aktivität pro Zelle zu bestimmten Zeitpunkten gemessen. Nach einem steilen Anstieg der Aktivitätsaufnahme in die Zellen innerhalb der ersten 5 h folgte ein Sättigungsbereich, der bei 86HG-39-Zellen etwas früher einsetzte als bei T1-Zellen (7 h vs. 8 h, Abb. 29). Von diesem Zeitpunkt an nahmen die Zellen kein zusätzliches $^{125}\text{I}UdR$ mehr auf. Die $^{125}\text{I}UdR$-Aktivität pro Zelle
blieb bis 24 h konstant bzw. verringerte sich sogar aufgrund fortschreitender Zellteilung. Die Sättigung trat unabhängig von F UdR und C dR auf, das zur Steigerung der 125I UdR-Inkorporation zugesetzt wurde.

Abbildung 29
125I UdR-Inkorporationskinetik von T1- und 86HG-39-Zellen

Abbildung 30
125I UdR-Inkorporationskinetik am Beispiel der T1-Zellen mit Mediumwechsel nach 8 h und 23 h ($n = 1-3; \pm SE$)
Um diese Einbausättigung zu vermeiden, wurde im nächsten Versuch das radioaktive Medium (2,5 kBq 125IUDR/ ml sowie 10^{-8} M FUdR und CdR) im Verlauf der Inkubationsphase nach 8 h vollständig ausgetauscht. Dies bewirkte, daß der Prozeß der 125IUDR-Inkorporation in die zelluläre DNA erneut einsetzte. Nach weiteren 10 h lag wiederum eine Sättigung vor, die durch ein zweites Austauschen des radioaktiven Mediums aufgehoben werden konnte. Durch das insgesamt zweimalige Austauschen des Mediums während der Inkubation von 30 h (125IUDR-Standardverfahren) nach ca. 8 h und 23 h, wurde bei beiden Zelllinien eine lineare 125IUDR-Inkorporation in Abhängigkeit von der Zeit erreicht (Abb. 30).

Konzentrationsabhängigkeit

Im Gegensatz zu den inkorporationskinetischen Studien (mit einer einzigen radioaktiven Konzentration) wurden bei den 125IUDR-Standardversuchen vier verschiedene Konzentrationen an 125IUDR eingesetzt. Nach 30 h Inkubation mit zweifachem Mediumwechsel wurde die 125IUDR-Inkorporation durch Messung der Aktivität pro Zelle überprüft. Es zeigte sich bei beiden Zelllinien eine lineare Abhängigkeit des 125IUDR-Einbaus, d.h. mit ansteigenden radioaktiven Konzentrationen nahm auch die Inkorporation proportional zu (Abb. 31). Eine Sättigung des 125IUDR-Einbaus konnte bis zu einer Konzentration von 15 kBq 125IUDR/ ml Medium nicht festgestellt werden.

![Abbildung 31](image-url) 125IUDR-Inkorporation in Abhängigkeit von der radioaktiven Konzentration im Medium
Einfluß von FUDR und CdR

FUDR hemmt die Eigensynthese von zellulärem Thymidin (Danenberg, 1977) und bewirkt deshalb eine verstärkte Inkorporation des im Medium angebotenen Thymidinanalogs 125IUDR in die DNA. Um eine maximale Einbaurate zu erzielen, wurde zunächst die Wirkung verschiedener FUDR-Konzentrationen auf das zelluläre Inkorporationsverhalten überprüft. CdR wurde stets zur Komplettierung der Basen in gleicher Konzentration hinzugefügt, obwohl es auf die 125IUDR-Inkorporation in die Zellen keinen Einfluß hatte.

Abbildung 32
125IUDR-Inkorporation in 86HG-39-Zellen bei verschiedenen FUDR- und CdR-Konzentrationen

Das Beispiel der 86HG-39-Zellen zeigte eine deutliche Steigerung der 125IUDR-Inkorporation (2 kBq 125IUDR/ml Medium) bei zunehmender FUDR- und CdR-Konzentration nach 24-stündiger 125IUDR-Exposition mit einmaligem Mediumwechsel (Abb. 32). Bereits 10^{-10}M FUDR und CdR bewirkten, daß etwa dreimal mehr 125IUDR in die DNA eingebaut wurde als bei den Kontrollzellen, die mit Medium ohne Zusätze inkubiert worden waren. Der Zusatz von 10^{-9}M erhöhte diesen Wert nur minimal. Dagegen stieg bei 10^{-8}M FUDR und CdR die Inkorporation nochmals stark an. Mit einer höheren Konzentration als 10^{-8}M konnte keine weitere Steigerung der 125IUDR-Inkorporation erzielt werden, da die Aktivität pro Zelle nach 10^{-6}M sowie nach 10^{-5}M FUDR und CdR gleich
hoch ausfiel. Durchschnittlich wurde bei 10^{-6} - 10^{-5} M FUdR und CdR im Vergleich zur Kontrolle ohne Zusätze eine 5,5-fache Steigerung des 125IudR-Einbaus in die DNA erreicht. Es wurden ähnliche Ergebnisse mit den T1-Zellen erzielt (nicht dargestellt), wobei die 125IudR-Inkorporation bei Zusatz von 10^{-6} - 10^{-5} M FUdR und CdR sogar um den Faktor 11,6 im Vergleich zu T1-Kontrollzellen ohne Zusätze gesteigert werden konnte.

3.3.2 Klonogenes Überleben und DNA-Schädigung (Comet Assay)

> **Kalte Zusätze**

Nachdem eine Steigerung der 125IudR-Inkorporation durch FUdR-/ CdR-Zusatz im radioaktiven Medium gefunden worden war, wurde anschließend der toxische Einfluß dieser Substanzen auf die Zellen untersucht. Der Koloniebildungstest und der Comet Assay wurden nach Inkubation der Zellen mit nicht-radioaktiven Zusätzen (als Einzelgabe und in Kombination) durchgeführt. Die Methode entsprach dem 125IudR-Standardverfahren, da das Medium während der 30-stündigen Inkubation zweimal ausgetauscht wurde. Bei Einzelgabe von 10^{-6} M FUdR wurde im Koloniebildungstest bei T1-Zellen eine starke toxische Wirkung gefunden, die das Überleben auf 18% reduzierte (Abb. 33). Konzentrationen an 10^{-5} M und 10^{-4} M FUdR sowie der Zusatz von 10^{-6} - 10^{-5} M CdR verminderten die Überlebensfraktion nur leicht und überwiegend nicht signifikant auf durchschnittlich 88%.

![Abbildung 33](image_url)

Abbildung 33
Koloniebildungstest nach Inkubation der T1-Zellen mit verschiedenen FUdR- und CdR-Konzentrationen ($n = 3$; ± SE)
Die nachfolgenden Versuche wurden in Kombination mit IUdR durchgeführt, welches stets in nicht-radioaktiver Form zur Kontrolle hinzugefügt wurde. Es wurde dabei eine Konzentration von 10^{-12} M IUdR gewählt, da die chemische Konzentration an 125IUdR bei den radioaktiven Versuchen maximal bei 2×10^{-12} M, meistens jedoch im Bereich von 10^{-13} M lag. Es wurde festgestellt, daß bei Hemmung der zellulären de novo- Pyrimidinsynthese durch FUdR ein entsprechender Pyrimidin-Ersatz (Thymidin oder ein Analogon wie z.B. IUdR) die toxische Wirkung mindert (Ergebnis nicht dargestellt).

Abbildung 34
Koloniebildungstest nach Exposition der T1- und 86HG-39-Zellen mit verschiedenen FUdR- und CdR-Konzentrationen sowie 10^{-12} M IUdR ($n = 3; \pm SE$)
Abbildung 35
Comet Assay nach Exposition von T1- und 86HG-39-Zellen mit verschiedenen FUdR- und CdR-Konzentrationen sowie 10^{-12}M IUdR (n = 200; ± SE)

In einer separaten Versuchsreihe wurde der Einfluß des IUdR getestet (nicht dargestellt), indem die Zellen für 30 h mit 10^{-12}M, 10^{-9}M oder 10^{-6}M IUdR im Medium inkubiert wurden. Die Konzentrationen an FUdR und CdR blieben mit 10^{-8}M konstant. Das IUdR zeigte sowohl im Koloniebildungstest als auch im Comet Assay erst bei einer Konzentration von 10^{-6}M signifikante Unterschiede zur Kontrolle. Eine toxische Wirkung des IUdR in den radioaktiven 125IUDR-Versuchen konnte daher ausgeschlossen werden.

\textit{Standardverfahren zur125IUDR-Inkorporation}

Aufgrund der oben beschriebenen Ergebnisse wurde im Standardverfahren mit 10^{-6}M FUdR und CdR gearbeitet, wodurch eine maximale Inkorporation von 125IUDR in die DNA erreicht wurde und gleichzeitig toxische Einflüsse auf die Zellen weitgehend vermieden wurden. Außerdem wurde ein zweifacher Mediumwechsel durchgeführt, um einer Einbausättigung vorzubeugen. Die T1- und 86HG-39-Monolayer wurden für 30 h bei 37°C mit verschiedenen radioaktiven Konzentrationen an 125IUDR inkubiert und die Effekte mit dem Koloniebildungstest und dem Comet Assay erfaßt.

Die Überlebenskurven beider Zelllinien zeigten bereits nach wenigen 125IUDR-Zerfällen pro Zelle einen steilen Abfall ihrer Überlebensfraktionen, gingen jedoch ab etwa 700 d/c in einen reproduzierbaren Sättigungsbereich über (Abb. 36). Dadurch erreichten beide Kurven nur die 2. Dekade, wobei die 86HG-39-Zellen niedrigere Überlebensfraktionen von
etwa 1,5% im gesättigten Teil der Kurve aufwiesen. Die Sättigung, die auch als „Tailing“ bezeichnet wird (Roots et al., 1971) war bei den T1-Zellen besonders deutlich sichtbar, da trotz zunehmender 125IUDR-Zerfälle pro Zelle ein konstanter Anteil von etwa 5% an überlebenden Zellen verblieb. Für T1-Zellen betrug der D_{37}-Wert ca. 90 d/c und für 86HG-39-Zellen 80 d/c. (Obwohl D_{37} eine Dosis bezeichnet, erfolgte bei 125I die Angabe der D_{37}-Werte in Zerfällen pro Zelle, wie es auch in der Literatur üblich ist).

Abbildung 36
Überlebenskurven nach 125IUDR-Inkorporation in T1- und 86HG-39-Zellen im Standardverfahren ($n = 3; \pm$ SE)

Mit zunehmenden 125IUDR-Zerfällen pro Zelle stieg auch im Comet Assay die DNA-Schädigung in Form des Olive Tail Moments an (Abb. 37). Trotz der Streuung der Werte im Anfangsbereich bis 500 d/c wurde vor allem bei höheren Zerfallszahlen eine lineare Abhängigkeit gefunden. Im Vergleich der Zellinien fiel die Steigung der 86HG-39-Zellen etwas höher aus: bei 1000 d/c wiesen die T1-Zellen durchschnittlich ein OTM von 1,47 auf, die 86HG-39-Zellen dagegen ein OTM von 1,58. Damit ergab sich nach 125IUDR-
Ergebnisse

Abbildung 37
Comet Assay nach \(^{125}\text{I}\text{UdR}-\text{Inkorporation in T1- und 86HG-39-Zellen im Standardverfahren (n = 200; ± SE)}\)

> \(^{125}\text{I}\text{UdR-}\text{Inkorporation für 1\(\frac{1}{2}\)}\text{ Verdopplungszeiten}\)

Durch eine Verlängerung der radioaktiven Inkubation von 30 h auf 49 h (1 \(\frac{1}{2}\) Verdopplungszeiten) wurde versucht, möglichst alle Zellen der asynchronen Kultur zur Inkorporation von \(^{125}\text{I}\text{UdR}\) zu bewegen. Dabei wurde das Medium, das wiederum 10\(^{-9}\) M FUdR und CdR enthielt, während der Inkubation insgesamt dreimal ausgetauscht. Der Kolonie-bildungstest zeigte, daß die Überlebensrate im Sättigungsbereich leicht gesenkt werden konnte, ein Tailung jedoch weiterhin bei beiden Zelllinien auftrat (Abb. 38). Da die Kolonieausbeute bei dieser Methode zu gering war, wurde sie nicht als Standardmethode verwendet. Im Comet Assay wurden linear ansteigende OTM-Funktionen in Abhängigkeit von der Zerfallszahl gefunden, deren Steigungen jedoch, verglichen mit der 30-stündigen Inkubation im Standardverfahren, geringer ausfielen (Abb. 39).
Abbildung 38
Vergleich der Überlebenskurven von T1- und 86HG-39-Zellen nach unterschiedlichen Inkubationszeiten mit 125I UdR

Abbildung 39
Vergleich der OTM-Funktionen von T1- und 86HG-39-Zellen nach unterschiedlichen Inkubationszeiten mit 125I UdR
Ergebnisse

> **125IUDr-Akumulationsverfahren**

![Graph](image)

Abbildung 40
Comet Assay nach Akkumulation der 125IUDr-Zerfälle in T1- und 86HG-39-Zellen bei −196°C

3.3.3 Hydroxylapatit-Chromatographie nach Doppelmarkierung

Zunächst wurde bei der HA-Chromatographie der Einfluß von FUDr und CdR untersucht. T1- und 86HG-39-Monolayer wurden für 24 h mit 3H-TdR (für die Markierung) sowie 10^{-6}M oder 10^{-5}M FUDr und CdR inkubiert, wobei das Medium einmal gewechselt wurde. Anschließend wurden mit der HA-Chromatographie die ds-DNA-Fraktionen bestimmt. Es zeigte sich, daß die DNA beider Zelllinien durch den Zusatz von 10^{-6}M FUDr und CdR stark geschädigt wurde, da der ds-DNA-Anteil auf unter 50% reduziert wurde (Tab. 7). Die Konzentration von 10^{-5}M FUDr und CdR bewirkte bei den T1-Zellen keine durch HA-Chromatographie messbare DNA-Schädigung (die ds-DNA-Fraktion stieg vielmehr an), rief jedoch bei den 86HG-39-Zellen eine Abweichung von der Kontrolle ohne Zusätze um
25% hervor. Ein Anteil von mindestens 75,4% ungeschädigter DNA als Ausgangswert für die Bestrahlungsversuche wurde akzeptiert.

Tabelle 7
ds-DNA-Fraktionen nach Exposition der T1- und 86HG-39-Zellen mit FUdR und CdR

<table>
<thead>
<tr>
<th></th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle ohne Zusätze</td>
<td>85,7%</td>
<td>90,6%</td>
</tr>
<tr>
<td>10⁶M FUdR/CdR</td>
<td>91,4%</td>
<td>75,4%</td>
</tr>
<tr>
<td>10⁶M FUdR/CdR</td>
<td>49,4%</td>
<td>37,0%</td>
</tr>
</tbody>
</table>

Mittels HA-Chromatographie wurde zusätzlich zum Comet Assay eine Analyse der DNA-Strangbrüche nach ¹²⁵IUDR-Exposition (24 h Doppelmarkierung mit ¹²⁵IUDR und ³H-TdR sowie 10⁶M FUdR/ CdR, mit einfachem Mediumwechsel) durchgeführt. Die ds-DNA-Fraktion, als Maß der unversehrten DNA, nahm mit zunehmender ¹²⁵IUDR-Zerfallszahl bei beiden Zelllinien leicht ab (Abb. 41). Sie sank durchschnittlich bei den T1-Zellen von 96% (Kontrolle) auf 88% (bei 2200 d/c) und bei den 86HG-39-Zellen von 93% (Kontrolle) auf 90% (bei 1700 d/c).

Abbildung 41
HA-Chromatographie nach ¹²⁵IUDR-Inkorporation in T1- und 86HG-39-Zellen
3.4 125I-\textit{Antipyrin}

3.4.1 Effekte durch nicht-radioaktives Antipyrin

Es wurde untersucht, ob sich durch bestimmte Konzentrationen an nicht-radioaktivem Antipyrin ein zellulärer Schaden bei T1- oder 86HG-39-Zellen ergeben würde. Da bei den radioaktiven 125I-AP-Versuchen eine maximale Konzentration von 5\times10^{-7}M Antipyrin vorlag, wurden Zellsuspensionen entsprechend mit 10^{-6}M - 10^{-6}M Antipyrin für 28 h in Leighton-Kulturröhren inkubiert und anschließend der Koloniebildungstest und der Comet Assay durchgeführt.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Koloniebildungstest nach Exposition der T1- und 86HG-39-Zellen mit verschiedenen Antipyrin-Konzentrationen (n = 3; \pm SE)}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Comet Assay nach Exposition der T1- und 86HG-39-Zellen mit verschiedenen Antipyrin-Konzentrationen (n = 200; \pm SE)}
\end{figure}
Sowohl im Koloniebildungstest als auch im Comet Assay lagen bei Exposition der Zellen mit $10^{-8} - 10^{-6}$M Antipyrin kaum Abweichungen von den Werten der Kontrollen vor, die mit Medium ohne Zusätze inkubiert worden waren (Abb. 42+43). Bis auf eine Ausnahme (bei Exposition der T1-Zellen mit 10^{-7}M Antipyrin lag das OTM niedriger als die Kontrolle) waren die Abweichungen nicht signifikant. Aufgrund dieser Ergebnisse konnte eine zytotoxische Wirkung des Antipyrins für die in den radioaktiven Versuchen benutzten chemischen Konzentrationen ausgeschlossen werden.

3.4.2 Effekte nach 125I-AP-Exposition

Bei den 125I-AP-Expositionen mußten hohe Aktivitäten (mehrER MBq) eingesetzt werden, um eine mit den 125IUdR-Versuchen vergleichbare Anzahl an Zerfällen pro Zelle zu erreichen. Die Zellen wurden in diesem Fall nicht als Monolayer, sondern als Suspension mit verschiedenen radioaktiven Konzentrationen für 28 h inkubiert, damit das frei diffundierende 125I-AP die Zellen von allen Seiten durchdringen konnte.

![Abbildung 44](image)

Abbildung 44
Überlebenskurven nach Exposition der T1- und 86HG-39-Zellen mit 125I-AP ($n=3; \pm SE$)

Abbildung 45
Comet Assay nach Exposition der T1- und 86HG-39-Zellen mit ^{125}I-AP (n = 200; ± SE)
Ähnlich wie beim 125I-UdR wurde bei der 125I-AP-Exposition am Beispiel der T1-Zellen eine Akkumulation der Zerfälle auf Eis (0°C) durchgeführt. Unter diesen Temperaturbedingungen fiel der Anstieg der OTM-Funktion beim Comet Assay deutlich höher aus als nach einer Inkubation bei physiologischer Temperatur von 37°C (Abb. 46). Bei 1000 d/c ergab sich ein mittlerer OTM-Wert von 1,9.

Abbildung 46
Comet Assay nach 125I-AP-Exposition der T1-Zellen auf Eis ($n = 100-200$; ± SE)

3.5 Na125I

3.5.1 30 h-Exposition mit Mediumwechsel

Für einen direkten Vergleich mit 125I-UdR wurden die T1- und 86HG-39-Monolayer mit extrazellulärem Na125I nach dem Schema der 125I-UdR-Versuche und vergleichbaren Aktivitäten exponiert. Dies schloß eine 30-stündige Inkubation mit zweifachem Mediumwechsel ein. Anschließend wurden der Koloniebildungstest und der Comet Assay durchgeführt. Da Na125I nicht durch die Zellmembranen eindringen konnte, wurde die Aktivität anstelle von Zerfällen pro Zelle als radioaktive Konzentration im Medium (Bq/ml) angegeben.

Parallel zum Koloniebildungstest stieg ebenfalls die mit dem Comet Assay gemessene DNA-Schädigung der 86HG-39-Zellen leicht mit zunehmender radioaktiver Konzentration an (Abb. 48). Die Unterschiede zur Kontrolle waren überwiegend nicht signifikant. Bei der höchsten radioaktiven Na125I-Konzentration (15 kBq/ml) lag ein OTM von durchschnittlich 1,15 vor. Die T1-Zellen zeigten im Comet Assay bei ansteigenden Na125I-Konzentrationen keine signifikanten Veränderungen zum Kontrollwert. Die lineare OTM-Funktion der T1-Zellen schwächte sich stattdessen geringfügig ab.
3.5.2 28 h-Exposition ohne Mediumwechsel

Um die Wirkung von Na125I auf die Zellen mit 125I-AP vergleichen zu können, wurde eine Na125I-Exposition der T1- und 86HG-39-Zellen nach dem Schema der 125I-AP-Versuche mit entsprechend hohen Aktivitäten durchgeführt. Zellsuspensionen wurden für 28 h in Leighton-Kulturrohren mit verschiedenen Konzentrationen an Na125I inkubiert. Die Überlebensfraktionen der 86HG-39-Zellen, die sich im Vergleich zum Kontrollwert nicht signifikant veränderten, zeigten eine leichte Abwärtstendenz (Abb. 49). Die Überlebenskurve der T1-Zellen fiel dagegen bis zur höchsten Konzentration (5,2 MBq Na125I/ml) auf 65% ab. Im Comet Assay zeigten sich bei den 86HG-39-Zellen keine signifikanten Änderungen zur Kontrolle, während bei T1-Zellen ein leichter Anstieg des OTM in Abhängigkeit von der Na125I-Konzentration gefunden wurde (Abb. 50). Bei 5,2 MBq Na125I/ml ergab sich bei den T1-Zellen ein OTM von 1,24.

Abbildung 49
Überlebenskurven nach Exposition der T1- und 86HG-39-Zellen mit Na125I für 28 h (n = 3; ± SE)

Abbildung 50
Comet Assay nach Exposition der T1- und 86HG-39-Zellen mit Na125I für 28 h (n = 200; ± SE)
3.6 Korrelation zwischen Koloniebildungstest und Comet Assay

Um den zellulären Gesamtschaden (untersucht mit dem Koloniebildungstest) zum molekularen DNA-Schaden der Zelle (gemessen mit dem Comet Assay) in Beziehung zu setzen, wurden Überlebensfraktionen und OTM-Werte korreliert. Da die Ergebnisse in Form intervallskalierter Meßwerte vorlagen, wurde in der Korrelationsanalyse der Pearson'sche Maßkorrelationskoeffizient r berechnet. Dieser setzte einen linearen Zusammenhang der Funktion voraus (Köhler et al., 1992), so daß die Überlebensfraktionen logarithmiert werden mußten ($SF_2 = \ln SF_1$). Für jede Zelllinie und Strahlenart bzw. Trägermolekül wurden die Koeffizienten und deren Irrtumswahrscheinlichkeiten berechnet (Tab. 8).

Bei ^{137}Cs-Strahlung wurde eine starke und nach ^{125}IUdR- sowie ^{125}I-AP-Exposition eine gute Korrelation gefunden (s. Bewertungskriterien). Aufgrund einer zu geringen Anzahl von Datenpaaren ($n = 5$) war die Korrelation bei ^{125}I-AP nicht signifikant. Bei Na^{125}I lag, bis auf eine Ausnahme (86HG-39-Zellen nach 28 h Na^{125}I-Exposition, nicht signifikant), nur eine schwache oder keine Korrelation vor, wobei sich sowohl nach 30 h als auch nach 28 h Exposition bei beiden Zelllinien keine Signifikanten ergaben.

Tabelle 8
Korrelationsanalyse zwischen Koloniebildungstest und Comet Assay (mit Pearson'schem Maßkorrelationskoeffizient r und Irrtumswahrscheinlichkeit α)

<table>
<thead>
<tr>
<th></th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
<th>Anzahl der Datenpaare</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{137}Cs-γ</td>
<td>$r = -0,998$ ($\alpha \leq 1,63 \times 10^{-10}$)</td>
<td>$r = -0,984$ ($\alpha \leq 1,09 \times 10^{-5}$)</td>
<td>10 bzw. 8</td>
<td>starke negative Korrelation</td>
</tr>
<tr>
<td>^{125}IUdR (37°C)</td>
<td>$r = -0,748$ ($\alpha \leq 3,28 \times 10^{-3}$)</td>
<td>$r = -0,775$ ($\alpha \leq 1,87 \times 10^{-3}$)</td>
<td>13</td>
<td>gute negative Korrelation</td>
</tr>
<tr>
<td>^{125}I-AP (37°C)</td>
<td>$r = -0,745$ ($\alpha \leq 0,149$)</td>
<td>$r = -0,724$ ($\alpha \leq 0,167$)</td>
<td>5</td>
<td>gute negative Korrelation, keine Signifikanz</td>
</tr>
<tr>
<td>Na^{125}I 30 h</td>
<td>$r = -0,0144$ ($\alpha \leq 0,971$)</td>
<td>$r = -0,355$ ($\alpha \leq 0,349$)</td>
<td>9</td>
<td>keine Korrelation, keine Signifikanz</td>
</tr>
<tr>
<td>28 h</td>
<td>$r = -0,442$ ($\alpha \leq 0,456$)</td>
<td>$r = 0,792$ ($\alpha \leq 0,111$)</td>
<td>5</td>
<td>schwache bis gute Korrelation, keine Signifikanz</td>
</tr>
</tbody>
</table>

Bewertungskriterien: $r = 1$ ideale Korrelation, $r = 0,8 - 0,99$ starke Korrelation, $r = 0,5 - 0,8$ gute Korrelation, $r = 0,3 - 0,5$ schwache Korrelation, $r < 0,3$ keine Korrelation.
4 Diskussion

4.1 Biologische Endpunkte nach 137Cs-γ-Bestrahlung

4.1.1 Acetylcholinesterase-Test

Die spezifische AChE, die als Schlüsselenzym im cholinergen Nervensystem gilt, findet sich im Zentralnervensystem, in neuromuskulären Synapsen und außerhalb des Nervensystems hauptsächlich als Bestandteil der Zellmembran von Erythrozyten. Sie wird von der im Serum vorkommenden unspezifischen Cholinesterase unterschieden. In den Erythrozyten, deren Membranen sehr häufig untersucht wurden, ist die spezifische AChE, wie andere Glykoproteine auch, über eine Glycosylphosphatidylinositol (GPI) -Kette in der Membran verankert. Dieser GPI-Anker kann eine asymmetrische oder eine globuläre Form (G_n) haben, wobei letztere noch in löslich (λ) und unlöslich (κ) unterteilt wird. Bei humanen Erythrozyten wurde eine G_2-Form des GPI-Ankers nachgewiesen (Roberts und Rosenberry, 1985), die nur mit speziellen Proteasen gespalten werden kann. Welche Funktion der AChE in den Erythrozyten zukommt, ist bislang ungeklärt; mit 0,01% des Proteingehalts humaner Erythrozytenmembranen liegt ihr Gehalt in diesen Zellen jedoch relativ hoch (Rosenberry et al., 1990).

In dieser Arbeit wurde untersucht, ob die 137Cs-γ-Bestrahlung humaner T1- und 86HG-39-Zellen zu einem Ablösen des GPI-Ankers der membranegebundenen AChE führt und eine erhöhte Aktivität im überstehenden, serumfreien Medium gemessen werden kann. Palecz und Leyko (1983) fanden z.B. bei isolierten humanen Erythrozytenmembranen eine ansteigende AChE-Aktivität nach γ-Bestrahlung bis 30 Gy. Zwischen 30 und 100 Gy sank die Aktivität dann wieder auf den Kontrollwert ab, um ab 100 Gy deutlich darunter zu fallen. Die Autoren schlossen daraus, daß bei Bestrahlung bis zu 30 Gy ein Ablösen des Enyzms und ab 100 Gy eine Inaktivierung erfolgt. In der vorliegenden Arbeit konnte ein solches Ergebnis jedoch nicht reproduziert werden, da bei beiden Zelllinien keine Dosisabhängigkeit der AChE-Aktivität bei 1 - 30 Gy festgestellt werden konnte und kein signifikanter Unterschied zu den Kontrollen auftrat (vgl. 3.2.2). Es sollte jedoch erwähnt
werden, daß isolierte Membranen, wie sie bei Palecz und Leyko (1983) verwendet wurden, nachweislich radiosensitiver als lebende Zellen sind (Kong, 1981). Es wurde in dieser Arbeit ein Unterschied zwischen den Zelllinien deutlich, da die 86HG-39-Zellen dreifach stärkere Aktivitätsraten (ca. 3 μMol/min x g Protein) als die T1-Zellen aufwiesen (ca. 1 μMol/min x g Protein, vgl. Abb. 23).

4.1.2 Koloniebildungstest

4.1.3 Comet Assay

In der vorliegenden Arbeit wurde die alkalische Form des Comet Assays (modifiziert nach Singh et al., 1988) gewählt, um auch im niedrigen Dosisbereich von 1 - 5 Gy möglichst sensitiv DNA-Schäden messen zu können. Eine Unterscheidung zwischen ESB und DSB ist im Grunde nicht möglich, da auch DSB im alkalischen Comet Assay zu einer Erhöhung des OTM führen. Dennoch wird geschätzt, daß mit dem alkalischen Comet Assay zu 95% ESB gemessen werden und der Anteil der DSB nur 5% beträgt (Olive, 1999). Ein indirekter Nachweis kann durch zeitabhängige Reparaturstudien geführt werden, da für die Reparatur von ESB nur wenige Minuten benötigt werden, die Reparatur von DSB dagegen wesentlich länger dauert und im Bereich von ca. 2 h liegt (Schneeweiss et al., 1987). In dieser Arbeit wurde mit dem alkalischen Comet Assay bei T1- und 86HG-39-Zellen innerhalb von 5 Minuten eine Reparatur von über 60% der DNA-Schäden gefunden, was die Annahme unterstützt, daß vorwiegend ESB gemessen wurden (vgl. Abb. 27, 3.2.4).

Viele Labors haben eigene Versuchsvorschriften für die Durchführung des Comet Assays entwickelt, die sowohl zellspezifisch als auch dem Ziel angepaßt sind. Daher treten Unterschiede auf:

- bei der Präparation der Objekträger bezüglich der Agarosekonzentration und der Anzahl der Agaroseschichten,
- bei der Lyse bezüglich des pH-Wertes, der Dauer und Temperatur sowie der Zusammensetzung der Lösung,
- bei dem Unwinding der DNA bezüglich Dauer und Temperatur,
- bei der Elektrophorese bezüglich pH-Wert, Zusammensetzung des Puffers, der Dauer und der angelegten Spannung,
- bei der Wahl des Fluoreszenzfarbstoffs und der verwendeten Konzentration sowie
- bei der Auswertung hinsichtlich der Wahl der Software und der Parameter.

Abbildung 51
Comet Assay mit T1-Zellen (jeweils Kontrolle und mit 4 Gy bestrahlte Probe) nach methodischen Modifikationen (n = 200; ± SE)

Es gibt bis heute keinen einheitlichen Parameter zur Quantifizierung der DNA-Schäden, die mit dem Comet Assay gemessen werden. Häufig werden die Schweiflänge (Tail length), der Anteil der DNA im Schweif (% Tail DNA), das Produkt aus diesen beiden Größen, bekannt als OTM (Olive Tail Moment), und das Verhältnis der DNA-Anteile in Schweif und Kopf (Tail/Head ratio) verwendet. Bei der Schweiflänge kann es bei
stärken Schäden zu einer schnellen Sättigung kommen, die v.a. von den elektrophoretischen Bedingungen abhängt (Fairbairn, 1995). Das OTM hingegen mißt mit seinen zwei Komponenten sowohl die Wanderungsstrecke der DNA-Fragmente, die durch die Größe der Fragmente beeinflußt wird, als auch die Fluoreszenzintensität im Schweif, die den Anteil der DNA-Fragmente im Schweif wiedergibt. Je stärker die Schädigung, desto länger die zurückgelegte Strecke und desto mehr Fragmente wandern in den Schweif. Das OTM ist kaum anfällig für eine Sättigung.

4.1.4 Hydroxylapatit-Chromatographie

Eine weitere Methode zur Messung von DNA-Strangbrüchen stellt die HA-Chromatographie dar, die von Ahnström und Erixon (1973) beschrieben wurde. Anders als beim Comet Assay finden die Lyse der Zellen und das alkalische Unwinding der DNA hier in einem Schritt statt. Bei der Denaturierung beginnt die DNA an einer Bruststelle sich in Einzelstränge aufzuteilen. In der Nähe des Bruches liegt die DNA dann einzelsträngig (es) vor, während sie in weiterer Entfernung noch unversehrt und doppelsträngig (ds) ist. Entscheidend bei der Alkalibehandlung sind neben dem pH-Wert Dauer- und Temperaturbedingungen, die für reproduzierbare Ergebnisse exakt eingehalten werden müssen. Die Alkalibehandlung wird durch Neutralisation gestoppt und die DNA durch die anschließende Ultraschall-befindung in es- und ds- Fragmente zerteilt (Abb. 52). Diese Fragmenten werden durch die HA-Chromatographie aufgetrennt, indem mit Phosphatpuffern ansteigender Molarität zuerst die es-DNA-Fraktion und später die ds-DNA-Fraktion eluiert wird. Die Quantifizierung wird durch eine3H-TdR-Markierung der DNA möglich, die vor der Bestrahlung durchgeführt wird. Mit zunehmender...
Bestrahlungsdoxis kommt es zu einer ansteigenden DNA-Schädigung in Form von Strangbrüchen, die als abnehmender ds-DNA-Anteil gemessen wird.

Abbildung 52
Schema zur Messung von DNA-Strangbrüchen mittels HA-Chromatographie (n. Ljungman, 1999)

Rydberg (1975) wies außerdem nach, daß bei einer höheren Zahl als 10^5 Zellen/ml während der Neutralisation ein Gel entsteht, das durch Ultraschall wieder zerstört wird. Dies konnte in der vorliegenden Arbeit bestätigt werden. Der Autor hielt die Zugabe von SDS nach der Ultraschallbehandlung für notwendig, um eine Trennung der es- und ds-
DNA aufrecht zu erhalten. SDS schien dabei die Adsorptionskapazität von HA bezüglich der DNA-Bruchstücke nicht zu beeinflussen.

4.2 Vergleich der Trägermoleküle

4.2.1 Koloniebildungstest nach 125IUDR- und 125I-AP-Exposition

Da sowohl nach 125IUDR- als auch nach 125I-AP-Exposition die Zerfälle pro Zelle berechnet wurden, lassen sich die biologischen Endpunkte dieser beiden Trägermoleküle direkt vergleichen. Ein deutlicher Unterschied zeigt sich bei beiden Zelllinien zunächst in der Form der Überlebenskurven, da sich steil abfallende 125IUDR-Funktionen mit anschließendem Tailing und 125I-AP-Schulterkurven gegenüberstehen (Abb. 53). Das Tailing trat mit reduziertem Anteil an überlebenden Zellen auch nach 125IUDR-Exposition für 1½ Verdopplungszeiten auf (vgl. Abb. 38, 3.3.2).

Das Tailing der 125IUDR-Kurve wurde bereits von anderen Autoren beschrieben, wobei es unabhängig von den Temperaturbedingungen während des Versuchs auftrat. In einer der wenigen Studien, in denen bei physiologischer Temperatur gearbeitet wurde, exponierten Bradley et al. (1975) LiCH-Leberzellen mit 125IUDR für eine Verdopplungszeit bei 37°C und fanden eine Überlebenskurve mit konkaver Krümmung, die auf nicht- oder wenig-125IUDR-markierte Zellen zurückgeführt wurde. Der D₀-Wert betrug 0,74 mBq/Zelle und lag, verglichen mit den umgerechneten D₀-Werten dieser Arbeit (T1-Zellen 4,03 mBq/Zelle, 86HG-39-Zellen 3,59 mBq/Zelle) deutlich niedriger. Chan et al. (1976) führten die 125IUDR-Exposition von V79-Hamsterzellen ebenfalls bei 37°C durch und

Abbildung 53
Vergleich der Überlebenskurven von T1- und 86HG-39-Zellen nach 30h ¹²⁵I UdR- und 28 h ¹²⁵I-AP-Exposition (n = 3; ± SE).

Arbeit bestätigt werden. Die Ergebnisse stimmen zudem gut mit Ehrfeld et al. (1986) und Warters et al. (1977) überein, die Dₐ-Werte von 95 d/c und 100 d/c feststellten.

Bezüglich des Tailings von T1- und 86HG-39-Zellen ist anzunehmen, daß eine inhomogene Inkorporation von ¹²⁵I UdR vorliegt, da es sich um asynchrone Zellpopulationen handelt. In diesem Fall haben einige Zellen während der 30-stündigen Inkubation kein ¹²³I UdR eingebaut und spiegeln sich in einem konstanten Anteil überlebender Zellen von 2 - 5% in der Überlebenskurve wieder. Gleichzeitig bauten bereits markierte Zellen weiterhin ¹²⁵I UdR ein (Mehrfachinkorporation), so daß die Zerfallszahlen pro Zelle anstiegen, der Schädigungssgrad sich jedoch nicht weiter erhöhte. Es kann sich bei der konstanten Überlebensfraktion nur um Zellen handeln, die während der Dauer von 1 bzw. 1 ½ Verdopplungszeiten nicht in die S-Phase gelangt sind.

Ein auffälliges Ergebnis der vorliegenden Arbeit ist, daß ohne den Zusatz von FUdR (und CdR zur Komplettierung der Basen) die ¹²⁵I UdR-Inkorporation nur minimal war und daß durch ein Austauschen des Mediums die radioaktive Aufnahme erneut gesteigert werden konnte. Dies wird in keiner anderen in vitro Studie beschrieben. Obwohl Miyazaki und

Abbildung 54
Teil des FU/-FUdR-Metabolismus und Mechanismus in der Zelle (Isacoff und Borud, 1997)

Kassis et al. (1987 b) konnten bei einer Temperatur von 37°C eine zelluläre 125I UdR-Aufnahme belegen, die direkt proportional zur Konzentration und Zeit verlief. Ersteres kann durch die Ergebnisse der vorliegenden Arbeit bestätigt werden, letzteres jedoch nicht (vgl. 3.3.1). Warum die Inkorporation von 125I UdR nach 8-10 h in eine Sättigung lief, aber nach einem kompletten Austauschen des radioaktiven Mediums von neuem einsetzte, kann nur vermutet werden. Möglicherweise wurde das FUdR in dieser Zeit aufgebraucht, so daß die TS-Hemmung abnahm. Der inhibitorische Prozeß setzte dann bei einem erneuten Angebot an FUdR wieder ein.

Tabelle 9

D_{37}-Werte der Überlebenskurven nach 125I UdR- und 125I-AP-Exposition

<table>
<thead>
<tr>
<th>Trägermolekül</th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>125I UdR</td>
<td>90 d/c</td>
<td>80 d/c</td>
</tr>
<tr>
<td>125I AP</td>
<td>1160 d/c</td>
<td>1130 d/c</td>
</tr>
</tbody>
</table>

Die Gegenüberstellung von 125I UdR- und 125I AP anhand der D_{37}-Werte zeigt eine deutlich stärkere radiotoxische Wirkung des 125I UdR sowohl bei den T1- als auch bei den 86HG-39-Zellen (Tab. 9). Dieser Effekt wurde ebenfalls von Bloomer et al. (1981) gefunden, die als einzige Arbeitsgruppe die 125I UdR- und 125I-AP-Wirkungen nach Inkubation bei 37°C verglichen, jedoch keine Zerfälle pro Zelle berechneten. Die D_{37}-Werte der untersuchten Brustkrebszellen lagen für 125I UdR bei 0,03 kBq/ml (8×10^{-4} μCi/ml) und für 125I-AP bei 2,5 $\times 10^{5}$ kBq/ml (68 μCi/ml) bezogen auf die radioaktive Konzentration im Medium, wobei sich bei beiden Trägermolekülen lineare Überlebenskurven vom Hoch-LET-Typ ergaben. In der vorliegenden Arbeit wäre dagegen aufgrund des Tailings beim 125I UdR ein Schnittpunkt beider Kurven bei ca. 3000 d/c vorstellbar, so daß bei einer kombinierten
Anwendung beider Trägermoleküle auch die konstante Fraktion überlebender Zellen der 125IUDR-Kurve mitgetroffen würde.

Sedelnikowa et al. (1998) exponierten humane Fibrosarkomzellen u.a. mit 125I-AP und 125IUDR und akkumulierten die Zerfälle bei −70°C. Die D_{37}-Werte ihrer Hoch-LET-Kurve lagen bei 30 d/c für 125IUDR und 0,49 d/ μm3 für 125I-AP. Letzteres liegt im Vergleich mit der vorliegenden Arbeit genau zwischen den T1-Zellen (umgerechnet 0,38 d/μm3) und den 86HG-39-Zellen (0,64 d/μm3). Die Ergebnisse stimmen auch mit Miyazaki und Shinozaki (1993) überein, die an synchronisierten Maus-Leukämiezellen nach 125I-AP-Exposition einen D_0-Wert von 0,39 d/μm3 feststellten. Dagegen fanden Commerford et al. (1980), die 125I-AP mit 125I-Albumin und 55Fe-Transferrin verglichen, bei Knochenmarkzellen von Mäusen einen deutlich niedrigeren D_0-Wert von 0,17 d/μm3.

Im Gegensatz zu den genannten Studien wurden in der vorliegenden Arbeit unter physiologischen Bedingungen Schulterkurven beim klonogener Überleben nach 125I-AP-Exposition gefunden, die Niedrig-LET-Strahlung ähneln. Dies führt zu der Interpretation, daß 125I-AP durch die gleichmäßige Verteilung in der gesamten Zelle eine annähernd homogene Strahlenwirkung erzielt, wobei sich bei geringer Zerfallszahl kleinere Läsionen offensichtlich erst ansammeln müssen (Schulterbereich), um den Schaden messen zu können. 125IUDR, das direkt in der DNA zerfällt, wirkt sehr viel radiotoxischer als 125I-AP, das in einem Abstand zur DNA zerfällt. Die Wirkung des 125I hängt demnach entscheidend von der Nähe des Zerfallsortes zur DNA ab. Zu dieser Schlußfolgerung kamen auch Adelstein und Kassis (1996) sowie Kassis et al. (1999), die die 125I-AP-Wirkung an Plasmiden mit 125I-Hoechst 33342 (lockere DNA-Bindung; „minor groove binding“) und 125I-Acidin (interkaliierend) verglichen. Die Plasmide wurden einer Strangbruchmessung unterzogen, wobei nachgewiesen wurde, daß bei einer lockeren DNA-Bindung die 125I-Wirkung am größten war. Während 125I-AP genauso viele ESB produzierte wie 125I-Hoechst, lag die Zahl der DSB 5-fach niedriger. Die Autoren waren ebenfalls der Ansicht, daß ein Vergleich von 125I-AP mit γ-Strahlung aufgrund der homogenen Verteilung möglich ist.

4.2.2 Comet Assay nach 125IUDR- und 125I-AP-Exposition

Die mit dem Comet Assay gemessenen DNA-Schäden nach 125IUDR- und 125I-AP-Exposition wurden ebenfalls gegenübergestellt, wobei sich sowohl bei T1- als auch bei 86HG-Zellen etwas stärkere Steigungen der OTM-Funktionen nach 125IUDR-Exposition zeigten (Abb. 55). Bislang wurde erst eine Studie veröffentlicht, die 125IUDR-induzierte DNA-Schäden mit dem Comet Assay bestimmt: Olive und Banáth (1993) benutzten den neutralen Comet Assay, um mögliche DSB u.a. nach 125IUDR-Exposition bei V79-

![Graphik](image)

Abbildung 55
Vergleich der OTM-Funktionen von T1- und 86HG-39-Zellen nach 125I-UdR- und 125I-AP-Exposition (n = 200; ± SE).

Tabelle 10
Vergleich der OTM-Werte bei 1000 d/c nach 125I-UdR- und 125I-AP-Exposition

<table>
<thead>
<tr>
<th>Trägermolekül</th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>125I-UdR</td>
<td>1,47</td>
<td>1,58</td>
</tr>
<tr>
<td>125I-AP</td>
<td>1,37</td>
<td>1,28</td>
</tr>
<tr>
<td>Faktor (125I-UdR/125I-AP)</td>
<td>1,07</td>
<td>1,23</td>
</tr>
</tbody>
</table>

Die OTM-Werte bei 1000 d/c demonstrieren im Vergleich der beiden 125I-markierten Trägermoleküle eine um den Faktor 1,1 - 1,2 stärkere Wirkung des 125I-UdR (Tab. 10). Bezüglich der Radiosensitivität wurden nach 125I-UdR-Exposition etwas höhere DNA-
Schädigungen bei den 86HG-39-Zellen nachgewiesen, während nach $^{125}\text{I}}$-AP-Exposition die T1-Zellen die empfindlichere Zelllinie waren.

Der unabhängig von der Zelllinie auftretende, verhältnismäßig geringe Anstieg der OTM-Funktionen nach $^{125}\text{I}}$UdR- und $^{125}\text{I}}$-AP-Exposition ist, ebenso wie die Streuung der OTM-Werte im Anfangsbereich der $^{125}\text{I}}$UdR-Kurven, erklärungsbedürftig. Es ist anzunehmen, daß mehrere Effekte eine Rolle spielen, die nachfolgend erläutert werden.

1. Besonderheiten der $^{125}\text{I}}$UdR-Inkorporation

Abbildung 56
Aufnahme von 86HG-39-Kometen nach $^{125}\text{I}}$UdR-Exposition und Akkumulation der Zerfälle bei -196°C

Es liegt in erster Linie ein Einfluß durch die bereits bei den Überlebenskurven angesprochene inhomogene Inkorporation von $^{125}\text{I}}$UdR in die Zellen vor. $^{125}\text{I}}$UdR wird offensichtlich von der asynchronen Zellpopulation ungleichmäßig aufgenommen, so daß einige Zellen wenig bis viel vom radioaktiven Thymidinanalogen in die DNA einbauen, andere jedoch gar nichts. Diese Interpretation wurde durch den Comet Assay möglich, der eine individuelle Analyse von Einzel-Zellen erlaubte. Die inhomogene $^{125}\text{I}}$UdR-Inkorporation läßt sich anhand mikroskopischer Aufnahmen von Kometen veranschaulichen, in denen ungeschädigte und geschädigte DNA direkt nebeneinanderliegen (Abb. 56). Zusätzlich wurden Häufigkeitsverteilungen der OTM-Werte in Gruppen vorgenommen (die Mittelwerte sind in Abb. 25, 3.2.4 und Abb. 37, 3.3.2 grafisch dargestellt). OTM-Werte ≤ 1.1 (Mittelwert der Kontrollen + 10%) wurden als

Mit zunehmender Bestrahlungsdosis bzw. 125IUDR-Zerfällen verschieben sich die Anteile in den Gruppen diagonal zu höheren OTM-Werten (Tab. 11-13). Beim Vergleich von 137Cs-γ-Strahlung mit 125IUDR liegen bei Photonenstrahlung ab 4 Gy keine Anteile mehr in den ersten zwei Gruppen vor (Tab. 11), während sie nach 25IUDR-Exposition auch bei hohen Zerfallszahlen erhalten bleiben (Tab. 12+13). Es ergibt sich bei T1-Zellen ein konstanter Anteil von 3% ungeschädigter DNA und bei 86HG-39-Zellen von ca. 8%. Diese ungeschädigten Anteile stellen nicht-125IUDR-markierte DNA dar und liegen im Bereich der konstanten Überlebensfraktionen (vgl. 4.2.1).

Tabelle 11
Relative Häufigkeiten (%) der OTM-Werte nach 137Cs-γ-Bestrahlung der T1- und 86HG-39-Zellen

<table>
<thead>
<tr>
<th>OTM-Werte</th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ko 2 Gy 4 Gy 8 Gy 10 Gy</td>
<td>Ko 2 Gy 4 Gy 8 Gy 10 Gy</td>
</tr>
<tr>
<td>< 1,1</td>
<td>67,1 5,4 - - -</td>
<td>69,9 2,1 - - -</td>
</tr>
<tr>
<td>1,1-2</td>
<td>23,6 21,1 - - -</td>
<td>21,3 19,0 1,0 - -</td>
</tr>
<tr>
<td>2-5</td>
<td>9,3 61,1 57,3 2,5 0,5</td>
<td>8,0 69,2 49,0 0,6 3,0</td>
</tr>
<tr>
<td>5-10</td>
<td>- 12,4 39,7 61,7 37,7 -</td>
<td>- 9,2 43,0 46,9 38,6</td>
</tr>
<tr>
<td>10-15</td>
<td>- - 3,0 33,7 38,7 -</td>
<td>0,5 5,5 42,6 29,7</td>
</tr>
<tr>
<td>15-20</td>
<td>- - 2,0 16,6 -</td>
<td>- - 1,0 10,5 15,8</td>
</tr>
<tr>
<td>> 20</td>
<td>- - - 6,0 -</td>
<td>- - - - 11,9</td>
</tr>
</tbody>
</table>

Tabelle 12
Relative Häufigkeiten (%) der OTM-Werte nach 125IUDR-Inkorporation in T1-Zellen und Akkumulation der Zerfälle bei −198°C:

<table>
<thead>
<tr>
<th>OTM-Gruppen</th>
<th>d/c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ko 803 1928 2935 3864</td>
</tr>
<tr>
<td>< 1,1</td>
<td>67,0 26,3 21,1 3,0 3,5</td>
</tr>
<tr>
<td>1,1-2</td>
<td>28,4 45,4 25,1 7,0 5,5</td>
</tr>
<tr>
<td>2-5</td>
<td>4,6 25,3 31,7 48,2 39,2</td>
</tr>
<tr>
<td>5-10</td>
<td>- 2,0 18,1 31,7 40,7</td>
</tr>
<tr>
<td>10-15</td>
<td>- 0,5 4,0 6,5 7,0</td>
</tr>
<tr>
<td>15-20</td>
<td>- - 2,0 3,0</td>
</tr>
<tr>
<td>> 20</td>
<td>- - - 1,5 1,0</td>
</tr>
</tbody>
</table>
Tabelle 13
Relative Häufigkeiten (%) der OTM-Werte nach 125IUDR-Inkorporation in 86HG-39-Zellen und Akkumulation der Zerfälle bei -196°C:

<table>
<thead>
<tr>
<th>OTM-Gruppen</th>
<th>Ko</th>
<th>453</th>
<th>1087</th>
<th>1655</th>
<th>2179</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>68,2</td>
<td>21,1</td>
<td>7,7</td>
<td>9,5</td>
<td>6,6</td>
</tr>
<tr>
<td>1-2</td>
<td>24,5</td>
<td>41,3</td>
<td>19,8</td>
<td>15,6</td>
<td>4,6</td>
</tr>
<tr>
<td>2-5</td>
<td>7,3</td>
<td>37,6</td>
<td>66,8</td>
<td>60,3</td>
<td>28,6</td>
</tr>
<tr>
<td>5-10</td>
<td>-</td>
<td>-</td>
<td>5,6</td>
<td>11,1</td>
<td>44,4</td>
</tr>
<tr>
<td>10-15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,0</td>
<td>14,3</td>
</tr>
<tr>
<td>15-20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bei molekularer Betrachtungsweise ist darüberhinaus der Einbau von 125IUDR in die DNA bezogen auf eine Einzelzelle inhomogen. Yasui et al. (1985) stellten fest, daß bei synchronisierten Zellen der Einbau von 125IUDR in den Zellkern sehr ungleichmäßig erfolgte. Sie vermuteten in einer späteren Studie nach Messung von DNA-Strangbrüchen, daß DNA-gebundenes 125IUDR eine Schädigung in Form von „Clusters“ verursacht (Yasui et al., 2000). Es wurde angenommen, daß ein lokal-multipler DNA-Schaden entsteht, wobei sich kurze Fragmente von 10 - 100 Basenpaarungen ergeben. Die Clusterbildung ist bereits bei Tisijar-Lentulis et al. (1987) erwähnt worden, die per „Fluorescence Analysis of DNA Unwinding“-Technik eine insgesamt geringere Anzahl an DNA-Strangbrüchen nach 125IUDR-Exposition verglichen mit Gammastrahlung bei Nieren-T1-Zellen fanden. Die Autoren merkten an, daß 125IUDR zwar mit einer hohen lokalen Energiedichte, jedoch äußerst inhomogen zerfällt, wodurch die Effektivität untergeschätzt wird. So kann es sein, daß zwei oder mehrere 125IUDR-Moleküle direkt nebeneinander in die DNA eingebaut werden und bei der Strangbruchmessung ein geringerer Schaden festgestellt wird, als wenn sie gleichmäßig in die DNA inkorporiert und zerfallen wären, wodurch mehr Bruchstücke entstanden wären. Bezogen auf die vorliegende Arbeit ist diese Clusterbildung vor allem für die Streuung der Werte im Anfangsbereich der OTM-Funktion nach 125IUDR-Inkorporation verantwortlich. Sie ist offensichtlich auch ein Grund für die nach 125IUDR-Exposition gegenüber 137Cs-γ-Strahlung vergleichsweise geringe DNA-Schädigung (vgl. 3.2.4).

2. Reparaturvorgänge

Durch die physiologische Temperatur von 37°C treten zelluläre Reparaturvorgänge während der Strahlenexposition auf. DNA-Einzelstrangbrüche würden nach einer nachweislich schnellen Reparatur (vgl. Abb. 27, 3.2.4) zu niedrigen OTM-Werten beim

<table>
<thead>
<tr>
<th></th>
<th>37°C</th>
<th>0°C</th>
<th>Faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>125I-UdR</td>
<td>1,47</td>
<td>2,40</td>
<td>+ 1,63</td>
</tr>
<tr>
<td>125I-AP</td>
<td>1,37</td>
<td>1,9</td>
<td>+ 1,39</td>
</tr>
</tbody>
</table>

3. *Comet Assay-spezifische Phänomene*

Zellen und dem erwarteten Schädigungsgrad angepaßt werden. In der vorliegenden Arbeit wurde der Comet Assay mit 137Cs-γ-Strahlung kalibriert und reproduzierbar gestaltet.

Die genannten multiplen Effekte spielen nicht nur beim Comet Assay, sondern auch bei der HA-Chromatographie eine Rolle. Im Vergleich zu 137Cs-γ-Strahlung fiel hier ebenfalls die negative Steigung der ds-DNA-Fraktion äußerst schwach aus. Die beim Comet Assay angeführten Argumente der Besonderheiten der 125I UdR-Inkorporation und der Reparaturvorgänge können für die HA-Chromatographie gleichermaßen gelten. Bislang sind DNA-Strangbrüche nach 125I-Exposition erst in einer Studie mittels HA-Chromatographie gemessen worden: Sundell-Bergman und Johanson (1980) verglichen die radiotoxische Wirkung von 125I UdR und 3H-TdR in Hamsterfibroblasten, indem sie in die DNA entweder 125I UdR oder 3H-TdR inkorporierten und die Zerfälle auf Eis bis zu 6 h akkumulierten. Danach schloß sich eine Reparaturperiode von 21 h bei 37°C an. Es wurde festgestellt, daß 125I UdR 7-12-fach effektiver nicht-reparabel DNA-Strangbrüche erzeugte als 3H-TdR. Die ds-DNA-Funktion, in Abhängigkeit von den am Ende der Reparaturzeit gemessenen Zerfälle pro Minute und Zelle, fiel dabei mit einer starken Streuung der Werte von 70% (Kontrolle) auf 40% (15 d/min/c) ab. Zwischen jenen Werten und den Ergebnissen der vorliegenden Arbeit von T1- und 86HG-39-Zellen konnte kein Vergleich gezogen werden, da erstens nach Strahlenexposition keine zusätzliche Reparatur stattfand und zweitens ein kleinerer Bereich von maximal 2200 125I-Zerfällen pro Zelle betrachtet wurde, was nur 3,1 d/min/c entsprach.

4.2.3 Koloniebildungstest und Comet Assay nach Na125I-Exposition

Da Na125I außerhalb der Zelle zerfiel, war eine Kalkulation der Zerfälle pro Zelle wie bei 125I UdR und 125I-AP nicht möglich. Ein Vergleich konnte nur anhand der 125I-Konzentrationen im Medium während der Inkubation gezogen werden. Dazu muß jedoch angemerkt werden, daß 125I UdR aktiv inkorporiert wird und die radioaktive Konzentration im Medium sich von den im Zellkern gemessenen Zerfällen pro Zelle unterscheidet. In Abb. 57 sind die Überlebenskurven der drei Trägermoleküle dargestellt, wobei zum einen die Ergebnisse von Na125I und 125I UdR (beides 30 h Inkubation mit Mediumwechsel) und zum anderen von Na125I und 125I-AP (beides 28 h Inkubation ohne Mediumwechsel) gegenübergestellt wurden. Es ist vor allem bei der Inkubationsdauer von 30 h, aber auch bei der 28h-Inkubation, die im Vergleich zu den beiden anderen Trägermolekülen schwache Wirkung des Na125I auf die Koloniebildungsfähigkeit erkennbar. Die OTM-Funktionen des Comet Assays ergaben ein ähnliches Bild (nicht dargestellt).
Abbildung 57
Vergleich der Überlebenskurven von T1- und 86HG-39-Zellen nach 30 h oder 28 h Exposition mit Na125I, 125IUDr und 125I-AP

Der in der vorliegenden Arbeit gefundene geringe Effekt durch Na125I stimmt mit den Ergebnissen der Literatur überein. So konnten Kassis et al. (1987 a) nach Inkubation von V79-Hamsterzellen mit Na125I bei 37°C keine zelluläre Aufnahme des Na125I und keinen Einfluß auf die Koloniebildungsähigkeit bei \(\leq \text{7,4 MBq/ml} \) feststellen. Sie schlußfolgerten, daß AE-Emitter ineffizient sind, wenn sie extrazellulär oder ausschließlich im Zytoplasma (wie z.B. 125I-Dihydrorhodamin) lokalisiert sind. Auch Bloomer et al. (1981, 1983) wiesen an V79-Hamsterzellen (bis zu 590 kBq 125I/ml) und an Brustkrebszellen (bis zu 2,15 MBq 125I/ml) nach, daß Na125I nicht in die Zellen aufgenommen wurde und dadurch bezüglich der Koloniebildungsähigkeit nahezu wirkungslos blieb.

Es ist anhand des Zerfallspektrums von 125I (Tab. 1, 1.1) nachzu vollziehen, daß eine Schädigung der Zelle bei extrazellulärem 125I-Zerfall nur durch wenige Auger- und Konversionselektronen oder Photonenstrahlung, die ungehindert durch die Zellen hindurchdringt, eintreten kann. So haben die Konversionselektronen der L- bis N-Schale

4.2.4 Korrelationen zwischen biologischen Endpunkten

Tabelle 15
Gegenüberstellung der Methodik von Koloniebildungstest und Comet Assay

<table>
<thead>
<tr>
<th>Koloniebildungstest</th>
<th>Comet Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betrachtung der Gesamtpopulation ohne individuelle Differenzierung</td>
<td>Analyse von Einzelzellen</td>
</tr>
<tr>
<td>abnehmende Überlebensfraktion</td>
<td>zunehmender DNA-Schaden</td>
</tr>
<tr>
<td>Entscheidung, ob Kolonie ja oder nein (Nominalskaala)</td>
<td>Zuteilung von OTM Werten auf einer Verhältnisskala</td>
</tr>
<tr>
<td>Betrachtung des gesamzellulären Schadens</td>
<td>Betrachtung des DNA-bzw. Chromatinschadens</td>
</tr>
<tr>
<td>Bestimmung der Überlebensfraktionen nach 10-12 Tagen</td>
<td>Analysezeitpunkt sofort nach der Strahlenexposition</td>
</tr>
<tr>
<td>etablierte Standardmethode</td>
<td>relativ neue Methode</td>
</tr>
<tr>
<td>lange Wartezeit, Ergebnis abhängig von der Einsaat</td>
<td>Auswertung einer großen Anzahl von Einzelzellen in kurzer Zeit</td>
</tr>
</tbody>
</table>
Dennoch wurde anhand der vorliegenden Ergebnisse ein enger Zusammenhang zwischen den beiden biologischen Endpunkten gefunden. Nach homogener 137Cs-γ-Strahlung lag bei den T1- und 86HG-39-Zellen die stärkste Korrelation vor, die zudem hochsignifikant war (vgl. Tab. 8, 3.6). Überraschenderweise ließ sich ebenfalls nach 125IUDR-Exposition, trotz inhomogener Inkorporation in die DNA, ein signifikanter Zusammenhang finden, der vom Wert her dem 125I-AP entsprach. Somit wird offensichtlich auch bei Exposition der Zellen mit dem AE-Emitter 125I bei physiologischer Temperatur von 37°C das zelluläre Überleben entscheidend durch die DNA-Schädigung beeinflusst. Die Ergebnisse der vorliegenden Arbeit bestätigen, daß die DNA das radiosensitivste Target innerhalb der Zelle ist, und daß 137Cs-γ- oder 125I-induzierte DNA-Schäden letztlich zum Zelltod führen können.

4.3 Quantifizierung der biologischen Wirksamkeit von 125I

Für die quantitative Beurteilung der biologischen Wirksamkeit von AE-emittierenden Radionukliden kann ein Vergleich zu Photonenstrahlung (als Referenz) auf der Basis einer Dosis erfolgen. Wie schwierig sich jedoch die Dosisberechnungen für AE-Emitter aufgrund ihrer besonderen Zerfallscharakteristik darstellen, ist bereits in der Einleitung angesprochen worden. Unter anderem bestehen Differenzen zwischen den von verschiedenen Autoren mittels Monte-Carlo-Simulation generierten AE-Spektren für 125I bezüglich der Häufigkeiten der niedrigerenergetischen Elektronen zwischen 20 und 100 eV. Zudem ist die Rolle der Neutralisation während der AE-Kaskaden und ihre Bedeutung hinsichtlich des biologischen Wirkungsmechanismus unklar. Es muß davon ausgegangen werden, daß sie die Anzahl der emittierten Elektronen stark beeinflusst (vgl. 1.1).
Da es nicht möglich ist, die deponierte Energie pro ^{125}I-Zerfall in der Zelle experimentell zu bestimmen, müssen theoretische Ergebnisse herangezogen werden, die unter bestimmten Randbedingungen erstellt wurden. Diesbezüglich werden verschiedene Monte-Carlo-simulierte Energieberechnungen in chronologischer Reihenfolge nachfolgend genauer besprochen.

4.3.1 Energieberechnungen zum ^{125}I-Zerfall (Literaturvergleich)

Tabelle 16
Literaturübersicht zur gesamten Elektronenenergie pro 125I-Zerfall

<table>
<thead>
<tr>
<th>Autoren</th>
<th>Elektronenenergie / 125I-Zerfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlton/ Booz (1981)</td>
<td>19,8 keV</td>
</tr>
<tr>
<td>Pomplun et al. (1987)</td>
<td>19,4 keV</td>
</tr>
<tr>
<td>Howell (1992)</td>
<td>19,5 keV</td>
</tr>
<tr>
<td>Pomplun et al. (1996)</td>
<td>18,0 keV</td>
</tr>
</tbody>
</table>

Einen Vergleich der Werte für die mittlere gesamte Elektronenenergie pro 125I-Zerfall, die in der angesprochenen Literatur berechnet wurden, gibt Tab. 16 wieder. Obwohl die Werte alle relativ nahe beieinander liegen, zeigt die Übersicht, daß im Laufe der Zeit die Energien durch verfeinerte Berechnungsmethoden kleiner werden.

4.3.2 Dosisberechnungen und Wirksamkeitsfaktoren

Diskussion

ausschließlich die durch emittierte Elektronen hervorgerufenen biologischen Effekte betrachtet.

Laut Definition wird die Dosis aus Energie pro Massseinheit berechnet:

\[
Dosis \text{ (Gy)} = \frac{\text{mittlere deponierte Energie} \text{ (J)}}{\text{Masse des Volumenelements} \text{ (kg)}}
\]

Die mittlere deponierte Energie beträgt in T1-Zellen mit 18 µm Durchmesser 14,1 keV und in 86HG-39-Zellen mit 15 µm Durchmesser 13,4 keV (1 eV = 1,60219×10^{-19} J).

Die Masse der Zellen wurde über das Zellvolumen unter Annahme eines Kugelvolumens und einer Dichte von 1 berechnet, so daß sich pro T1-Zelle eine Masse von 30,5×10^{-13} kg und pro 86HG-39-Zelle eine Masse von 17,7×10^{-13} kg ergab. Damit konnte die Dosis pro ^{125}\text{I}-Zerfall bei gleichmäßiger ^{125}\text{I}-AP-Verteilung in der Zelle angegeben werden (Tab. 17).

Tabelle 17
Dosis pro ^{125}\text{I}-AP-Zerfall in T1- und 86HG-39-Zellen

<table>
<thead>
<tr>
<th>Dosis (mGy)</th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,740</td>
<td>1,215</td>
<td></td>
</tr>
</tbody>
</table>

Rechenbeispiel für T1-Zellen:

\[
14100 \times \frac{1,60219 \times 10^{-19} \text{ J}}{30,54 \times 10^{-13} \text{ kg}} = 0,00074 \text{ Gy} = 0,74 \text{ mGy}
\]

Derartige Berechnungen sind für ^{125}\text{I}udR nicht sinnvoll, da es inhomogen in die zelluläre DNA eingebaut wird und deshalb nicht gleichmäßig in der Zelle bzw. im Zellkern zerfällt (vgl. 4.2.2). Ein Vergleich der biologischen Wirksamkeit von ^{125}\text{I}udR und ^{137}\text{Cs}-\gamma Strahlung ist aber über das ^{125}\text{I}-AP möglich, daß sowohl in Einheiten von Zerfällen pro Zelle als auch in Gy quantifiziert werden kann, wobei jeweils das Zellmodell und der biologische Endpunkt berücksichtigt werden müssen. Obwohl die DNA als der radiosensitivste Teil innerhalb der Zelle betrachtet wird (vgl. 4.2.4), wurde in der obigen Dosisberechnung und in den nachfolgenden Vergleichen die gesamte Zelle als Targetvolumen herangezogen, da bei der Koloniebildungsähigkeit gesamtzelluläre Effekte eine Rolle spielen und der Zelltod nicht ausschließlich von DNA-Schäden herrührt.

Es wurden die D_{97}-Werte der T1- und 86HG-39-Überlebenskurven nach ^{125}\text{I}udR- und ^{125}\text{I}-AP-Exposition sowie nach ^{137}\text{Cs}-\gamma-Strahlung gegenübergestellt, wobei für ^{125}\text{I}-AP sowohl
Zerfälle pro Zelle als auch die damit multiplizierte Dosis pro 125I-Zerfall in Gy angegeben wurde (Tab. 18+19). Die biologische Wirksamkeit wurde anhand der resultierenden Faktoren quantifiziert. Es zeigte sich, daß bei den T1-Zellen 125IUDR 12,9-fach effektiver war als 125I-AP, während 125I-AP wiederum mit dem Faktor 1,9 wirksam er war als 137Cs-γ-Strahlung. Daraus konnte für 125IUDR gegenüber 137Cs-γ-Strahlung ein Wirksamkeitsfaktor von 24,2 bei Betrachtung des D_{37}-Wertes gefolgt werden. Im Falle der 86HG-39-Zellen war 125IUDR sogar 14-fach effektiver als 125I-AP und dieses wiederum beinahe doppelt so wirksam wie 137Cs-γ-Strahlung. Bei den 86HG-39-Zellen lag 125IUDR damit beim D_{37}-Wert mit dem Faktor 27,7 über der biologischen Wirksamkeit von 137Cs-γ-Strahlung.

Tabelle 18
Vergleich der biologischen Wirksamkeit von 125IUDR, 125I-AP und 137Cs-γ am Beispiel des klonogenen Überlebens von T1-Zellen

<table>
<thead>
<tr>
<th>T1-Zellen</th>
<th>Nuklid / Trägermolekül</th>
<th>D_{37}</th>
<th>Wirksamkeitsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>d/c</td>
<td>125IUDR</td>
<td>90</td>
<td>12,89</td>
</tr>
<tr>
<td></td>
<td>125I-AP</td>
<td>1160</td>
<td></td>
</tr>
<tr>
<td>Dosis (Gy)</td>
<td>125I-AP</td>
<td>0,86</td>
<td>1,88</td>
</tr>
<tr>
<td></td>
<td>137Cs-γ</td>
<td>1,61</td>
<td></td>
</tr>
<tr>
<td>Vergleich zwischen 125IUDR und 137Cs-γ</td>
<td></td>
<td></td>
<td>24,23</td>
</tr>
</tbody>
</table>

Tabelle 19
Vergleich der biologischen Wirksamkeit von 125IUDR, 125I-AP und 137Cs-γ am Beispiel des klonogenen Überlebens von 86HG-39-Zellen

<table>
<thead>
<tr>
<th>86HG-39-Zellen</th>
<th>Nuklid / Trägermolekül</th>
<th>D_{37}</th>
<th>Wirksamkeitsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>d/c</td>
<td>125IUDR</td>
<td>80</td>
<td>14,13</td>
</tr>
<tr>
<td></td>
<td>125I-AP</td>
<td>1130</td>
<td></td>
</tr>
<tr>
<td>Dosis (Gy)</td>
<td>125I-AP</td>
<td>1,37</td>
<td>1,96</td>
</tr>
<tr>
<td></td>
<td>137Cs-γ</td>
<td>2,68</td>
<td></td>
</tr>
<tr>
<td>Vergleich zwischen 125IUDR und 137Cs-γ</td>
<td></td>
<td></td>
<td>27,69</td>
</tr>
</tbody>
</table>

Die biologische Wirksamkeit von 125IUDR im Vergleich zu 125I-AP bezüglich des klonogenen Überlebens (D_{37}-Werte) wurde auch von Bloomer et al. (1981) und Sedelnikowa et al. (1998) an Fibrosarkomzellen und Knochenmarkzellen von Mäusen untersucht. Sie fanden mit Faktoren von $8,5 \times 10^4$ und 885 eine deutlich stärkere Radiotoxizität des 125IUDR, wobei die Differenz zwischen den Faktoren u.a. mit den

Auch beim biologischen Endpunkt der DNA-Schädigung, die mit dem Comet Assay gemessen wurde, läßt sich ein solcher Vergleich aufstellen, wobei ein OTM von 3,0 betrachtet wurde (Tab. 20). Die Ergebnisse nach 125I-Exposition bei 37°C wurden aufgrund der Reparaturvorgänge (vgl. 4.2.2) nicht berücksichtigt und stattdessen am Beispiel der T1-Zellen diejenigen nach Exposition bei ≤ 0°C betrachtet. Bei dieser Methode wurde, ebenso wie bei 137Cs-γ-Bestrahlung auf Eis, eine Reparatur der DNA-Schäden unterdrückt. Es zeigten sich in diesem Fall deutlich niedrigere Wirksamkeitsfaktoren, da 125I-UdR nur noch 1,2-fach effektiver als 125I-AP war und dieses wiederum 1,5-fach wirksamer als 137Cs-γ-Strahlung. Damit ergab sich beim Vergleich der DNA-Schädigung von 125I-UdR mit 137Cs-γ-Strahlung ein sehr viel kleinerer Wirksamkeitsfaktor von 1,8.

Tabelle 20
Vergleich der biologischen Wirksamkeit von 125I-UdR, 125I-AP und 137Cs-γ am Beispiel der DNA-Schädigung von T1-Zellen

<table>
<thead>
<tr>
<th>T1-Zellen</th>
<th>Nuklid bzw. Trägermolekül</th>
<th>OTM 3,0</th>
<th>Wirksamkeitsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>d/c</td>
<td>125I-UdR</td>
<td>1450</td>
<td>1,21</td>
</tr>
<tr>
<td></td>
<td>125I-AP</td>
<td>1750</td>
<td></td>
</tr>
<tr>
<td>Dosis (Gy)</td>
<td>125I-AP</td>
<td>1,30</td>
<td>1,47</td>
</tr>
<tr>
<td></td>
<td>137Cs-γ</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>Vergleich zwischen 125I-UdR und 137Cs-γ</td>
<td></td>
<td>1,77</td>
<td></td>
</tr>
</tbody>
</table>

Diskussion

Über Wirksamkeitsfaktoren bietet sich indirekt durch das 125I-AP eine Möglichkeit für die Beurteilung von DNA-inkorporiertem 125IUDR im Vergleich zu Photonenbestrahlung. Bei diesen Faktoren lag eine große Differenz zwischen den beiden betrachteten biologischen Endpunkten vor, wobei das klonogene Überleben auch im Hinblick auf einen möglichen klinischen Einsatz von 125IUDR die größere Relevanz besitzt. Beim Comet Assay scheint die Wirksamkeit des 125IUDR durch den Einfluß mehrerer Effekte, insbesondere durch die Clusterbildung in der DNA, unterschätzt zu werden. Auch Yasui et al. (2000) fanden bei der Erzeugung von DNA-Strangbrüchen durch 125IUDR einen vergleichsweise niedrigen RBW-Faktor von 2,9 für Doppelstrangbrüche bei einer CHO-Zelllinie. Sie führten den niedrigen Faktor auf gehäufte Läsionen (Cluster) zurück, die durch den inhomogenen Einbau des 125IUDR in die DNA verursacht würden (vgl. 4.2.2).

Tabelle 21
Literaturvergleich: Dosisberechnungen pro 125IUDR-Zerfall im Zellkern

<table>
<thead>
<tr>
<th>Autoren</th>
<th>Dosis / 125IUDR-Zerfall (mGy)</th>
<th>Durchmesser Zellkern (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burki et al. (1973)</td>
<td>16,9</td>
<td>7,2 (V79-Zellen)</td>
</tr>
<tr>
<td>Warters et al. (1977)</td>
<td>7,42</td>
<td>8 (CHO-Zellen)</td>
</tr>
<tr>
<td>Sundell-Bergman / Johanson (1980)</td>
<td>7,7</td>
<td>8 (CHF-Zellen)</td>
</tr>
<tr>
<td>Miyazaki / Fujiwara (1981)</td>
<td>13</td>
<td>8 (V79-Zellen)</td>
</tr>
</tbody>
</table>

Tabelle 22
Literaturvergleich: Dosisberechnungen für 125IUDR bezüglich der 37%-Überlebensfraktion

<table>
<thead>
<tr>
<th>Autoren</th>
<th>D_{37} (mGy)</th>
<th>Durchmesser Zellkern (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehrfeld et al. (1986)</td>
<td>660</td>
<td>8 (CHE-Zellen)</td>
</tr>
<tr>
<td>Kassis et al. (1987 b)</td>
<td>800</td>
<td>8 (V79-Zellen)</td>
</tr>
<tr>
<td>Makrigiorgos et al. (1990)</td>
<td>800</td>
<td>8 (V79-Zellen)</td>
</tr>
<tr>
<td>Geselowitz et al. (1995)</td>
<td>120 - 1100</td>
<td>10 (CHO-Zellen)</td>
</tr>
</tbody>
</table>

aus. In der vorliegenden Arbeit wurde jedoch dargelegt, daß nur für den $^{125\text{i}}$-AP-Zerfall aufgrund der nahezu gleichmäßigen Energieverteilung in der Zelle, nicht jedoch für inhomogen DNA-inkorporiertes $^{125\text{i}}$UdR sinnvollerweise eine Dosis berechnet werden kann. Da es bislang an einem Korrekturfaktor fehlt, der die Ungleichverteilung des $^{125\text{i}}$UdR und die daraus entstehenden Konsequenzen berücksichtigt und befriedigend korrigiert, wird vorgeschlagen, stattdessen eine Beurteilung der biologischen Effekte von $^{125\text{i}}$UdR anhand von Wirksamkeitsfaktoren vorzunehmen.

4.4 Tierexperimente und klinische Studien mit $^{125\text{i}}$

Hinsichtlich einer klinischen Anwendung von $^{125\text{i}}$ kommt $^{125\text{i}}$UdR als radioaktiv markiertes Trägermolekül am ehesten in Frage, da es auch unter physiologischen Bedingungen die stärkste radiotoxische Wirkung entfaltet. Ein zusätzlicher Aspekt des $^{125\text{i}}$UdR ist der selektive Einbau in S-Phase-Zellen, weshalb es sich besonders für schnell proliferierendes Tumorgewebe, unter Schonung langsamer proliferierender Normalgewebe eignen würde. In der vorliegenden Arbeit wurde eine inhomogene Inkorporation von $^{125\text{i}}$UdR in asynchrone Zellpopulationen gefunden, was klinisch von Nachteil ist. Nicht mit $^{125\text{i}}$UdR-markierte Zellen könnten jedoch durch eine gleichzeitige Behandlung mit $^{125\text{i}}$-AP abgetötet werden. Auch O'Donoghue und Wheldon (1996) beschrieben das Problem der heterogenen Radionuklid-Aufnahme in die Tumorzellen und schlugen vor, eine kombinierte Behandlung verschiedener Strahlenarten zusammen mit einer Chemotherapie einzusetzen, um so resistente Subpopulationen zu treffen. Eine Kombination von $^{125\text{i}}$UdR und $^{125\text{i}}$-AP ist bislang am Zellmodell noch nicht getestet worden. Es muß angemerkt werden, daß in der vorliegenden Arbeit bei $^{125\text{i}}$-AP Aktivitätsmengen bis zu 10 MBq/ ml verwendet wurden, was klinisch nicht praktikabel erscheint. Im Gegensatz dazu wurden für eine effektive biologische Wirkung von $^{125\text{i}}$UdR nur einige kBq/ ml benötigt.
\(^{125}\)I wurde bereits in einigen Tierversuchen und klinischen Studien auf seine therapeutische und diagnostische Effizienz überprüft. *In vivo* traten, anders als bei der Zellkultur, verschiedene Probleme auf, die vor allem die kurze biologische Halbwertszeit des \(^{125}\)I UdR und das Verhältnis der Aktivitätsaufnahme in Tumorzellen und Normalgewebe betrafen (Hofer, 2000). Bei systemischer Applikation des radioaktiven UdR wird das Molekül innerhalb von 5-7 Minuten dehalogeniert, so daß nur eine geringe Aktivitätsmenge den Tumor erreicht und eingebaut werden kann (Klecher, 1985). Nachteilig ist, daß auch andere stark proliferierende Gewebe, wie z.B. Knochenmarkzellen, \(^{125}\)I UdR einbauen können und dadurch geschädigt werden, während im Tumor nur S-Phase-Zellen getroffen werden (s. Hofer, 2000). Daher wurde eine direkte und wiederholte Injektion von \(^{125}\)I UdR in den Tumor vorgeschlagen (z.B. Neshasteh-Riz et al. 1997), womit allerdings nur kleine Tumore behandelt werden können.

Außerdem wurde in mehreren Veröffentlichungen die positive Wirkung von Antimetaboliten wie Methotrexat (MTX) und 5-Fluourouracil nachgewiesen, die durch Hemmung der TS den Einbau von \(^{123}\)I UdR oder \(^{125}\)I UdR in die zelluläre Tumor-DNA förderten (Bagshawe et al., 1991; Mester et al., 1996; Mariani et al., 1996). Durch die Kombination mit MTX konnte beispielsweise die therapeutische Effizienz des \(^{125}\)I UdR bei Ratten mit Rabdomyosarkomen erhöht werden (Kassis et al., 2000 a). In einer weiteren Studie wurde \(^{125}\)I UdR bei Mäusen mit Kolonkrebs an verschiedene Glycoside gebunden eingesetzt, um der schnellen Deiodination von UdR entgegenzuwirken (Baranowska-Kortylewicz et al., 1996). Diese Vorstufen wurden erst im Kolon von spezifischen Enzymen zersetzt und transportierten das gebundene radioaktive UdR unversehrt durch den Verdauungstrakt. Dadurch war es möglich, die Tumorzellen über eine längere Zeit mit therapeutischen Mengen an \(^{125}\)I UdR zu exponieren.

Erfolgreich war gleichfalls die Behandlung von Blasenkrebs bei Ratten mit \(^{123}\)I UdR oder \(^{125}\)I UdR, das direkt in die Harnblase appliziert wurde. Es ergab sich eine spezifische Aufnahme von \(^{123}\)I UdR und \(^{125}\)I UdR in die Tumorzellen bis tief in das Urothel (Van den Abbeele et al., 1996). Bezüglich der Anreicherungsrate wurde eine hohe Akkumulation der Radioaktivität im Tumor z.B. bei Mäusen mit Gebärmutterkrebs (Kassis und Adelstein, 1996) und bei Patienten mit Blasenkrebs festgestellt (Harrison, 1996). Die therapeutische Effizienz von \(^{125}\)I UdR wurde auch bei Ratten mit Gliosarkomen günstig beurteilt, da eine signifikante Verlängerung der Lebensdauer nach intrazerebraler Administration von \(^{125}\)I UdR nachgewiesen wurde (Kassis und Adelstein, 1996).

Das Potential von \(^{125}\)I UdR für eine klinische Anwendung wird demnach durchaus positiv eingeschätzt.
Zusammenfassung

Die biologische Wirksamkeit des Auger-Elektronen emittierenden Radionuklids 125I wurde nach seiner Positionierung in unterschiedlichen Kompartimenten humaner Zellen untersucht und die Effekte mit denen nach 137Cs-γ-Strahlung verglichen. Die Positionierung erfolgte in nicht-synchronisierten Nieren-T1- und 86HG-39-Glioblastomzellen bei einer physiologischen Temperatur von 37°C mit Hilfe dreier 125I-markierter Trägermoleküle: 125Iododesoxyuridin, das als Thymidinanalogen in die DNA proliferierender Zellen eingebaut wurde; 125I-Antipyrin, das durch die Zellmembran diffundierte und sich gleichmäßig in der gesamten Zelle verteilt; und Na125I, das außerhalb der Zelle verblieb. Als biologische Endpunkte wurden hauptsächlich das klonogene Überleben, das mit dem Koloniebildungstest bestimmt wurde, und die molekulare Schädigung der DNA betrachtet, die mit dem alkalischen Comet Assay gemessen und durch das sogenannte Olive Tail Moment quantifiziert wurde.

Im Vergleich der Trägermoleküle wirkte 125IUDR am stärksten radiotoxisch und wies steil abfallende Überlebenskurven mit D$_{37}$-Werten von 80 - 90 d/c und OTM-Werte von 1,47 - 1,58 bei 1000 d/c im Comet Assay auf. Die Inkorporation von 125IUDR in die DNA konnte durch Zugabe des Thymidilatsynthetasehemmers FUDR deutlich gesteigert werden. Charakteristischerweise wurde bei den 125IUDR-Überlebenskurven eine ab etwa 700 d/c eintretende Sättigung (Tailing) gefunden. Sie wurde mit Hilfe des Comet Assays, der eine individuelle Auswertung von Einzelzellen ermöglichte, als konstanter nicht-125IUDR-markierter Anteil der asynchronen Zellpopulation identifiziert. Da bereits markierte Zellen 125IUDR mehrfach inkorporiert, ergab sich trotz ansteigender Zerfälle pro Zelle eine Schädigungssättigung. 125I-AP zeigte Niedrig-LET-ähnliche Schulterkurven mit D$_{37}$-Werten von 1130 - 1160 d/c und OTM-Werte im Comet Assay von 1,28 - 1,37 bei 1000 d/c. Es wies somit eine schwächere Wirkung auf als 125IUDR, während extrazelluläres Na125I nahezu keinen biologischen Effekt hervorrief. Der Anstieg der OTM-Funktionen von 125IUDR und 125I-AP fiel im Vergleich zu 137Cs-γ-Strahlung sehr gering aus, was vor allem auf Reparaturvorgänge während der 125I-Exposition bei 37°C, die inhomogene 125IUDR-Inkorporation und DNA-Schäden in Form gehäufter Läsionen (Cluster), erzeugt durch 125IUDR, zurückgeführt wurde. Aus den Experimenten mit 137Cs-γ-Strahlung resultierten Niedrig-LET-Schulterkurven mit D$_{0}$-Werten von 0,9 - 1,2 Gy und steil ansteigende, lineare OTM-Funktionen mit OTM-Werten von 3,8 - 5,3 bei 4 Gy.

Die abnehmende Radiotoxizität der 125I-markierten Trägermoleküle wurde mit dem ansteigenden Abstand des 125I-Zerfallsortes zur DNA begründet, da die am häufigsten emittierten niederenergetischen Auger-Elektronen nur eine geringe Reichweite von einigen Nanometern in biologischem Gewebe besitzen. Dagegen weisen die Auger-
Zusammenfassung

Elektronen in der Nähe des Zerfallsortes aufgrund ihrer hohen Ionisationsdichte ein starkes Schädigungspotential auf. Zudem wurde ein enger Zusammenhang zwischen ansteigender DNA-Schädigung und vermindert der Koloniebildungsfähigkeit nachgewiesen, wodurch die Bedeutung der DNA als wichtigstes Target für das Zellüberleben bestätigt wurde.

Die biologischen Wirkungen des 125I-AP und der Referenzstrahlung 137Cs-γ wurden quantitativ verglichen, da 125I-AP seine Energie nahezu gleichmäßig über die Zelle verteilte und somit eine Dosisberechnung für T1- und 86HG-39-Zellen möglich war. Im Gegensatz dazu zeigten die Ergebnisse dieser Arbeit, dass die Angabe einer Dosis für 125IudR aufgrund der inhomogenen Inkorporation und der daraus resultierenden ungleichmäßigen Energiedeposition nicht sinnvoll gewesen wäre. Eine Beurteilung der biologischen Wirksamkeit erfolgte stattdessen über die Berechnung von Wirksamkeitsfaktoren unter Betrachtung eines definierten Endpunktes. Da die Wirkung von 125I-AP sich sowohl in Zerfällen pro Zelle als auch in Gy quantifizieren ließ, konnte 125IudR indirekt mit 137Cs-γ-Strahlung verglichen werden. Es ergaben sich für die benutzen Zellmodelle bei 125IudR Wirksamkeitsfaktoren von 24 - 28 bezogen auf die 37%-Überlebensfraktionen nach 137Cs-γ-Bestrahlung.

Damit wäre 125IudR aufgrund seiner biologischen Wirksamkeit als mögliche Erweiterung der adjuvanten Strahlentherapie von Tumoren geeignet, wobei umliegendes Normalgewebe weitgehend verschont bliebe.
<table>
<thead>
<tr>
<th>Abb.</th>
<th>Beschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematische Darstellung von Auger- und Coster-Kronig-Übergängen</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Schematischer Ablauf einer AE-Kaskade nach Elektroneneinfang aus der K-Schale (Humm, 1984)</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>MIRD: Zerfallsschema für 125I (Weber et al., 1989)</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Darstellung direkter und indirekter Strahlenwirkungen (Hall, 1994)</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Darstellung von Strahlenschäden an der DNA (Herrmann und Baumann 1997)</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Schema einer Hoch- und Niedrig-LET-Überlebenskurve</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Wachstumskurven der T1- und 86HG-39-Zellen mit Phaseneinteilung</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>Mit Giemsa und May-Grünwald-Lösung angefärbte T1- und 86HG-39-Zellrasen zur Bestimmung der Kerndurchmesser</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>Schema zu den Zellversuchen mit Strahlenexposition und anschließender Untersuchung der biologischen Endpunkte</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Strukturformeln von Thymidin und 125iododesoxyurid</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>Modell der zeitabhängigem 125IUDR-Inkorporation mit und ohne Mediumwechsel</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>Strukturformel des 125I-Antipyrins</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>Durchführung der AChE-Bestimmung mit Ellman’s Reagenz</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>T1- und 86HG-39-Kolonien nach Hämatoxilinfärbung</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>Ablauf des Comet Assays mit den wichtigsten Versuchsschritten</td>
<td>32</td>
</tr>
<tr>
<td>16</td>
<td>Aufnahmen von 86HG-39-Kometen: a) ohne Bestrahlung, b) nach 137Cs-γ-Bestrahlung (8 Gy)</td>
<td>33</td>
</tr>
<tr>
<td>17</td>
<td>Schematische Darstellung eines Kometen mit den Parametern des OTM</td>
<td>34</td>
</tr>
<tr>
<td>18</td>
<td>Schematischer Ablauf der Probenvorbereitung für die HAPräparat-Chromatographie</td>
<td>36</td>
</tr>
<tr>
<td>19</td>
<td>Verteilung der Zellzyklusphasen von T1-Zellen im Alter von 3 bis 8 Tagen</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>Verteilung der Zellzyklusphasen von 86HG-39-Zellen im Alter von 4, 7 und 8 Tagen</td>
<td>39</td>
</tr>
<tr>
<td>21</td>
<td>Viabilitätsraten der T1- und 86HG-39-Zellen nach 137Cs-γ-Bestrahlung</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>AChE-Aktivitätsrate des Standards aus Rinder-Erythrozyten</td>
<td>41</td>
</tr>
<tr>
<td>23</td>
<td>AChE-Aktivitätsraten der T1- und 86HG-39-Zellen nach 137Cs-γ-Bestrahlung (μmol Substrat hydrolysiert pro Minute und g Protein)</td>
<td>42</td>
</tr>
<tr>
<td>24</td>
<td>Überlebenskurven nach 137Cs-γ-Bestrahlung der T1- und 86HG-39-Zellen</td>
<td>43</td>
</tr>
<tr>
<td>25</td>
<td>Comet Assay nach 137Cs-γ-Bestrahlung der T1- und 86HG-39-Zellen</td>
<td>44</td>
</tr>
<tr>
<td>Abbildungs- und Tabellenverzeichnis</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Abb. 26</td>
<td>Aufnahme von 86HG-39-Kometen nach 137Cs-γ-Bestrahlung (8 Gy)</td>
<td>44</td>
</tr>
<tr>
<td>Abb. 27</td>
<td>Comet Assay nach 137Cs-γ-Bestrahlung (4 Gy) der T1- und 86HG-39-Zellen und anschließender Reparatur bei 37°C</td>
<td>45</td>
</tr>
<tr>
<td>Abb. 28</td>
<td>HA-Chromatographie nach 137Cs-γ-Bestrahlung der T1- und 86HG-39-Zellen</td>
<td>46</td>
</tr>
<tr>
<td>Abb. 29</td>
<td>125IUDR-Inkorporationskinetik von T1- und 86HG-39-Zellen</td>
<td>47</td>
</tr>
<tr>
<td>Abb. 30</td>
<td>125IUDR-Inkorporationskinetik am Beispiel der T1-Zellen mit Mediumwechsel nach 8 h und 23 h</td>
<td>47</td>
</tr>
<tr>
<td>Abb. 31</td>
<td>125IUDR-Inkorporation in Abhängigkeit von der radioaktiven Konzentration im Medium</td>
<td>48</td>
</tr>
<tr>
<td>Abb. 32</td>
<td>125IUDR-Inkorporation in 86HG-39-Zellen bei verschiedenen FUdR- und CdR-Konzentrationen</td>
<td>49</td>
</tr>
<tr>
<td>Abb. 33</td>
<td>Koloniebildungs-Test nach Inkubation der T1-Zellen mit verschiedenen FUdR- und CdR-Konzentrationen</td>
<td>50</td>
</tr>
<tr>
<td>Abb. 34</td>
<td>Koloniebildungs-Test nach Exposition der T1- und 86HG-39-Zellen mit verschiedenen FUdR- und CdR-Konzentrationen sowie 10^{-12}M IUdR</td>
<td>51</td>
</tr>
<tr>
<td>Abb. 35</td>
<td>Comet Assay nach Exposition der T1- und 86HG-39-Zellen mit verschiedenen FUdR- und CdR-Konzentrationen sowie 10^{-12}M IUdR</td>
<td>52</td>
</tr>
<tr>
<td>Abb. 36</td>
<td>Überlebenskurven nach 125IUDR-Inkorporation in T1- und 86HG-39-Zellen im Standardverfahren</td>
<td>53</td>
</tr>
<tr>
<td>Abb. 37</td>
<td>Comet Assay nach 125IUDR-Inkorporation in T1- und 86HG-39-Zellen im Standardverfahren</td>
<td>54</td>
</tr>
<tr>
<td>Abb. 38</td>
<td>Vergleich der Überlebenskurven von T1- und 86HG-39-Zellen nach unterschiedlichen Inkubationszeiten mit 125IUDR</td>
<td>55</td>
</tr>
<tr>
<td>Abb. 39</td>
<td>Vergleich der OTM-Funktionen von T1- und 86HG-39-Zellen nach unterschiedlichen Inkubationszeiten mit 125IUDR</td>
<td>55</td>
</tr>
<tr>
<td>Abb. 40</td>
<td>Comet Assay nach Akkumulation der 125IUDR-Zerfälle in T1- und 86HG-39-Zellen bei −196°C</td>
<td>56</td>
</tr>
<tr>
<td>Abb. 41</td>
<td>HA-Chromatographie nach 125IUDR-Inkorporation in T1- und 86HG-39-Zellen</td>
<td>57</td>
</tr>
<tr>
<td>Abb. 42</td>
<td>Koloniebildungs-Test nach Exposition der T1- und 86HG-39-Zellen mit verschiedenen Antipyrin-Konzentrationen</td>
<td>58</td>
</tr>
<tr>
<td>Abb. 43</td>
<td>Comet Assay nach Exposition der T1- und 86HG-39-Zellen mit verschiedenen Antipyrin-Konzentrationen</td>
<td>58</td>
</tr>
<tr>
<td>Abb. 44</td>
<td>Überlebenskurven nach Exposition der T1- und 86HG-39-Zellen mit 125-AP</td>
<td>59</td>
</tr>
<tr>
<td>Abb. 45</td>
<td>Comet Assay nach Exposition der T1- u. 86HG-39-Zellen mit 125-AP</td>
<td>60</td>
</tr>
<tr>
<td>Abb. 46</td>
<td>Comet Assay nach 125-AP-Exposition der T1-Zellen auf Eis</td>
<td>61</td>
</tr>
<tr>
<td>Abb. 47</td>
<td>Überlebenskurven nach Exposition der T1- und 86HG-39-Zellen mit Na125I für 30 h</td>
<td>62</td>
</tr>
<tr>
<td>Abb. 48</td>
<td>Comet Assay nach Exposition der T1- und 86HG-39-Zellen mit Na125I für 30 h</td>
<td>62</td>
</tr>
</tbody>
</table>
Abb. 49 Überlebenskurven nach Exposition der T1- und 86HG-39-Zellen mit Na^{125}I für 28 h
Abb. 50 Comet Assay nach Exposition der T1- und 86HG-39-Zellen mit Na^{125}I für 28 h
Abb. 51 Comet Assay mit T1-Zellen (jeweils Kontrolle und mit 4 Gy bestrahlte Probe) nach methodischen Modifikationen
Abb. 52 Schema zur Messung von DNA-Strangbrüchen mittels HA-Chromatographie
Abb. 53 Vergleich der Überlebenskurven von T1- und 86HG-39-Zellen nach 30 h $^{125}\text{I}\text{dR}$- und 28 h $^{125}\text{I}\text{-AP}$-Exposition
Abb. 54 Teil des FU-/FUdR-Metabolismus und Mechanismus in der Zelle (Isacoff und Borud, 1997)
Abb. 55 Vergleich der OTM-Funktionen von T1- und 86HG-39-Zellen nach $^{125}\text{I}\text{dR}$- und $^{125}\text{I}\text{-AP}$-Exposition
Abb. 56 Aufnahme von Kometen nach $^{125}\text{I}\text{dR}$-Exposition und Akkumulation der Zerfälle bei −196°C
Abb. 57 Vergleich der Überlebenskurven von T1- und 86HG-39-Zellen nach 30 h oder 28 h Exposition mit Na^{125}I, $^{125}\text{I}\text{-AP}$ und $^{125}\text{I}\text{dR}$

Tabellenverzeichnis

Tab. 1 Zerfallsspektrum von ^{125}I in kondensierter Phase (Pomplun, 1987 und 2000)
Tab. 2 Qualitätsfaktoren verschiedener Strahlenarten (Strahlenschutzverordnung, Veith, 1996)
Tab. 3 Dosis pro akkumulierter Aktivität von ^{125}I in Gy/ Bq x h (n. Howell, 1992)
Tab. 4 Vergleich der Halbwertszeiten, AE-Anzahl und mittleren AE-Energien pro Zerfall von AE-Emittern (O’Donoghue und Wheldon, 1996)
Tab. 5 Zellzyklusphasenanteile (%) von T1- und 86HG-39-Zellen nach 4 und 7 Tagen Wachstum in Leighton-Kulturröhrchen
Tab. 6 Charakteristische Kennzahlen der T1- und 86HG-39-Überlebenskurven nach ^{137}Cs-γ-Bestrahlung
Tab. 7 ds-DNA-Fraktionen nach Exposition der T1- und 86HG-39-Zellen mit FUdR und CdR
Tab. 8 Korrelationsanalyse zwischen Koloniebildungsindex und Comet Assay (mit Pearson’schem Maßkorrelationskoeffizient r und Irrtumswahrscheinlichkeit α)
Tab. 9 D_{37}-Werte der Überlebenskurven nach $^{125}\text{I}\text{dR}$- und $^{126}\text{I}\text{-AP}$-Exposition
Tab. 10 Vergleich der OTM-Werte bei 1000 d/c nach $^{125}\text{I}\text{dR}$- und $^{126}\text{I}\text{-AP}$-Exposition
<table>
<thead>
<tr>
<th>Tab.</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Relative Häufigkeiten (%) der OTM-Werte nach 137Cs-γ-Bestrahlung der T1- und 86HG-39-Zellen</td>
<td>80</td>
</tr>
<tr>
<td>12</td>
<td>Relative Häufigkeiten (%) der OTM-Werte nach 125IUDR-Inkorporation in T1-Zellen und Akkumulation der Zerfälle bei -196°C</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>Relative Häufigkeiten (%) der OTM-Werte nach 125IUDR-Inkorporation in 86HG-39- Zellen und Akkumulation der Zerfälle bei -196°C</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>Vergleich der OTM-Werte bei 1000 d/c in T1-Zellen nach Inkubation bei verschiedenen Temperaturen</td>
<td>82</td>
</tr>
<tr>
<td>15</td>
<td>Gegenüberstellung der Methodik von Koloniebildungstest und Comet Assay</td>
<td>85</td>
</tr>
<tr>
<td>16</td>
<td>Literaturübersicht zur gesamten Elektronenenergie pro 125I-Zerfall</td>
<td>88</td>
</tr>
<tr>
<td>17</td>
<td>Dosis pro 125I-AP-Zerfall in T1- und 86HG-39-Zellen</td>
<td>89</td>
</tr>
<tr>
<td>18</td>
<td>Vergleich der biologischen Wirksamkeit von 125IUDR, 125I-AP und 137Cs-γ am Beispiel des klonogenen Überlebens von T1-Zellen</td>
<td>90</td>
</tr>
<tr>
<td>19</td>
<td>Vergleich der biologischen Wirksamkeit von 125IUDR, 125I-AP und 137Cs-γ am Beispiel des klonogenen Überlebens von 86HG-39-Zellen</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>Vergleich der biologischen Wirksamkeit von 125IUDR, 125I-AP und 137Cs-γ am Beispiel der DNA-Schädigung von T1-Zellen</td>
<td>91</td>
</tr>
<tr>
<td>21</td>
<td>Literaturvergleich: Dosisberechnungen pro 125IUDR-Zerfall im Zellkern</td>
<td>93</td>
</tr>
<tr>
<td>22</td>
<td>Literaturvergleich: Dosisberechnungen für 125IUDR bezüglich der 37%-Überlebensfraktion</td>
<td>93</td>
</tr>
</tbody>
</table>
Anhang

Datentabellen zum Ergebnisteil

<table>
<thead>
<tr>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit (h)</td>
<td>Zellzahl</td>
</tr>
<tr>
<td>0</td>
<td>0,300</td>
</tr>
<tr>
<td>18</td>
<td>0,427</td>
</tr>
<tr>
<td>24</td>
<td>0,501</td>
</tr>
<tr>
<td>42</td>
<td>0,770</td>
</tr>
<tr>
<td>48</td>
<td>0,851</td>
</tr>
<tr>
<td>66</td>
<td>1,260</td>
</tr>
<tr>
<td>72</td>
<td>1,330</td>
</tr>
<tr>
<td>91</td>
<td>2,022</td>
</tr>
<tr>
<td>113,5</td>
<td>2,443</td>
</tr>
<tr>
<td>138,5</td>
<td>3,095</td>
</tr>
<tr>
<td>162</td>
<td>2,900</td>
</tr>
<tr>
<td>186</td>
<td>2,517</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zelltyp</th>
<th>Alter (Tage)</th>
<th>G1/ G0-Phase</th>
<th>S-Phase</th>
<th>G2/ M-Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>3</td>
<td>54,3</td>
<td>16,9</td>
<td>28,8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>35,6</td>
<td>26,8</td>
<td>37,6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>45,6</td>
<td>17,4</td>
<td>37,1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>57,8</td>
<td>21,0</td>
<td>21,2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>44,3</td>
<td>17,3</td>
<td>38,4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>49,1</td>
<td>29,4</td>
<td>21,5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>63,7</td>
<td>22,7</td>
<td>13,6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>43,5</td>
<td>23,6</td>
<td>32,9</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>40,2</td>
<td>23,3</td>
<td>36,5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>31,3</td>
<td>28,5</td>
<td>40,1</td>
</tr>
<tr>
<td>86HG-39</td>
<td>4</td>
<td>32,7</td>
<td>35,9</td>
<td>31,4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>69,0</td>
<td>23,9</td>
<td>7,1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>91,1</td>
<td>5,4</td>
<td>3,6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>89,4</td>
<td>7,2</td>
<td>3,4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>87,7</td>
<td>7,1</td>
<td>5,2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>77,4</td>
<td>9,0</td>
<td>13,6</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>85,3</td>
<td>10,0</td>
<td>4,7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>88,5</td>
<td>7,8</td>
<td>3,7</td>
</tr>
</tbody>
</table>
3. Mittelwerte der Viabilitätsraten beim Farbtest auf Lebensfähigkeit bei T1- und 86HG-39-Zellen nach \(^{137}\text{Cs-}\gamma\)-Bestrahlung (n = 10; vgl. Abb. 21)

<table>
<thead>
<tr>
<th>Dosis (Gy)</th>
<th>T1-Zellen</th>
<th></th>
<th></th>
<th>86HG-39-Zellen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viabilitätsrate (%)</td>
<td>±SE</td>
<td>Viabilitätsrate (%)</td>
<td>±SE</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>100,00</td>
<td>2,07</td>
<td></td>
<td>100,00</td>
<td>1,36</td>
</tr>
<tr>
<td>1</td>
<td>98,07</td>
<td>1,81</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>100,40</td>
<td>1,12</td>
<td>96,42</td>
<td>1,44</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>97,18</td>
<td>1,69</td>
<td>94,72</td>
<td>1,84</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>94,05</td>
<td>1,40</td>
<td>93,59</td>
<td>1,07</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>92,27</td>
<td>1,88</td>
<td>94,82</td>
<td>1,62</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>87,91</td>
<td>2,46</td>
<td>90,84</td>
<td>2,13</td>
<td></td>
</tr>
</tbody>
</table>

4. AChE-Aktivitätsrate des Standards aus Rinder-Erythrozyten (μMol Substrat hydrolisiert pro Minute und ml Probe) in Abhängigkeit von der Konzentration im Medium (n = 3; vgl. Abb. 22)

<table>
<thead>
<tr>
<th>AChE (μg/ml)</th>
<th>AChE-Aktivitätsrate</th>
<th>±SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,497</td>
<td>0,164</td>
</tr>
<tr>
<td>0,01</td>
<td>5,429</td>
<td>0,124</td>
</tr>
<tr>
<td>0,025</td>
<td>12,006</td>
<td>0,124</td>
</tr>
<tr>
<td>0,05</td>
<td>24,471</td>
<td>0,242</td>
</tr>
<tr>
<td>0,1</td>
<td>45,921</td>
<td>0,446</td>
</tr>
<tr>
<td>0,15</td>
<td>67,447</td>
<td>0,696</td>
</tr>
</tbody>
</table>

5. Mittelwerte der AChE-Aktivitätsraten (μMol Substrat hydrolysiert pro Minute und g Protein) von T1- und 86HG-39-Zellen nach \(^{137}\text{Cs-}\gamma\)-Bestrahlung (n = 10; vgl. Abb. 23)

<table>
<thead>
<tr>
<th>Dosis</th>
<th>T1-Zellen</th>
<th></th>
<th></th>
<th>86HG-39-Zellen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aktivitätsrate</td>
<td>±SE</td>
<td>Aktivitätsrate</td>
<td>±SE</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0,886</td>
<td>0,179</td>
<td></td>
<td>3,025</td>
<td>0,327</td>
</tr>
<tr>
<td>1</td>
<td>0,853</td>
<td>0,094</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0,745</td>
<td>0,159</td>
<td>3,013</td>
<td>0,381</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,854</td>
<td>0,059</td>
<td>3,203</td>
<td>0,386</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,795</td>
<td>0,079</td>
<td>2,995</td>
<td>0,375</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0,846</td>
<td>0,177</td>
<td>2,861</td>
<td>0,377</td>
<td></td>
</tr>
</tbody>
</table>
6. Überlebensfraktionen (SF) der T1- und 86HG-39-Zellen nach 137Cs-γ-Bestrahlung (n = 9; vgl. Abb. 24)

<table>
<thead>
<tr>
<th>Dosis (Gy)</th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SF (%)</td>
<td>± SE</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>1,18</td>
</tr>
<tr>
<td>1</td>
<td>62,83</td>
<td>1,91</td>
</tr>
<tr>
<td>1,5</td>
<td>39,30</td>
<td>1,12</td>
</tr>
<tr>
<td>2</td>
<td>34,05</td>
<td>3,00</td>
</tr>
<tr>
<td>3</td>
<td>10,17</td>
<td>0,61</td>
</tr>
<tr>
<td>5</td>
<td>0,31</td>
<td>0,12</td>
</tr>
<tr>
<td>7</td>
<td>0,023</td>
<td>0,01</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

7. OTM der T1- und 86HG-39-Zellen nach 137Cs-γ-Bestrahlung (n = 200; vgl. Abb. 25)

<table>
<thead>
<tr>
<th>Dosis (Gy)</th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OTM</td>
<td>± SE</td>
</tr>
<tr>
<td>0</td>
<td>1,00</td>
<td>0,04</td>
</tr>
<tr>
<td>0,5</td>
<td>1,53</td>
<td>0,09</td>
</tr>
<tr>
<td>1</td>
<td>1,94</td>
<td>0,07</td>
</tr>
<tr>
<td>2</td>
<td>2,81</td>
<td>0,06</td>
</tr>
<tr>
<td>3</td>
<td>4,26</td>
<td>0,12</td>
</tr>
<tr>
<td>4</td>
<td>5,31</td>
<td>0,09</td>
</tr>
<tr>
<td>8</td>
<td>9,98</td>
<td>0,15</td>
</tr>
<tr>
<td>10</td>
<td>12,80</td>
<td>0,21</td>
</tr>
</tbody>
</table>

8. OTM der T1-Zellen nach 137Cs-γ-Bestrahlung (4 Gy) und anschließender Reparatur bei 37°C (n = 200; vgl. Abb. 27)

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DNA-Schaden (%)</td>
<td>DNA-Schaden (%)</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>68,44</td>
<td>61,39</td>
</tr>
<tr>
<td>4</td>
<td>51,06</td>
<td>55,99</td>
</tr>
<tr>
<td>5</td>
<td>60,73</td>
<td>42,48</td>
</tr>
<tr>
<td>6</td>
<td>34,88</td>
<td>29,32</td>
</tr>
<tr>
<td>8</td>
<td>26,97</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>37,62</td>
<td>-</td>
</tr>
<tr>
<td>10,5</td>
<td>33,66</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>21,87</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>17,77</td>
<td>-</td>
</tr>
<tr>
<td>20,5</td>
<td>23,06</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>14,02</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>12,32</td>
<td>-</td>
</tr>
</tbody>
</table>
9. ds-DNA-Fraktionen von T1- und 86HG-39-Zellen nach \(^{137}\text{Cs}-\gamma\)-Bestrahlung (n = 2-3; vgl. Abb. 28)

<table>
<thead>
<tr>
<th>Dosis (Gy)</th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ds-DNA %</td>
<td>± SE</td>
</tr>
<tr>
<td>0</td>
<td>74,10</td>
<td>6,36</td>
</tr>
<tr>
<td>2</td>
<td>55,30</td>
<td>5,66</td>
</tr>
<tr>
<td>4</td>
<td>45,85</td>
<td>4,45</td>
</tr>
<tr>
<td>6</td>
<td>35,70</td>
<td>2,83</td>
</tr>
<tr>
<td>8</td>
<td>31,30</td>
<td>2,55</td>
</tr>
<tr>
<td>10</td>
<td>23,55</td>
<td>0,35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeit (h)</th>
<th>Aktivität (mBq/ Zelle)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1-Zellen</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0,26</td>
</tr>
<tr>
<td>2</td>
<td>0,48</td>
</tr>
<tr>
<td>4</td>
<td>0,74</td>
</tr>
<tr>
<td>5</td>
<td>1,04</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>1,11</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>1,15</td>
</tr>
<tr>
<td>24</td>
<td>1,41</td>
</tr>
</tbody>
</table>

11. \(^{125}\text{IUDR}\)-Inkorporationskinetik mit Mediumwechsel (MW) am Beispiel der T1-Zellen: Aktivität pro Zelle in Abhängigkeit von der Zeit (n = 3; vgl. Abb. 30)

<table>
<thead>
<tr>
<th>Zeit (h)</th>
<th>Aktivität (mBq/ Zelle)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1x MW ± SE</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1,887</td>
</tr>
<tr>
<td>23</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>1,314</td>
</tr>
<tr>
<td></td>
<td>0,019</td>
</tr>
</tbody>
</table>

12. \(^{125}\text{IUDR}\)-Inkorporation von T1- und 86HG-39-Zellen in Abhängigkeit von der radioaktiven Konzentration im Medium (vgl. Abb. 31)

<table>
<thead>
<tr>
<th>Konzentration (kBq/ ml)</th>
<th>Aktivität (mBq/ Zelle)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1-Zellen</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1,85</td>
<td>5,77</td>
</tr>
<tr>
<td>3,85</td>
<td>13,80</td>
</tr>
<tr>
<td>7,47</td>
<td>-</td>
</tr>
<tr>
<td>7,77</td>
<td>29,30</td>
</tr>
<tr>
<td>11,21</td>
<td>-</td>
</tr>
<tr>
<td>11,40</td>
<td>41,77</td>
</tr>
</tbody>
</table>
13. \(^{125}\)IUDR-Inkorporation bei verschiedenen FUdR- und CdR-Konzentrationen am Beispiel der 86HG-39-Zellen (vgl. Abb. 32)

<table>
<thead>
<tr>
<th>Zeit (Stunden)</th>
<th>FUdR/ CdR-Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ko</td>
</tr>
<tr>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>8</td>
<td>0,48</td>
</tr>
<tr>
<td>24</td>
<td>1,07</td>
</tr>
</tbody>
</table>

14. Überlebensfraktionen der T1-Zellen nach Inkubation mit FUdR- und CdR (n = 3; vgl. Abb. 33)

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>SF (%)</th>
<th>(\pm SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>100</td>
<td>3,11</td>
</tr>
<tr>
<td>(10^{-8}) M FUdR</td>
<td>90,88</td>
<td>1,38</td>
</tr>
<tr>
<td>(10^{-7}) M FUdR</td>
<td>85,56</td>
<td>3,11</td>
</tr>
<tr>
<td>(10^{-6}) M FUdR</td>
<td>17,90</td>
<td>1,61</td>
</tr>
<tr>
<td>(10^{-6}) M CdR</td>
<td>97,33</td>
<td>2,10</td>
</tr>
<tr>
<td>(10^{-7}) M CdR</td>
<td>81,75</td>
<td>0,65</td>
</tr>
<tr>
<td>(10^{-6}) M CdR</td>
<td>84,98</td>
<td>3,57</td>
</tr>
</tbody>
</table>

15. Überlebensfraktionen der T1- und 86HG-39-Zellen nach Exposition mit FUdR, CdR und IUDR (n = 3; vgl. Abb. 34)

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SF (%)</td>
<td>(\pm SE)</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>100</td>
<td>6,31</td>
</tr>
<tr>
<td>(10^{-8}) M FUdR/ CdR</td>
<td>116,60</td>
<td>3,03</td>
</tr>
<tr>
<td>(10^{-8}) M FUdR/ CdR + (10^{-12}) M IUDR</td>
<td>94,63</td>
<td>1,86</td>
</tr>
<tr>
<td>(10^{-6}) M FUdR/ CdR + (10^{-12}) M IUDR</td>
<td>52,10</td>
<td>1,10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OTM</td>
<td>(\pm SE)</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>1,000</td>
<td>0,048</td>
</tr>
<tr>
<td>(10^{-8}) M FUdR/ CdR</td>
<td>1,101</td>
<td>0,052</td>
</tr>
<tr>
<td>(10^{-8}) M FUdR/ CdR + (10^{-12}) M IUDR</td>
<td>0,992</td>
<td>0,048</td>
</tr>
<tr>
<td>(10^{-6}) M FUdR/ CdR + (10^{-12}) M IUDR</td>
<td>2,244</td>
<td>0,128</td>
</tr>
</tbody>
</table>
17. Überlebensfraktionen der T1- und 86HG-39-Zellen nach 125IUDR-Inkorporation im Standardverfahren (n = 3; vgl. Abb. 36)

<table>
<thead>
<tr>
<th></th>
<th>T1-Zellen</th>
<th></th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SF (%)</td>
<td>± SE</td>
<td>d/c SF (%)</td>
</tr>
<tr>
<td>0</td>
<td>100,00</td>
<td>1,80</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>67,20</td>
<td>2,00</td>
<td>54</td>
</tr>
<tr>
<td>70</td>
<td>37,43</td>
<td>1,99</td>
<td>91</td>
</tr>
<tr>
<td>78</td>
<td>40,43</td>
<td>2,20</td>
<td>92</td>
</tr>
<tr>
<td>141</td>
<td>23,73</td>
<td>0,70</td>
<td>137</td>
</tr>
<tr>
<td>272</td>
<td>19,60</td>
<td>1,20</td>
<td>196</td>
</tr>
<tr>
<td>312</td>
<td>14,47</td>
<td>0,30</td>
<td>220</td>
</tr>
<tr>
<td>340</td>
<td>13,73</td>
<td>0,98</td>
<td>301</td>
</tr>
<tr>
<td>373</td>
<td>9,10</td>
<td>0,50</td>
<td>401</td>
</tr>
<tr>
<td>647</td>
<td>7,15</td>
<td>0,35</td>
<td>444</td>
</tr>
<tr>
<td>710</td>
<td>6,30</td>
<td>0,40</td>
<td>626</td>
</tr>
<tr>
<td>1520</td>
<td>5,40</td>
<td>0,60</td>
<td>837</td>
</tr>
<tr>
<td>3246</td>
<td>4,70</td>
<td>0,20</td>
<td>1501</td>
</tr>
</tbody>
</table>

18. OTM der T1- und 86HG-39-Zellen nach 125IUDR-Inkorporation im Standardverfahren (n = 200; vgl. Abb. 37)

<table>
<thead>
<tr>
<th></th>
<th>T1-Zellen</th>
<th></th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OTM</td>
<td>± SE</td>
<td>d/c OTM</td>
</tr>
<tr>
<td>0</td>
<td>1,000</td>
<td>0,044</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>1,053</td>
<td>0,045</td>
<td>54</td>
</tr>
<tr>
<td>70</td>
<td>1,139</td>
<td>0,048</td>
<td>91</td>
</tr>
<tr>
<td>78</td>
<td>1,293</td>
<td>0,059</td>
<td>92</td>
</tr>
<tr>
<td>141</td>
<td>1,363</td>
<td>0,051</td>
<td>137</td>
</tr>
<tr>
<td>272</td>
<td>1,308</td>
<td>0,055</td>
<td>196</td>
</tr>
<tr>
<td>312</td>
<td>1,465</td>
<td>0,049</td>
<td>220</td>
</tr>
<tr>
<td>340</td>
<td>1,443</td>
<td>0,047</td>
<td>301</td>
</tr>
<tr>
<td>373</td>
<td>1,269</td>
<td>0,044</td>
<td>401</td>
</tr>
<tr>
<td>647</td>
<td>1,467</td>
<td>0,048</td>
<td>444</td>
</tr>
<tr>
<td>710</td>
<td>1,342</td>
<td>0,048</td>
<td>626</td>
</tr>
<tr>
<td>1520</td>
<td>1,742</td>
<td>0,072</td>
<td>837</td>
</tr>
<tr>
<td>3246</td>
<td>2,368</td>
<td>0,101</td>
<td>1501</td>
</tr>
</tbody>
</table>

19. Überlebensfraktionen der T1- und 86HG-39-Zellen nach 125IUDR-Inkubation für 1½ Verdopplungszeiten (n = 3; vgl. Abb. 38)

<table>
<thead>
<tr>
<th></th>
<th>T1-Zellen</th>
<th></th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SF (%)</td>
<td>± SE</td>
<td>d/c SF (%)</td>
</tr>
<tr>
<td>0</td>
<td>100,00</td>
<td>2,54</td>
<td>0</td>
</tr>
<tr>
<td>390</td>
<td>3,77</td>
<td>0,38</td>
<td>147</td>
</tr>
<tr>
<td>688</td>
<td>0,96</td>
<td>0,25</td>
<td>376</td>
</tr>
<tr>
<td>1416</td>
<td>1,70</td>
<td>0,06</td>
<td>630</td>
</tr>
<tr>
<td>1440</td>
<td>0,76</td>
<td>0,11</td>
<td>779</td>
</tr>
<tr>
<td>2323</td>
<td>0,63</td>
<td>0,03</td>
<td>987</td>
</tr>
<tr>
<td>2502</td>
<td>0,63</td>
<td>0,11</td>
<td>1611</td>
</tr>
<tr>
<td>5033</td>
<td>0,50</td>
<td>0,00</td>
<td>2832</td>
</tr>
<tr>
<td>5571</td>
<td>0,40</td>
<td>0,00</td>
<td>3078</td>
</tr>
</tbody>
</table>
20. OTM der T1- und 86HG-39-Zellen nach 125IUDR-Inkubation für 1½ Verdopplungszeiten (n = 200; vgl. Abb. 39)

<table>
<thead>
<tr>
<th>d/c</th>
<th>OTM</th>
<th>± SE</th>
<th>d/c</th>
<th>OTM</th>
<th>± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,000</td>
<td>0,051</td>
<td>0</td>
<td>1,000</td>
<td>0,042</td>
</tr>
<tr>
<td>390</td>
<td>1,246</td>
<td>0,064</td>
<td>147</td>
<td>1,025</td>
<td>0,064</td>
</tr>
<tr>
<td>688</td>
<td>1,506</td>
<td>0,090</td>
<td>376</td>
<td>1,140</td>
<td>0,075</td>
</tr>
<tr>
<td>1416</td>
<td>1,366</td>
<td>0,062</td>
<td>630</td>
<td>1,156</td>
<td>0,045</td>
</tr>
<tr>
<td>1440</td>
<td>1,812</td>
<td>0,103</td>
<td>779</td>
<td>1,038</td>
<td>0,043</td>
</tr>
<tr>
<td>2323</td>
<td>1,652</td>
<td>0,078</td>
<td>987</td>
<td>1,141</td>
<td>0,056</td>
</tr>
<tr>
<td>2502</td>
<td>1,776</td>
<td>0,016</td>
<td>1611</td>
<td>1,290</td>
<td>0,049</td>
</tr>
<tr>
<td>5033</td>
<td>2,143</td>
<td>0,107</td>
<td>2832</td>
<td>1,570</td>
<td>0,053</td>
</tr>
<tr>
<td>5571</td>
<td>2,303</td>
<td>0,091</td>
<td>3078</td>
<td>1,337</td>
<td>0,054</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d/c</th>
<th>OTM</th>
<th>± SE</th>
<th>d/c</th>
<th>OTM</th>
<th>± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,000</td>
<td>0,051</td>
<td>0</td>
<td>1,000</td>
<td>0,041</td>
</tr>
<tr>
<td>453</td>
<td>1,751</td>
<td>0,057</td>
<td>803</td>
<td>1,854</td>
<td>0,110</td>
</tr>
<tr>
<td>1087</td>
<td>2,804</td>
<td>0,097</td>
<td>1928</td>
<td>3,276</td>
<td>0,201</td>
</tr>
<tr>
<td>1655</td>
<td>3,704</td>
<td>0,210</td>
<td>2935</td>
<td>5,588</td>
<td>0,282</td>
</tr>
<tr>
<td>2179</td>
<td>6,388</td>
<td>0,266</td>
<td>3864</td>
<td>5,794</td>
<td>0,260</td>
</tr>
</tbody>
</table>

22. ds-DNA-Fraktionen der T1- und 86HG-39-Zellen nach 125IUDR-Inkorporation (vgl. Abb. 41)

<table>
<thead>
<tr>
<th>d/c</th>
<th>ds-DNA-Fraktion (%)</th>
<th>d/c</th>
<th>ds-DNA-Fraktion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>95,8</td>
<td>0</td>
<td>92,9</td>
</tr>
<tr>
<td>266</td>
<td>95,6</td>
<td>235</td>
<td>92,1</td>
</tr>
<tr>
<td>467</td>
<td>95,1</td>
<td>236</td>
<td>96,5</td>
</tr>
<tr>
<td>481</td>
<td>94,8</td>
<td>478</td>
<td>92,0</td>
</tr>
<tr>
<td>962</td>
<td>93,0</td>
<td>494</td>
<td>94,6</td>
</tr>
<tr>
<td>976</td>
<td>93,0</td>
<td>942</td>
<td>92,8</td>
</tr>
<tr>
<td>1268</td>
<td>91,9</td>
<td>955</td>
<td>95,0</td>
</tr>
<tr>
<td>1679</td>
<td>84,7</td>
<td>1611</td>
<td>84,9</td>
</tr>
<tr>
<td>2146</td>
<td>87,7</td>
<td>1725</td>
<td>92,0</td>
</tr>
</tbody>
</table>

23. Überlebensfraktionen der T1- und 86HG-39-Zellen nach 28 h Exposition mit Antipyrin (n = 3; vgl. Abb. 42)

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SF (%)</td>
<td>± SE</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>100</td>
<td>2,63</td>
</tr>
<tr>
<td>10^{-6} M</td>
<td>106,20</td>
<td>7,05</td>
</tr>
<tr>
<td>10^{-7} M</td>
<td>106,60</td>
<td>7,64</td>
</tr>
<tr>
<td>10^{-6} M</td>
<td>107,23</td>
<td>6,07</td>
</tr>
</tbody>
</table>
24. OTM der T1- und 86HG-39-Zellen nach 28 h Exposition mit Antipyrin (n = 200; vgl. Abb. 43)

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OTM ± SE</td>
<td>OTM ± SE</td>
</tr>
<tr>
<td>Kontrolle ohne Zusätze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-8} M</td>
<td>1,000 0,060</td>
<td>1,000 0,068</td>
</tr>
<tr>
<td>10^{-7} M</td>
<td>1,046 0,079</td>
<td>0,922 0,058</td>
</tr>
<tr>
<td>10^{-6} M</td>
<td>0,796 0,060</td>
<td>0,876 0,050</td>
</tr>
<tr>
<td></td>
<td>0,997 0,078</td>
<td>0,891 0,061</td>
</tr>
</tbody>
</table>

25. Überlebensfraktionen der T1- und 86HG-39-Zellen nach Exposition mit 125I-AP (n = 3; vgl. Abb. 44)

<table>
<thead>
<tr>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>d/c</td>
<td>SF (%) ± SE</td>
</tr>
<tr>
<td>0</td>
<td>0 100,00 2,51</td>
</tr>
<tr>
<td>275</td>
<td>275 102,63 2,38</td>
</tr>
<tr>
<td>313</td>
<td>313 95,20 4,02</td>
</tr>
<tr>
<td>550</td>
<td>550 79,73 1,53</td>
</tr>
<tr>
<td>604</td>
<td>604 84,27 3,20</td>
</tr>
<tr>
<td>825</td>
<td>825 42,67 2,22</td>
</tr>
<tr>
<td>957</td>
<td>957 64,03 1,90</td>
</tr>
<tr>
<td>1100</td>
<td>1100 29,00 0,72</td>
</tr>
<tr>
<td>1110</td>
<td>1110 44,10 3,24</td>
</tr>
<tr>
<td>1293</td>
<td>1293 36,87 2,43</td>
</tr>
<tr>
<td>1710</td>
<td>1710 20,10 1,72</td>
</tr>
</tbody>
</table>

26. OTM der T1- und 86HG-39-Zellen nach Exposition mit 125I-AP (n = 200; vgl. Abb. 45)

<table>
<thead>
<tr>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>d/c</td>
<td>OTM ± SE</td>
</tr>
<tr>
<td>0</td>
<td>0 1,000 0,045</td>
</tr>
<tr>
<td>313</td>
<td>313 1,193 0,056</td>
</tr>
<tr>
<td>604</td>
<td>604 1,315 0,053</td>
</tr>
<tr>
<td>957</td>
<td>957 1,221 0,061</td>
</tr>
<tr>
<td>1100</td>
<td>1100 1,523 0,107</td>
</tr>
<tr>
<td>1293</td>
<td>1293 1,395 0,117</td>
</tr>
<tr>
<td>1710</td>
<td>1710 1,666 0,151</td>
</tr>
</tbody>
</table>

27. OTM der T1-Zellen nach Akkumulation der 125I-AP-Zerfälle auf Eis (n = 200; vgl. Abb. 46)

<table>
<thead>
<tr>
<th>d/c</th>
<th>OTM ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 1,000 0,042</td>
</tr>
<tr>
<td>794</td>
<td>794 1,377 0,063</td>
</tr>
<tr>
<td>1588</td>
<td>1588 2,905 0,229</td>
</tr>
<tr>
<td>2351</td>
<td>2351 4,229 0,190</td>
</tr>
<tr>
<td>2931</td>
<td>2931 5,214 0,240</td>
</tr>
</tbody>
</table>
28. Überlebensfraktionen der T1- und 86HG-39-Zellen nach 30 h Na125I-Exposition mit Mediumwechsel (n = 3; vgl. Abb. 47)

<table>
<thead>
<tr>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>kBq/ ml</td>
<td>SF (%)</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1,85</td>
<td>96,85</td>
</tr>
<tr>
<td>3,70</td>
<td>99,80</td>
</tr>
<tr>
<td>6,51</td>
<td>97,37</td>
</tr>
<tr>
<td>7,40</td>
<td>84,37</td>
</tr>
<tr>
<td>12,99</td>
<td>91,17</td>
</tr>
<tr>
<td>14,80</td>
<td>92,30</td>
</tr>
<tr>
<td>19,24</td>
<td>105,07</td>
</tr>
<tr>
<td>25,90</td>
<td>97,63</td>
</tr>
</tbody>
</table>

29. OTM der T1- und 86HG-39-Zellen nach 30 h Na125I-Exposition mit Mediumwechsel (n = 200; vgl. Abb. 48)

<table>
<thead>
<tr>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>kBq/ ml</td>
<td>OTM ± SE</td>
</tr>
<tr>
<td>0</td>
<td>1,000</td>
</tr>
<tr>
<td>1,85</td>
<td>0,938</td>
</tr>
<tr>
<td>3,70</td>
<td>1,021</td>
</tr>
<tr>
<td>6,51</td>
<td>0,939</td>
</tr>
<tr>
<td>7,40</td>
<td>0,962</td>
</tr>
<tr>
<td>12,99</td>
<td>0,855</td>
</tr>
<tr>
<td>14,80</td>
<td>0,932</td>
</tr>
<tr>
<td>19,24</td>
<td>0,895</td>
</tr>
<tr>
<td>25,97</td>
<td>0,714</td>
</tr>
</tbody>
</table>

30. Überlebensfraktionen der T1- und 86HG-39-Zellen nach 28 h Na125I-Exposition ohne Mediumwechsel (n = 3; vgl. Abb. 49)

<table>
<thead>
<tr>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBq/ ml</td>
<td>SF (%)</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1,30</td>
<td>91,77</td>
</tr>
<tr>
<td>2,66</td>
<td>69,83</td>
</tr>
<tr>
<td>3,89</td>
<td>85,83</td>
</tr>
<tr>
<td>5,18</td>
<td>65,47</td>
</tr>
</tbody>
</table>

31. OTM der T1- und 86HG-39-Zellen nach 28 h Na125I-Exposition ohne Mediumwechsel (n = 200; vgl. Abb. 50)

<table>
<thead>
<tr>
<th>T1-Zellen</th>
<th>86HG-39-Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBq/ ml</td>
<td>OTM ± SE</td>
</tr>
<tr>
<td>0</td>
<td>1,000</td>
</tr>
<tr>
<td>1,295</td>
<td>1,279</td>
</tr>
<tr>
<td>2,664</td>
<td>1,146</td>
</tr>
<tr>
<td>3,885</td>
<td>1,142</td>
</tr>
<tr>
<td>5,180</td>
<td>1,238</td>
</tr>
</tbody>
</table>
32. OTM der T1-Zellen nach Modifikationen der Methodik (n = 200; vgl. Abb. 51)

<table>
<thead>
<tr>
<th>mod. Methode</th>
<th>γ-Bestrahlung</th>
<th>OTM</th>
<th>± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal (1)</td>
<td>Kontrolle</td>
<td>1,000</td>
<td>0,072</td>
</tr>
<tr>
<td></td>
<td>4 Gy</td>
<td>3,554</td>
<td>0,082</td>
</tr>
<tr>
<td>35 min Unwinding (2)</td>
<td>Kontrolle</td>
<td>1,084</td>
<td>0,114</td>
</tr>
<tr>
<td></td>
<td>4 Gy</td>
<td>4,392</td>
<td>0,120</td>
</tr>
<tr>
<td>35 min Elektrophorese (3)</td>
<td>Kontrolle</td>
<td>1,427</td>
<td>0,078</td>
</tr>
<tr>
<td></td>
<td>4 Gy</td>
<td>7,797</td>
<td>0,202</td>
</tr>
<tr>
<td>Elektrophorese mit 1V/ cm (4)</td>
<td>Kontrolle</td>
<td>1,527</td>
<td>0,085</td>
</tr>
<tr>
<td></td>
<td>4 Gy</td>
<td>9,941</td>
<td>0,225</td>
</tr>
</tbody>
</table>
Literaturverzeichnis

Danksagung

An dieser Stelle möchte ich mich bei Herrn Prof. Dr. Soll (Botanisches Institut der Christian-Albrechts-Universität Kiel) für die bereitwillige Übernahme des Referates sowie bei Herrn Priv.-Doz. Dr. med. Carl (Chefarzt, Klinik für Strahlentherapie, Radioonkologie und Nuklearmedizin des Diakoniekrankenhauses Rotenburg/ Wümme) für die freundliche Übernahme des Korreferates bedanken.

Herrn Prof. Dr. med. Zilles (Direktor des Institutes für Medizin, FZ-Jülich) danke ich für die Möglichkeit zur Durchführung dieser Doktorarbeit an seinem Institut in dem Labor für Strahlenbiologie.

Ich danke auch Herrn Prof. Dr. med. Schmitt (Direktor der Klinik und Polyklinik für Strahlentherapie und Radiologische Onkologie der Heinrich-Heine-Universität Düsseldorf) für sein anteilnehmendes Interesse an dieser Arbeit.

Mein besonders herzlicher Dank gilt Herrn Dr. Schneeweiß (Institut für Medizin, FZ-Jülich) für die wissenschaftliche Betreuung dieser strahlenbiologischen Arbeit und seinen ständigen Einsatz mit vielen förderlichen Diskussionen. Danken möchte ich auch Herrn Dr. Pomplun (Abteilung Sicherheit und Strahlenschutz, FZ-Jülich) für seine wissenschaftlichen Beratungen bezüglich des physikalisch-theoretischen Teils dieser Arbeit und die hilfreichen Korrekturen.

Bedanken möchte ich mich außerdem bei Frau Schneider (Institut für Medizin, FZ-Jülich) für ihre zuverlässige praktische Hilfe bei allen Arbeiten im Labor.

Diese Arbeit wurde im Rahmen des vom BMU/ BfS finanziell geförderten Projektes „Biologische Wirksamkeit von Auger-Elektronen emittierenden Radionukliden“ (Kennzeichen Str.Sch. 4124) angefertigt.