HTSL-rf-SQUID-Sensoren in Magnetfeldern: Charakterisierung und Störsignalunterdrückung

Marcel Bick
HTSL-rf-SQUID-Sensoren in Magnetfeldern: Charakterisierung und Störsignalunterdrückung

Marcel Bick
Abstract

Due to their excellent sensitivity to magnetic fields, HTS SQUID sensors are widely used in many applications outside magnetic shielding, e.g. for geophysical exploration of ore and hydrocarbon deposits, for nondestructive evaluation of aircraft and bridge components and for the measurement of biomagnetic signals for diagnostic purposes. In this work, two main subjects are investigated which are essential for the realisation of highly sensitive SQUID systems for operation in a magnetically strongly disturbed environment, for example for application in magnetocardiography: the influence of magnetic fields on the operation of YBa$_2$Cu$_3$O$_{7-5}$-rf-washer-SQUIDs with step-edge Josephson junctions is investigated (section 3) and a method for the reduction of environmental magnetic noise is presented and characterised (section 4).

An external magnetic field modulates the critical current in Josephson junctions with a period of ΔB_0 and affects the rf-SQUID parameter β_L and therefore the flux-voltage transfer function amplitude. For stable SQUID operation, a large period ΔB_0 is desirable. Taking into account the flux focussing effect of the SQUID-washer, the magnetic field period is calculated depending on the SQUID inductance L_s, the effective sensor area A_{eff} and the junction width w. The calculations show to what extent an enlarged field period — and thus an enhanced stability in magnetic fields — can be obtained without loss of field sensitivity by reducing the width of the Josephson junction.

Rf-washer-SQUIDs with different junction widths between 0,7 and 3 μm as well as rf-washer-SQUIDs in flip-chip configuration with coplanar resonators with different effective sensor areas between 0,21 and 1,11 mm2 are characterised. A comparison between models and experiments leads to the following main conclusions: The suppression of the SQUID’s transfer function is strictly correlated to the suppression of the critical current leading to an increased white flux noise level of the sensors. Depending on the effective sensor area, the necessary junction width for stable SQUID operation in a given magnetic field can be calculated taking into account an experimentally determined field enhancement of $B_{JK}/B_M \sim 2,2$. This field enhancement can be attributed to the inhomogeneous field distribution in the SQUID hole. It is shown that a junction width in the submicrometer scale is required for operation of rf-SQUIDs and coplanar resonators in the Earth’s magnetic field.

Besides the stability of SQUID sensors in magnetic fields, the reduction of unwanted magnetic disturbances is a key issue for successful SQUID applications. For this purpose, a software gradiometry method is presented which makes use of adaptive frequency dependent gradiometer (FDG) coefficients determined in the Fourier domain to subtract reference from signal data. By recording magnetocardiograms (MCG) with HTS SQUID based gradiometers, the method is characterized in- and outside magnetic shielding. The following three main
advantages of the FDG method compared to conventional gradiometry are demonstrated: Frequency dependent coefficients lead to an enhanced reduction of disturbing magnetic signals which have different gradients at different frequencies; the magnetic field noise of the SQUID system is reduced when environmental noise only exists at discrete frequencies; variations of the noise character in time can be taken into account by using adaptive coefficients.

These advantages lead to a significantly improved reduction of environmental and intrinsic noise and to an improved signal-to-noise ratio. Thus, it is possible to extend the bandwidth of an electronic gradiometer from 130 Hz to 250 Hz without using notch filters, meeting the recommended standard for clinical MCG diagnostics.

This work shows that rf-SQUID sensors can be optimised for stable operation in the Earth's magnetic field by choosing appropriate junction widths depending on the effective sensor areas. In combination with suitable noise cancellation methods, HTS rf-SQUID systems can play a key part in establishing magnetocardiography in clinical diagnostics in the near future.
Inhaltsverzeichnis

1 EINLEITUNG ... 1
 1.1 BETRIEB VON SQUID-SENSOREN IN MAGNETISCH UNGESCHIRMTER UMGBUNG 2
 1.2 ZIELSETZUNG DER ARBEIT ... 3

2 GRUNDLAGEN ... 5
 2.1 JOSEPHSON-EFFEKTE .. 6
 2.1.1 Die Josephson-Gleichungen.. 7
 2.1.2 Das RCSJ-Modell ... 8
 2.1.3 Josephson-Kontakte aus YBa₂Cu₃O₇₋₈... 10
 2.1.3.1 Der Hochtemperatur-Supraleiter YBa₂Cu₃O₇₋₈ 11
 2.1.3.2 Kontakttypen .. 13
 2.1.4 Die Magnetfeldabhängigkeit von Josephson-Kontakten 15
 2.1.4.1 Unterdrückung des kritischen Stroms im Magnetfeld 16
 2.1.4.2 HTSL-Korngrenzenkontakte im Magnetfeld ... 20
 2.2 HTSL-RF-SQUID-MAGNETOMETER .. 22
 2.2.1 Die Funktionsweise des rf-SQUID .. 23
 2.2.1.1 Die Flußbilanz ... 23
 2.2.1.2 Die Transferfunktion ... 25
 2.2.2 Beiträge zum Rauschen im rf-SQUID-System ... 28
 2.2.3 Der optimale Arbeitsbereich ... 29
 2.2.4 Die Feldempfindlichkeit .. 30
 2.2.5 Koplanare Resonatoren .. 32
 2.3 DIE REDUKTION MAGNETISCHER STÖRSPINNALE ... 35
 2.3.1 Methoden zur Störsignalunterdrückung .. 35
 2.3.2 Das Prinzip der Gradiometrie .. 36
 2.3.3 Die Realisierung von Gradiometern .. 38
 2.3.4 Die Balancierung .. 40
3 MAGNETFELDABHÄNGIGKEIT
VON HTSL-RF-SQUID-MAGNETOMETERN..43

3.1 ZIELSETZUNG ...43

3.2 BERECHNUNG DER MAGNETFELDABHÄNGIGKEIT VON RF-SQUIDs45
 3.2.1 Berücksichtigung der Flussesfokussierung durch den SQUID-washer45
 3.2.2 Berücksichtigung der Feldüberhöhung am Kontakt47

3.3 PROBENPRÄPARATION UND EXPERIMENTELLER AUFBAU51
 3.3.1 rf-washer-SQUIDs mit schmalen Kontakten ...51
 3.3.1.1 SQUID-Layout und -Herstellung ...51
 3.3.1.2 Herstellung schmaler Kontakte ..53
 3.3.2 Meßplatz zur Charakterisierung der Transferfunktion56
 3.3.2.1 Schwingkreise und rf-SQUID-Elektronik ...56
 3.3.2.2 Aufbau des Meßplatzes ...59
 3.3.3 Meßplatz zur Charakterisierung des kritischen Stroms61
 3.3.3.1 Probenpräparation ...61
 3.3.3.2 Aufbau des Meßplatzes ...64

3.4 DIE MAGNETFELDABHÄNGIGKEIT DER TRANSFERFUNKTION68
 3.4.1 Die Unterdrückung der Transferfunktion durch Magnetfelder68
 3.4.2 Anstieg des weißen Rauschens in Magnetfeldern71
 3.4.3 Einfluß der effektiven Fläche auf die Magnetfeldabhängigkeit73
 3.4.4 Einfluß der Breite des Josephson-Kontaks auf die Magnetfeldabhängigkeit ..78
 3.4.5 Einfluß der Magnetfeldrichtung auf die Transferfunktion82

3.5 DIE MAGNETFELDABHÄNGIGKEIT DES KRITISCHEN STROMS87
 3.5.1 Der kritische Strom im rf-SQUID: I-U-Kennlinien87
 3.5.2 Bestimmung von I_c und β_c bei hohen thermischen Fluktuationen90
 3.5.3 Die Unterdrückung des kritischen Stroms durch Magnetfelder93
 3.5.4 Korrelation zwischen der Magnetfeldabhängigkeit
der Transferfunktion und des kritischen Stroms im rf-SQUID95

3.6 FAZIT ..98
4 STÖRSIGNALREDUKTION
 BEIM BETRIEB VON HTSL-SQUID-SYSTEMEN 101

4.1 ZIELSETZUNG .. 101

4.2 DAS VERFAHREN DER FREQUENZABHÄNGIGEN GRADIOMETRIE (FDG) 104
 4.2.1 Das Prinzip des Verfahrens 104
 4.2.2 Bestimmung der frequenzabhängigen Koeffizienten 106
 4.2.3 Die freien Parameter des Verfahrens 108
 4.2.4 Die Vorgehensweise bei Anwendung des Verfahrens 109
 4.2.5 Die erwarteten Vorteile des Verfahrens 110

4.3 CHARAKTERISIERUNG DES VERFAHRENS IN STÖRARMER UMGEBUNG 111
 4.3.1 Experimenteller Aufbau: Das Gradiometer 1. Ordnung
 in der magnetischen Abschirmkammer 111
 4.3.2 Vergleich zwischen festen und frequenzabhängigen
 Balancierungskoeffizienten 112

4.4 CHARAKTERISIERUNG DES VERFAHRENS
 IN MAGNETISCH UNGESCHIRMTER UMGEBUNG 117
 4.4.1 Experimenteller Aufbau: Das Gradiometer 2. Ordnung 117
 4.4.2 Vergleich zwischen festen und frequenzabhängigen
 Balancierungskoeffizienten 119
 4.4.3 Einfluß der Wahl der freien Parameter des FDG-Verfahrens
 auf das Signal-zu-Rausch-Verhältnis 122

4.5 FAZIT ... 126

5 ZUSAMMENFASSUNG ... 128

Literaturverzeichnis .. 131
Kapitel 1

Einleitung

Mit der Entdeckung der Hochtemperatur_supraleiter (HTSL) [Bed86] und der Entwicklung von Materialien mit Sprungtemperaturen T_c über dem Siedepunkt des flüssigen Stickstoffs ($T=77\text{K}$) haben die Anwendungen von SQUIDs in der Meßtechnik aufgrund der gegenüber konventionellen Tieftemperatursupraleitern (TTS) einfacheren Kühlung einen enormen Entwicklungsschub erfahren [Koe99, Bra00a]. Die besten HTSL-SQUID-Magnetometer erreichen innerhalb magnetischer Abschirmung bereits Empfindlichkeiten von $6,5\text{ fT/}\sqrt{\text{Hz}}$ [Fal01].
1. EINLEITUNG

1.2 Zielsetzung der Arbeit

kritischen Stroms im HTSL-rf-SQUID und damit der Anstieg des weißen Rauschens in statischen Feldern systematisch charakterisiert. Diese Untersuchungen werden die Ursachen der Magnetfeldabhängigkeit von rf-SQUIDs quantitativ feststellen und Möglichkeiten zur Erhöhung der Stabilität von rf-SQUIDs beim Betrieb im Erdmagnetfeld aufzeigen.

In Kapitel 5 finden sich Zusammenfassung und Diskussion der Arbeit.
Kapitel 2

Grundlagen

Das Phänomen Supraleitung zeichnet sich durch die Kondensation von Quasiteilchen (Elektronen oder Defektelektronen) zu sogenannten Cooperpaaren unterhalb einer Sprungtemperatur T_c aus [Coo56]. Cooperpaare sind Bosonen und besitzen einen Gesamtspin mit der Quantenzahl $s = 0$. Damit befinden sich alle supraleitenden Ladungsträger in einem einzigen makroskopischen Quantenzustand, der durch die Vieleilchenwellenfunktion

$$\psi(r, t) = \left| \psi(r, t) \right| e^{i\theta(r,t)}$$ \hspace{1cm} (2.1)$$

beschrieben werden kann. Dabei ist $n_s = \left| \psi(r, t) \right|^2$ die Dichte der Cooperpaare und θ die Phase der Cooperpaarwellenfunktion. Energetisch sind die supraleitenden Cooperpaare durch die Energielücke ΔE vom Leitungsband der Elektronen getrennt, die der Bindungsenergie eines Paares entspricht. Der supraleitende Zustand weist aufgrund des einheitlichen Quantenzustandes der Cooperpaare im wesentlichen die folgenden charakteristischen Eigenschaften auf:

- In einem Supraleiter kann ein Gleichstrom dissipationsfrei fließen (spezifischer Widerstand $\rho = 0$), solange die kritische Stromdichte nicht überschritten wird.

- Ein Supraleiter ist ein perfekter Diamagnet (magnetische Suszeptibilität $\chi = -1$). Ein Magnetfeld wird aufgrund von Abschirmströmen, die in der Oberfläche des
Supraleiters induziert werden, vollständig aus seinem Innen mit Ausnahme einer dünnen Oberflächenschicht verdrängt (Meissner-Ochsenfeld-Effekt, [Mei33]).

- Aus der strengen Phasenkohärenz der Cooperpaare folgen die Flußquantisierung [Dol61] und die Josephson-Effekte [Jos62], auf denen die Funktionsweise der in dieser Arbeit charakterisierten supraleitenden Bauelemente, der SQUIDS, beruht. Für die Flußquantisierung gilt: Ein magnetischer Fluß, der einen supraleitenden Ring durchdringt, kann nur ganzzahlige Vielfache des magnetischen Flußquants Φ_0 betragen:

$$\Phi_0 = \frac{\hbar}{2e} = 2,067 \cdot 10^{-15} \text{Wb},$$ \hspace{1cm} (2.2)

wobei \hbar das Plancksche Wirkungsquantum und $2e$ die Ladung eines Cooperpaares bezeichnen.

In diesem Grundlagenkapitel werden zunächst die im Rahmen der Arbeit relevanten Effekte der Supraleitung näher erläutert. Dabei liegt der Schwerpunkt im ersten Teil (Kap.2.1) auf der Beschreibung von Josephson-Kontakten und ihrem Magnetfeldverhalten, deren Verständnis für die Charakterisierung von SQUIDS in äußeren Magnetfeldern wichtig ist. Im Anschluß wird die grundlegende Physik und die Funktionsweise von rf-SQUIDS, die im wesentlichen aus einem supraleitenden Ring und einem Josephson-Kontakt bestehen, detailliert erläutert (Kap.2.2). Im letzten Abschnitt wird zunächst auf allgemeine Methoden zur Unterdrückung von Störmagnetfeldern beim Betrieb von SQUID-Sensoren eingegangen (Kap.2.3). Abschließend werden die für den zweiten Ergebnisteil dieser Arbeit relevanten Grundlagen der Gradimetrie vorgestellt und unterschiedliche Realisierungsmöglichkeiten von Gradometern einander gegenübergestellt.

2.1 Josephson-Effekte

2.1.1 Die Josephson-Gleichungen

Ein Josephson-Kontakt besteht aus zwei Supraleitern, die durch eine Barriere voneinander getrennt sind (Abb.2.1). Ist die Barriere dünn genug, so kann es zu einer Kopplung der makroskopischen Wellenfunktionen ψ_1 und ψ_2 der Supraleiter kommen. Die Supraleiter können dann zwar mittels quantenmechanischem Tunneln Cooperpaare durch die Barriere austauschen, der Ordnungsparameter aber, d.h. die Dichte n_s der Elektronenpaare, im Bereich des Kontakts wird stark unterdrückt. Bei hinreichend dünner Barriere verschwinden die Cooperpaarwellenfunktionen nicht sondern überlappen sich in der Barriere. Die starre Phasenhäufigkeit der makroskopischen Quantenzustände in den beiden Supraleitern führt dann zu den Josephson-Effekten [Jos62].

![Diagram](image)

Abb.2.1 Schematische Darstellung eines Josephson-Kontakts: Zwei Supraleiter sind durch eine Barriere voneinander getrennt.

Aus der Schrödingergleichung für die Wellenfunktionen lassen sich die 1. und 2. Josephson-Gleichung ableiten [Buc94]. Danach kann ein supraleitender Tunnelstrom I_s von Cooperpaaren über den Josephson-Kontakt fließen, der von der Differenz $\varphi = \theta_1 - \theta_2$ der Phasen der Wellenfunktionen in den supraleitenden Elektroden (S1 und S2 in Abb.2.1) abhängt:

$$ I_s = I_c \sin \varphi. $$ (2.3)

Wird der Strom am Kontakt über den kritischen Strom I_c hinaus erhöht, so fällt eine Gleichspannung U an der Barriere ab. Es fließt ein Wechselstrom, dessen Frequenz ν proportional zur Spannungsamplitude ist. Dieser Effekt wird durch die 2. Josephson-Gleichung beschrieben:
2. Grundlagen

\[
\omega = 2\pi v = \frac{d\phi}{dt} = \frac{2e}{\hbar} U .
\] \hspace{1cm} (2.4)

2.1.2 Das RCSJ-Modell

Die beiden Josephson-Gleichungen (2.3) und (2.4) beschreiben das idealisierte Verhalten zweier durch eine Barriere getrennter Supraleiter. Um das Verhalten eines realen Josephson-Kontakts zu erfassen, müssen neben dem Cooperpaarstrom weitere Strombeiträge berücksichtigt werden. Nach dem sog. RCSJ (Resistively and Capacitively Shunted Junction)-Modell, das im Jahre 1968 von Stewart [Ste68] und McCumber [Cum68] entwickelt worden ist, setzt sich der Gesamtstrom I über den Kontakt aus dem phasenabhängigen Cooperpaarstrom \(I_e = I_c \sin \varphi \) sowie einem resistiven und kapazitiven Beitrag zusammen. Thermische Fluktuationen werden durch eine Rauschstromquelle \(I_F \) berücksichtigt. Der resistive Beitrag wird durch einen Quasiteilchenstrom \(I_N = U/R_N \) über einen Widerstand \(R_N \) infolge des Aufbrechens von Cooperpaaren verursacht. Der kapazitative Beitrag resultiert aus einem Verschiebungsstrom \(I_U = C \cdot dU/dt \), der sich aus der Kapazität C der Barriere ergibt. Ein Ersatzschaltbild des Josephson-Kontakts im RCSJ-Modell ist in Abb. 2.2 dargestellt.

\[\text{Abb.2.2 Ersatzschaltbild eines Josephson-Kontakts im RCSJ-Modell}\]

Unter Vernachlässigung des Beitrags des Fluktuationsstromes ergibt sich für die Strombilanz:

\[
I = I_c \sin \varphi + \frac{U}{R_N} + C \frac{dU}{dt} .
\] \hspace{1cm} (2.5)
Mit der 2. Josephson-Gleichung (2.4) folgt:

\[i = \sin \varphi + \frac{d\varphi}{d\tau} + \beta_c \frac{d^2 \varphi}{d\tau^2}, \quad (2.6) \]

wobei folgende Definitionen verwendet werden:

\[i = \frac{I}{I_c}, \quad \tau = \omega_c t, \quad \omega_c = \frac{2e}{\hbar} I_c R, \quad \text{und} \quad \beta_c = \frac{2e}{\hbar} I_c R^2 C. \]

Gleichung (2.6) ist eine nichtlineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten und nur numerisch lösbar. Der Parameter \(\omega_c \) beschreibt die charakteristische Grenzfrequenz eines Josephson-Kontakts, welche durch die Dämpfung aufgrund der normalleitenden Komponente bestimmt ist. Der sog. Stewart-Mc-Cumber-Parameter \(\beta_c \) ist ein Maß für den Einfluß der Kapazität auf das Kontaktverhalten. Für große Kapazitäten \(\beta_c \ll 1 \) überwiegt der kapazitive Anteil gegenüber dem resistiven, der Kontakt ist schwach gedämpft, und die Strom-Spannungs (I-U)-Kennlinie ist hysteretisch (Abb.2.3a). Für \(\beta_c \ll 1 \) dominiert der Normalwiderstand, der Kontakt ist stark gedämpft und die I-U-Kennlinie nicht hysteretisch. Für diesen Fall kann der kapazitive Term vernachlässigt werden und (2.6) ist analytisch lösbar (Abb.2.3a für \(\beta_c = 0 \)):

\[\overline{U} = \begin{cases} 0 & \text{für } |I| \leq I_c, \\ R N \sqrt{I^2 - I_c^2} & \text{für } |I| > I_c. \end{cases} \quad (2.7) \]

Die Spannung über dem Kontakt ist zeitabhängig \(U = U(t) \). Bei der Charakterisierung von Josephson-Kontakten wird aber aufgrund der hohen Grenzfrequenz der Kontakte immer der zeitliche Mittelwert \(\overline{U} \) gemessen, der die Form der I-U-Kennlinie bestimmt.

Insbesondere bei der Untersuchung von HTSL-Josephson-Kontakten bei Temperaturen um 77 K ist der Fluktuationssstrom \(I_F \), der durch die thermischen Fluktuationen der normalleitenden Elektronen hervorgerufen wird, nicht mehr vernachlässigbar. Die relative Intensität dieses Fluktuationssstroms wird durch einen dimensionslosen Parameter charakterisiert. Dieser Rauschparameter \(\Gamma \) ist definiert als Quotient aus thermischer Energie und Josephson-Kopplungsenergie, der dem Quotienten aus Fluktuationssstrom \(I_F \) und kritischem Strom entspricht:

\[\Gamma = \frac{k_B T}{\frac{\hbar}{2e} I_c} = \frac{k_B T}{\Phi_0 I_c} = \frac{I_F}{I_c}. \quad (2.8) \]
Dabei bezeichnet \(k_B \) die Boltzmann-Konstante. Besonders deutlich wird der Einfluß des Fluktuationstroms, wenn die thermische Energie in der Größenordnung der Josephson-Kopplungsenergie liegt (\(\Gamma \approx 1 \)). Thermische Fluktuationen führen zu einer Reduzierung des kritischen Stroms \(I_c \) des Kontakts und zu einer Verrundung der I-U-Kennlinie (siehe Abb.2.3b). Für die typischen Kenngrößen eines in flüssigem Stickstoff betriebenen rf-SQUIDs, \(T = 77 \text{ K} \) und \(I_c < 4 \mu \text{A} \), ergibt sich ein Rauschparameter von \(\Gamma > 0.8 \). Bei der Bestimmung des kritischen Stroms von HTSL-Josephson-Kontakten in rf-SQUIDs bei 77 K muß daher der Einfluß von thermischen Fluktuationen berücksichtigt werden (vgl. Kap.3.5).

\[I \]
\[I_c \]
\[U / U_c \]
\[\beta_c = 0 \]
\[1 \]
\[2 \]
\[4 \]
\[15 \]
\[\infty \]

\[\Gamma = \frac{I_f}{I_c} \]

Abb.2.3 Strom-Spannungs (I-U) - Kennlinien für verschiedene Werte des Stewart-McCumber-Parameters \(\beta_c (a) \) und des Rauschparameters \(\Gamma (b) \), nach [Likh86].

2.1.3 Josephson-Kontakte aus YBa\(_2\)Cu\(_3\)O\(_{7-\delta}\)

Die im Rahmen dieser Arbeit untersuchten SQUID-Magnetometer bestehen ausschließlich aus dem keramischen Hochtemperaturupracleiter YBa\(_2\)Cu\(_3\)O\(_{7-\delta}\), dessen Aufbau und physikalische Eigenschaften im folgenden Abschnitt kurz erläutert werden sollen. Anschließend werden einige Realisierungsmöglichkeiten von Josephson-Kontakten aus YBa\(_2\)Cu\(_3\)O\(_{7-\delta}\) vorgestellt. Insbesondere wird auf den in rf-SQUIDs zumeist eingesetzten Stufenkontakt eingegangen, wobei die Kenntnis der Struktur dieser Kontakte eine wichtige Voraussetzung für die Untersuchungen des Magnetfeldverhaltens von rf-SQUIDs in Abhängigkeit von der Richtung des äußeren Magnetfeldes ist (Kap.3.4).
2.1.3.1 Der Hochtemperatur-Supraleiter YBa$_2$Cu$_3$O$_{7-\delta}$

Im Gegensatz zu den metallischen Tieftemperatur-supraleitern sind HTSL keramische Kupferoxid-Verbindungen, deren supraleitende Eigenschaften wesentlich von der kristallographischen Struktur abhängen. Die verschiedenen HTSL weisen unterschiedliche Stapelfolgen von Perowskit-ähnlichen (ABO$_3$) Einheitszellen auf. Im YBa$_2$Cu$_3$O$_{7-\delta}$ liegt die Schichtfolge Y-CuO$_2$-BaO-CuO$_{1-\delta}$ in c-Richtung vor (Abb.2.4), mit den Gitterparametern $a = 0,3887$ nm, $b = 0,3887$ nm und $c = 1,168$ nm [Jor90].

![Diagramm der Kristallstruktur von YBa$_2$Cu$_3$O$_{7-\delta}$-Einheitszelle](image)

Abb.2.4 Kristallstruktur der YBa$_2$Cu$_3$O$_{7-\delta}$-Einheitszelle, nach [Jor88] in: [Buc94].

Diese strukturelle Anisotropie ruft eine starke Anisotropie der elektrischen Eigenschaften hervor, die mit den Kristallebenen zusammenfällt. Die kritischen Stromdichten sind in den ab-Ebenen um Größenordnungen höher, als in c-Achsen-Richtung (siehe Tabelle 2.1). Dies resultiert aus den stark unterschiedlichen Kohärenzlängen ξ für die verschiedenen Kristallrichtungen [Kap88]. Die Kohärenzlänge kennzeichnet die maximale Entfernung, auf der die Cooperpaardichte n_s nicht variiert [Buc94].

Das Verhältnis aus Eindringtiefe und Kohärenzlänge, der sog. Ginzburg-Landau-Parameter $\kappa = \lambda_L/\xi$, ist für $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ sehr groß, d.h. es ist ein sog. Typ II-Supraleiter. In solche Typ II-Supraleiter kann oberhalb eines kritischen Magnetfeldes, B_C, magnetischer Fluß in Form von Flußwirbeln mit normalleitendem Kern, sog. Abrikosov-Flußwirbel, eindringen, ohne daß die supraleitenden Eigenschaften verloren gehen. Die Supraleitung selbst wird erst bei einem noch größeren kritischen Feld, B_{C2}, unterdrückt [Buc94].

Ursache für die Supraleitung der HTSL ist die Kondensation von Cooperpaaren in den CuO$_2$-Ebenen, wobei sich in der CuO$_{1.8}$-Ebene entlang der b-Achse Ketten bilden, welche über die Sauerstoffatome in den Bariumebenen mit den CuO$_2$-Ebenen verbunden sind. Diese CuO$_{1.8}$-Ketten sind indirekt an der Supraleitung beteiligt, indem sie ein Ladungsreservoir für die CuO$_2$-Ebenen darstellen. Der Ladungstransfer erfolgt über die Sauerstoffatome in der Bariumebene.

Entscheidend für die supraleitenden Eigenschaften des $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ ist das Sauerstoffdefizit δ in der CuO$_{1.8}$-Ebene, das zwischen 0 und 1 variieren kann [Jor87]. Für $\delta = 0$ liegt YBa$_2$Cu$_3$O$_7$ in der supraleitenden Phase in orthorhombischer Struktur vor. Mit zunehmendem Sauerstoffdefizit vergrößert sich der Abstand zwischen Kupferoxid-Ebenen und -Ketten. Hierdurch und aufgrund der Reduktion der Sauerstoffkonzentration wird die Versorgung der CuO$_2$-Ebenen mit Ladungsträgern erschwert [Cav90]. Für $\delta = 1$ sind alle Sauerstoffatome aus den CuO$_{1.8}$-Ketten verschwunden, das YBa$_2$Cu$_3$O$_6$ ist halbleitend und besitzt nun eine tetragonale Struktur. Die Supraleitung setzt erst bei $\delta \approx 0.6$ ein. Die maximale Übergangstemperatur T_c wird bei $\delta \approx 0.07$ erreicht.

Der Sauerstoffgehalt der CuO$_{1.8}$-Ebene kann mittels Erhitzen des YBa$_2$Cu$_3$O$_{7-\delta}$ in Sauerstoff-Atmosphäre bzw. Vakuum (dem sog. 'Trimmen') variiert werden. Auf diesem Wege kann eine Regulierung der Übergangstemperatur des HTSL und somit eine Einstellung der Kontaktparameter von HTSL-Josephson-Kontakten, insbesondere des kritischen Stroms, vorgenommen werden [Dil96].

Einige wichtige Parameter von YBCO sind in Tabelle 2.1 wiedergegeben.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>a- und b-Richtung</th>
<th>c-Richtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohärenzlänge ξ</td>
<td>1,5–3 nm</td>
<td>0,2–0,4 nm</td>
</tr>
<tr>
<td>London-Eindringtiefe λ_C</td>
<td>150–200 nm</td>
<td>750–1050 nm</td>
</tr>
<tr>
<td>Kritische Stromdichte J_c</td>
<td>$>10^6$ A/cm2</td>
<td>10^4 – 10^5 A/cm2</td>
</tr>
</tbody>
</table>

Tabelle 2.1 Charakteristische Parameter von YBa$_2$Cu$_3$O$_{7-\delta}$ bei 77 K [Kap88, Fri90, Bla94, Mit99, Sch00a]. Je nach Qualität der YBCO-Schicht weisen die Werte die genannten Schwankungsbereiche auf.

2.1.3.2 Kontakttypen

Im wesentlichen haben sich zwei Arten von Korngrenzenkontakten durchgesetzt: Stufenkontakte [Sim90, Jia91] und Bikristallkontakte [Dim88, Dim90]. Bikristallkontakte entstehen durch epitaktisches Wachstum des Supraleiters auf einem Substrat, das aus zwei Einkristallhälften besteht, die unter einem bestimmten Verkippungswinkel der Kristallachsen zusammengefügt wurden (siehe Abb.2.5a). Dabei setzt sich die durch das Substrat
vorgegebene Korngrenze im HTSL-Film fort. Nachteil dieser Kontakte ist, daß sie nicht frei positionierbar sind, sondern sich nur entlang der Kristallgrenzen plazieren lassen.

Abb. 2.5 Schematische Zeichnung eines Bikristallkontakts (Aufsicht) (a) und eines Stufenkontakts (Querschnitt) (b).

Im Rahmen dieser Arbeit finden ausschließlich Stufenkontakte Verwendung, da sie aufgrund ihrer freien Positionierbarkeit besonders gut zur Realisierung von HTSL-rf-SQUIDs geeignet sind [Dal91, Zha92, Ill00]. Zur Herstellung der Kontakte wird eine Stufe in das Substratmaterial, Strontiumtitanat (SrTiO₃) oder Lanthanaluminat (LaAlO₃), geätzt. Diese Substratmaterialien zeichnen sich durch eine geringe Gitterfehlanpassung relativ zum YBa₂Cu₃O₇-₅ und durch einen vergleichbaren Ausdehnungskoeffizienten aus. Sie ermöglichen damit die Herstellung hochwertiger, ausscheidungsarmer Filme [Cop96, Kah97].

Der in c-Achsen-Richtung aufwachsender, supraleitender Film ändert an der Stufe seine Orientierung um 90°, so daß zwei Korngrenzen in Serie entstehen (siehe Abb.2.5b). Um an der Stufenflanke epitaktisches Wachstum zu ermöglichen, muß die Stufe ausreichend steil sein (46° < αₜ < 90°) [Her94].

Für αₜ > 70° bilden sich die in Abb.2.6 gezeigten Korngrenzenverläufe aus. Dabei weist die Habitusebene - die Ebene, an der die beiden unterschiedlich gewachsenen Filmbereiche aufeinandertreffen - der unteren Korngrenze eine fast senkrechte Orientierung zur Filmoberfläche auf. Anhand von Untersuchungen des Magnetfeldverhaltens der Kontakte konnten Herrmann et al. zeigen, daß diese untere Korngrenze den kleineren kritischen Strom aufweist [Her95]. Sie bestimmt damit das Josephson-Verhalten des gesamten Kontakts und somit auch die wesentlichen Betriebsparameter eines rf-SQUID (vgl. Kap.2.2). Die Kenntnis der Mikrostruktur und der damit verbundenen Kontaktparameter der verwendeten Josephson-
Kontakte ist für das Verständnis des Magnetfeldverhaltens von rf-SQUIDs von Bedeutung (Kap.3.4.5).

Die Kontaktparameter, insbesondere der kritische Strom, lassen sich durch Variation des Sauerstoffdefizits \(\delta \), des Verhältnisses von Filmdicke zu Stufenhöhe [Schm93] und des Stufenwinkels \(\alpha_s \) [Her94] einstellen.

Abb. 2.6 Mikrostruktur eines \(\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta} \)-Stufenkontakts auf \(\text{LaAlO}_3 \) mit einem Stufenwinkel von \(\alpha_s = 78^\circ \): (a) TEM-Aufnahme (Querschnittsbild) des Kontakts [Her94]. \(\text{Y}_{123} \) bezeichnet \(\text{YBCO} \) in \(\text{Y}_1\text{Ba}_2\text{Cu}_3\text{O}_{7-\delta} \)-Stöchiometrie. Die offenen Pfeile kennzeichnen die Korngrenzen. (b) Schematische Skizze des Stufenkontakts. Die Habitusebene verläuft für die untere Korngrenze nahezu senkrecht zum Substrat.

2.1.4 Die Magnetfeldabhängigkeit von Josephson-Kontakten

Aufgrund der starren Phasenkohärenz der Cooperpaare und ihrer Kopplung über die Barriere ist ein Josephson-Kontakt äußerst empfindlich gegenüber externen Magnetfeldern. Diese Magnetfeldabhängigkeit bildet die Ursache für die Magnetfeldabhängigkeit von SQUID-Sensoren, die den Betrieb in magnetisch unabschirmter Umgebung erschwert und im Rahmen der Arbeit detailliert charakterisiert werden soll (Kap.3). Im folgenden wird daher genauer auf die Unterdrückung des kritischen Stroms von Josephson-Kontakten unter dem
Einfluß von äußeren Magnetfeldern eingegangen. Zunächst wird der Zusammenhang zwischen Magnetfeld und kritischem Strom für einen idealen Kontakt beschrieben und im darauffolgenden Abschnitt speziell das Verhalten von HTSL-Korngrenzenkontakten betrachtet, die in den charakterisierten rf-SQUIDs verwendet werden.

2.1.4.1 Unterdrückung des kritischen Stroms im Magnetfeld

In einem Supraleiter gilt für den Zusammenhang zwischen einem Vektorpotential \mathbf{A} und der Stromdichte \mathbf{j}

$$\mathbf{j} = n_s \frac{e}{m} (\hbar \nabla \theta - 2e \mathbf{A}),$$

wobei m die Elektronenmasse, θ die Phase der Cooperpaarwellenfunktion und n_s die Cooperpaardichte bezeichnet. Für den Gradienten der Phasendifferenz φ zwischen den Wellenfunktionen in den beiden Elektroden eines Josephson-Kontakts folgt daraus die Abhängigkeit vom Vektorpotential [Bar82]:

$$\nabla \varphi = \frac{2e}{\hbar} \left(\frac{m}{2e^2 n_s} \mathbf{j} + \mathbf{A} \right).$$

In Abb.2.7 ist die Aufsicht auf einen Josephson-Kontakt mit rechteckiger Geometrie skizziert. Integriert man (2.10) entlang des Weges C, so ergibt sich unter Berücksichtigung der Beziehung $\mathbf{B} = \rot \mathbf{A}$ die folgende Abhängigkeit der Phasendifferenz von einem äußeren Magnetfeld [Duz81]:

$$\varphi(x) = \frac{2e}{\hbar} \cdot d^* \cdot B_y \cdot x + \varphi_0.$$

Dabei bezeichnet der Parameter $d^* = 2\lambda_L + b$ die Länge, auf der das Magnetfeld in den Kontakt eindringen kann, B_y die senkrecht zur Normalen der Kontaktfläche orientierte magnetische Flußdichte in der Barriere (Abb.2.7) und φ_0 eine Integrationskonstante. Bei der Berechnung wurde angenommen, daß die Barriere vernachlässigbar dünn ist.
Abb. 2.7 Schematische Darstellung eines Josephson-Kontakts mit rechteckiger Geometrie. Der Josephson-Strom fließt in z-Richtung, die Kontaktfläche liegt in der xy-Ebene.

Gleichung (2.11) zeigt, daß die Phasendifferenz zwischen den Wellenfunktionen in den beiden Supraleitern in Abhängigkeit von einem äußeren Magnetfeld eine Funktion des Ortes längs des Kontaktes wird. Mit der 1. Josephson-Gleichung (2.3), welche die Beziehung zwischen der Phasendifferenz und dem Supraström beschreibt, folgt für die Supraströmdichte J_s (mit der kritischen Stromdichte J_c):

$$J_s(x) = J_c \sin \left(\frac{2e}{\hbar} \cdot d^* \cdot B_y \cdot x + \varphi_0 \right).$$ (2. 12)

Aufgrund der Variation der Phasendifferenz über der Breite w des Kontakts wird demnach die Supraströmdichte in Abhängigkeit von einem äußeren Magnetfeld räumlich moduliert. Dies ist anschaulich in Abb. 2.8 gezeigt.

Abb. 2.8 Modulation der Supraströmdichte längs der Breite w eines Josephson-Kontakts in Abhängigkeit vom anliegenden Magnetfeld nach [Duz81]. Hier bezeichnet Φ den durch den Kontakt tretenden magnetischen Fluß.
Die Interferenz der verschiedenen Teilströme reduziert den über die gesamte Kontaktbreite \(w \) integrierten maximalen Josephson-Strom \(I_c \) [Duz81]. Als Konsequenz der Modulation der Supraströmdichte wird der kritische Strom \(I_c \) Null, wenn sich genau ein Flußquant \(\Phi_0 \) im Kontakt befindet. Dann heben sich die Strombeiträge gegenseitig auf (vgl. Abb.2.8). Die Stromdichteverteilung für \(\Phi = \Phi_0 \) ähneln einem Wirbel und wird deshalb auch Josephson-Flußwirbel genannt, der im Unterschied zum Abrikosov-Flußwirbel keinen normalleitenden Kern besitzt.

Durch Integration von (2.12) längs der Kontaktbreite \(w \) ergibt sich für einen idealen Kontakt mit homogener Stromdichteverteilung und rechteckigem Querschnitt die folgende Modulation des maximalen Supraströms \(I_c \) in Abhängigkeit von einem senkrecht zum Kontakt orientierten Magnetfeld in Einheiten des magnetischen Flusses \(\Phi_0 \):

\[
I_c\left(\frac{\Phi}{\Phi_0}\right) = I_c(0) \left| \frac{\sin \pi \frac{\Phi}{\Phi_0}}{\pi \frac{\Phi}{\Phi_0}} \right|.
\]

(2.13)

Dabei bezeichnet \(\Phi = B \cdot w \cdot d^* \) den magnetischen Fluß, der durch den Kontakt tritt, wobei \(w \cdot d^* = A_{\text{eff}} \) die effektiv vom Magnetfeld \(B \) durchdrungene Fläche des Kontakts ist. Der Verlauf dieser Funktion ist in Abb.2.9 dargestellt und ähneln dem aus der Optik bekannten Fraunhofer-Muster der Intensitätsverteilung des Lichts, das an einem Spalt gebeugt wird. Der kritische Strom wird bei diskreten Werten der Magnetfeldstärke \((B_n) \) vollständig unterdrückt, die genau \(n \) Josephson-Flußwirbeln im Kontakt entsprechen (vgl. auch Abb.2.8). Die Periodizität der \(I_c(\Phi) \)-Kurve beträgt also \(1 \Phi_0 \) (Abb.2.9).

Abb.2.9 Magnetfeldabhängigkeit des kritischen Stroms eines idealen Josephson-Kontakts in Einheiten des magnetischen Flusses \(\Phi_0 \) mit \(\Phi = B \cdot w \cdot d^* \), nach (2.13).
Hinsichtlich des angelegten Magnetfeldes ergibt sich unter der Annahme, daß die Barrierendicke \(b \) wesentlich kleiner ist als die London-Eindringtiefe \(\lambda_L \) (\(b \ll \lambda_L \)) für einen idealen Kontakt eine Magnetfeldperiode \(\Delta B_0 \) von

\[
\Delta B_0 = \frac{\Phi_0}{w \cdot d} = \frac{\Phi_0}{w \cdot 2\lambda_L}.
\]

(2.14)

Dann tritt genau ein Vielfaches eines Flußquants \(\Phi_0 \) durch die effektive Fläche des Kontakts (\(A_{\text{eff}} = w \cdot 2\lambda_L \)) und der kritische Strom wird vollständig unterdrückt. Die Magnetfeldperiode hängt somit von der Kontaktgeometrie, insbesondere von der Kontaktbreite \(w \) und der London-Eindringtiefe \(\lambda_L \) ab.

An dieser Stelle sei auf einen wichtigen Sachverhalt hingewiesen: Nur die Magnetfeldkomponente, die \textit{senkrecht} zur Normalen der Kontakt ebene (xy-Ebene), bzw. parallel zur xy-Ebene orientiert ist (Abb.2.7) führt nach (2.11) zu einer Modulation der Phasendifferenz entlang des Kontakts und damit nach (2.12) zu einer Modulation der Stromdichte [Duz81]. Dies bedeutet, daß die Magnetfeldperiode \(\Delta B_0 \) bei einem senkrecht orientierten Magnetfeld minimal ist. Ändert sich der Winkel zwischen Magnetfeld und Barriere, so ist eine größere magnetische Flußdichte des angelegten Totalfeldes erforderlich, um den kritischen Strom im Kontakt vollständig zu unterdrücken. Bezogen auf das Totalfeld vergrößert sich die Periode \(\Delta B_0 \). Für Stufenkontakte aus HTSL liegt dabei eine komplexe Situation vor. Hier existieren an einer Stufe zwei Kontakt eb enen, die relativ zur Oberfläche des Supraleiters unterschiedliche, nicht unbedingt senkrechte Orientierungen aufweisen (vgl. Abb.2.6). Dies führt dazu, daß nicht nur die zur Oberfläche des Supraleiters senkrecht orientierte, sondern auch die parallel orientierte Magnetfeldkomponente zur Unterdrückung des kritischen Stroms im Stufenkontakt beitragen kann [Her95]. Da jedoch die untere, das Josephson-Verhalten des gesamten Kontakts bestimmende Korngrenze nahezu senkrecht zur Oberfläche orientiert ist (Abb.2.6), dominiert die senkrechte Magnetfeldkomponente deutlich [Her95]. Dieser Sachverhalt wird im Hinblick auf die Magnetfeldabhängigkeit von rf-washer-SQUIIDs mit Stufenkontakten näher in Kap.3.4.5 untersucht.

Abweichungen von dem in Abb.2.9 gezeigten idealen Magnetfeldverhalten können durch Inhomogenitäten in Stromverteilung im Kontakt verursacht werden. Grund für eine derartige Inhomogenität kann insbesondere eine uneinheitliche Kontaktstruktur sein, wie sie z.B. häufig Korngrenzen-Stufenkontakte aus YBCO aufweisen [Her95]. Die maximale Suprastromdichte wird dann ohne äußeres Magnetfeld eine Funktion des Ortes auf der xy-Ebene: \(J_c = J_c(x,y) \). Allgemeiner läßt sich daher für den Suprastron \(I_s \) durch den Kontakt in Gegenwart eines Magnetfeldes schreiben [Bar82]:

\[
I_s(B) = \iint J_c(x,y) \sin(2\pi / h \cdot d^* \cdot B_y \cdot x + \phi_0) \, dx \, dy.
\]

(2.15)
Dabei wird über die Querschnittsfläche des Josephson-Kontakts integriert. Durch geeignete Wahl von φ_0 wird $I_c(B)$ maximiert und man erhält den kritischen Strom $I_c(B)$. Magnetfeldrichtung und Koordinatensystem entsprechen den Bezeichnungen aus Abb.2.7.

Abb.2.10 Einfluß von Inhomogenitäten der Stromdichteverteilung auf die Magnetfeldabhängigkeit eines Josephson-Kontakts: Unvollständige Unterdrückung des kritischen Stroms aufgrund struktureller Fluktuationen (links). Mittels (2.15) berechnete Magnetfeldabhängigkeit für das skizzierte stufenförmige Stromdichteprofil (rechts), nach [Bar82].

2.1.4.2 HTSL-Korngrenzenkontakte im Magnetfeld

Bisher wurde die Magnetfeldabhängigkeit für ideale Josephson-Kontakte nach [Duz81, Bar82] beschrieben. Im Fall von Korngrenzenkontakten auf der Basis von dünnen HTSL-Schichten liegt eine planare Struktur vor. Für derartige planare Kontakte, bei denen das Verhältnis zwischen der Breite des Kontakts w und der Schichtdicke t groß ist, muß der Entmagnetisierungsfaktor\(^1\) der supraleitenden Struktur der Elektroden berücksichtigt werden [Ros91]. Ein senkrecht zu einem supraleitenden Film orientiertes Magnetfeld wird aufgrund

\(^1\) Zur allgemeinen Definition des Entmagnetisierungsfaktors einer supraleitenden Struktur siehe z.B. [Buc94].

Rosenthal et al. haben für eine planare Kontaktgeometrie die Stärke dieses Effekts berechnet [Ros91]. Dabei werden zwei Grenzfälle unterschieden. Ist der Film ausreichend dick ($t \gg \lambda_L$), wird das Magnetfeld fast vollständig aus dem Supraleiter in die Barriere verdrängt. Zur Berechnung des entsprechenden Entmagnetisierungsfaktors wird der rechteckige Probenquerschnitt entlang des Kontakts unter Vernachlässigung der Ecken durch einen Ellipsoiden mit entsprechendem Dicke-Breite-Verhältnis angenähert. Für eine derartige Geometrie errechnet sich eine Feldverstärkung im Kontaktbereich von [Ros91]

$$f = 1,2 \cdot \frac{w}{t}.$$ \hspace{1cm} (2.16)

Hier bezeichnet t die Dicke des YBCO-Films und w die Breite des Kontakts im Barrierenbereich mit $w > t$. Damit folgt für dicke Filme die Korrektur von (2.14) für die Magnetfeldperiode ΔB_0 zu

$$\Delta B_0 = \frac{1}{f} \cdot \frac{\Phi_0}{2\lambda_L \cdot w} = \frac{\Phi_0 \cdot f}{1,2 \cdot w^2 \cdot 2\lambda_L}.$$ \hspace{1cm} (2.17)

Im Grenzbereich sehr dünner YBCO-Filme ($t \ll \lambda_L$) wird das Magnetfeld nicht mehr vollständig aus dem Supraleiter herausgedrängt, so daß entmagnetisierende Effekte sehr viel kleiner werden. Allerdings wird in [Ros91] und [Hum93] gezeigt, daß der Entmagnetisierungsfaktor der Ecken der Struktur nicht mehr vernachlässigt werden darf und ebenfalls zu einer Abweichung der Magnetfeldperiode von der des idealen Kontakts führt. Die Periode ist für diesen Fall nicht mehr abhängig von der Filmsdicke aber, wie im Grenzfall dicker Filme, proportional zu $1/w^2$ und errechnet sich nach [Ros91] zu:

$$\Delta B_0 = 1,84 \cdot \frac{\Phi_0}{w^2}.$$ \hspace{1cm} (2.18)

Die Gleichungen (2.17) und (2.18) gelten nur im Grenzbereich dicker bzw. dünner Filme.

Für viele SQUID-Anwendungen ist eine große Magnetfeldperiode ΔB_0 wünschenswert, da in diesem Fall der kritische Strom über einen größeren Magnetfeldbereich nahezu konstant bleibt. Die Stabilität des kritischen Stroms ist für den Betrieb von rf-SQUIDs, deren Funktionsweise in den folgenden Abschnitten erläutert wird, von besonderer Bedeutung.
2.2 HTSL-rf-SQUID-Magnetometer

Ein rf-SQUID besteht im wesentlichen aus einem supraleitenden Ring mit einem Josephson-Kontakt (Abb.2.11) [Sil67, Zim70]. Er ist induktiv an einen Schwingkreis gekoppelt und wird mit einem hochfrequenten Wechselstrom (rf) zwischen 20 MHz und 3 GHz betrieben. Die über dem Schwingkreis abfallende Spannung ist eine periodische Funktion des externen magnetischen Flusses [Cla96, Koe99, Bra00a].

Ziel der vorliegenden Arbeit ist die Charakterisierung von rf-SQUIDs in Magnetfeldern. Daher wird im folgenden genauer auf die Funktionsweise dieses Sensortyps eingegangen und die Transferfunktion als repräsentative Größe des rf-SQUID-Betriebs vorgestellt. Im Anschluß werden die Rauscheinflüsse erläutert, die das magnetische Flußrauschen des rf-SQUID und die Wahl des optimalen Arbeitsbereichs bestimmen. Die beiden letzten
Abschnitte dieses Kapitels gehen dann auf Möglichkeiten ein, die Magnetfeldempfindlichkeit zu erhöhen, sowie mit Hilfe von sogenannten koplanaren Resonatoren sowohl das magnetische Fluß- als auch das Feldrauschen zu reduzieren.

2.2.1 Die Funktionsweise des rf-SQUID

2.2.1.1 Die Flußbilanz

Die Funktionsweise eines SQUID beruht im wesentlichen auf zwei Eigenschaften, die sich aus der makroskopischen Quantenkohärenz des supraleitenden Grundzustands ergeben: der Flußquantisierung [Dol61] und dem Josephson-Effekt [Jos62].

Für die Phasendifferenz \(\varphi \) über dem Josephson-Kontakt eines rf-SQUID gilt infolge der Flußquantisierung in einem supraleitenden Ring mit einer Schwachstelle [Cla96]:

\[
\varphi = 2\pi n - 2\pi \cdot \frac{\Phi_i}{\Phi_0}.
\]

(2.19)

Hier bezeichnet \(n \) die Anzahl der Flußquanten und \(\Phi_i \) den magnetischen Fluß im Innern des supraleitenden Rings. Der magnetische Fluß \(\Phi_i \), der den Ring durchdringt, setzt sich aus dem externen Fluß \(\Phi_{\text{ext}} \) und dem durch im Ring fließende Abschirmströme hervorgerufenen Gegenfluß \(L_s I_s \) zusammen, wobei \(L_s \) die SQUID-Induktivität bezeichnet. Aus der 1. Josephson-Geichung (2.3) und der Flußquantisierung im Ring mit Schwachstelle (2.19) folgt für den Gesamtfluß \(\Phi_i \) im SQUID-Ring

\[
\Phi_i = \Phi_{\text{ext}} - L_s I_s \sin \left(2\pi \frac{\Phi_i}{\Phi_0} \right).
\]

(2.20)

Mit Hilfe des SQUID-Parameters \(\beta_L \),

\[
\beta_L = 2\pi \frac{L_s I_s}{\Phi_0},
\]

(2.21)

läßt sich (2.20) in normierter Form vereinfachen zu

\[
\phi_i = \phi_{\text{ext}} - \beta_L \sin \phi_i,
\]

(2.22)
mit \(\Phi = 2\pi \Phi / \Phi_0 \) und \(\Phi_{\text{ext}} = 2\pi \Phi_{\text{ext}} / \Phi_0 \). Die Variation des Flusses \(\Phi \) im SQUID-Ring in Abhängigkeit von einem von außen angelegten Fluß ist in Abb.2.12 dargestellt. Man unterscheidet dabei zwei Betriebsmodi des rf-SQUID.

Abbildung 2.12 Abhängigkeit des durch den rf-SQUID-Ring tretenden Flusses \(\Phi \) vom externen Fluß \(\Phi_{\text{ext}} \) für verschiedene Werte des SQUID-Parameters \(\beta_L \). Der Fall \(\beta_L \to \infty \) entspricht einem supraleitenden Ring ohne Schwachstelle. Der Fall \(\beta_L \to 0 \) entspricht einem normalleitenden Ring, in den der externe Fluß vollständig eindringt.

Im sog. dispersiven Modus (\(\beta_L < 1 \)) ist die Ableitung von (2.22) immer positiv. Die Funktion \(\Phi_i(\Phi_{\text{ext}}) \) ist nicht hysteretisch und stellt in allen Bereichen physikalisch realisierbare Zustände dar. Der kritische Strom des Josephson-Kontakts wird nicht überschritten.

Im sog. dissipativen oder auch hysteretischen Modus (\(\beta_L > 1 \)) enthält \(\Phi_i(\Phi_{\text{ext}}) \) Stellen mit negativer Steigung, die physikalisch nicht realisierbaren, instabilen Zuständen entsprechen [Kur73]. Bei zunehmendem externen Fluß steigt der innere Fluß im SQUID-Ring mit positiver Steigung solange an, bis bei \(\Phi_c = n\Phi_0 + L_s I_c \) der Suprastrom \(I_s \) im Ring den kritischen Strom \(I_c \) des Josephson-Kontakts erreicht. Dann schaltet der Kontakt kurzzeitig in den resistiven Zustand und ein Flußquant \(\Phi_0 \) dringt in den Ring ein, in Abb.2.12 durch Pfeile gekennzeichnet. Bei abnehmendem externen Fluß verhält sich der SQUID entsprechend, wobei der Flußquantsprung dann bei \(\Phi_c = n\Phi_0 - L_s I_c \) stattfindet. Beim Übergang von einem Quantenzustand in einen anderen und zurück verhält sich der Fluß \(\Phi_i(\Phi_{\text{ext}}) \) im Innern des Rings also hysteretisch. Die dabei dissipierte Energie \(\Delta E \) entspricht näherungsweise der Fläche der umlaufenden Hystereseschleife dividiert durch die SQUID-Induktivität [Cla96].
2.2.1.2 Die Transferfunktion

Um die Information über die Größe des magnetischen Flusses \(\Phi_t \), der durch den rf-SQUID-Ring tritt, auslesen zu können, wird der Sensor induktiv an einen Schwingkreis gekoppelt [Zim70, Bra00a]. Dies ist im Ersatzschaltbild in Abb.2.11 dargestellt. Der Tankschwingkreis mit Induktivität \(L_t \) und ohmschem Widerstand \(R_T \) wird mit einem Wechselstrom der Amplitude \(I_t \) bei seiner Resonanzfrequenz \(\omega_0 \) von typischerweise einigen 100 MHz angeregt, wobei die über dem Schwingkreis abfallende Spannung \(V_T \) verstärkt und gemessen wird. Im SQUID wird über die Induktivität des Schwingkreises ein magnetischer Wechselfluß der Größe

\[
\Phi_t = M Q I_t \sin \omega_0 t
\]
(2.23)

eingeprägt, der sich dem externen Fluß überlagert [Cla96]. Dabei ist \(Q = R_T/(\omega_0 L_T) \) die Güte des Schwingkreises und

\[
M = k \cdot \sqrt{L_s L_t}
\]
(2.24)

die Gegeninduktivität von Schwingkreis und SQUID mit der Kopplungskonstanten \(k \) (vgl. Abb.2.11).

Das Auslesen des rf-SQUID-Signals wird anschaulich im dissipativen Modus verdeutlicht. Sei der externe Fluß zunächst \(\Phi_{\text{ext}} = n\Phi_0 \), d.h. es befinden sich \(n \) Flußquanten im SQUID-Ring. Solange der Supraström \(I_s \), der durch den Wechselfluß \(\Phi_t \) induziert wird, den kritischen Strom nicht überschreitet, steigt \(V_T \) linear mit wachsendem Pumpstrom \(I_t \) an (Abb.2.13a). Wird der kritische Wert \(\Phi_c \) erreicht (Punkt A in Abb.2.13a), so liegt am Schwingkreis die Spannung

\[
V^{(n)} = \frac{\omega_0 \cdot L_T}{M} \cdot \Phi_c
\]
(2.25)

an. Es findet ein Flußquantensprung statt vom Zustand \(n \) in den Zustand \(n \pm 1 \) und während der gleichen rf-Periode wieder zurück (Umlauf einer Hystereseschleife in Abb.2.12). Dabei wird dem Tankschwingkreis die Energie \(\Delta E \) entzogen. Die Spannung über dem Schwingkreis fällt abrupt ab und benötigt mehrere rf-Zyklen zur Regeneration, bis der Ausgangswert wieder erreicht und erneut eine Hystereseschleife durchlaufen werden kann. Mit zunehmendem Pumpstrom \(I_t \) sinkt die Regenerationszeit, d.h. die Frequenz der Schleifenumläufe wird erhöht. Dabei bleibt aber die mittlere Spannung über dem Schwingkreis konstant, so daß sich in Abb.2.13a ein Plateau (B-E) ausbildet. Wenn \(I_t = I_E \) erreicht wird (Punkt E in Abb.2.13a), so wird bei jedem Maximum und Minimum eines rf-Zyklus ein Flußquantensprung induziert. Eine weitere Steigerung des Treiberstroms wird nicht mehr zur Regeneration des
Schwingkreises benötigt, sondern erhöht die am Schwingkreis abfallende Spannung (Anstieg E-F), bis weitere Quantenübergänge an Punkt F zu einer zusätzlichen Energiedissipation und zur Ausbildung eines weiteren Plateaus führen.

\[V_T^{(n+1/2)} = \Phi_0 \cdot \frac{I_{rf}}{M} \cdot (\Phi_0 - \frac{1}{2} \Phi_0) \] \hspace{1cm} (2.26)

Die weitere Bildung der linearen Anstiege und Plateaus (C-D, D-G) ist bis auf die Verschiebung identisch mit dem Fall \(\Phi_{ext} = n\Phi_0 \).

Wenn der SQUID bei einem konstanten Pumpstrom \(I_{rf} \) betrieben wird, und der externe Fluß stetig ansteigt, so variiert \(V_T \) periodisch zwischen dem maximalen Wert bei \(\Phi_{ext} = n\Phi_0 \) und

\(\Phi_{ext} = n\Phi_0 \) und

\(\Phi_{ext} = (n+1/2)\Phi_0 \); (b) Fluß-zu-Spannungs-Transferfunktion des rf-SQUID bei \(I_{rf} = I_b \), modifiziert nach [Cla96]. Die über dem Tankschwingkreis abfallende Spannung ist eine periodische Funktion des externen Flusses mit der Periode eines Flußquants.
dem minimalen Wert bei $\Phi_{\text{ext}} = (n+\frac{1}{2})\Phi_0$. Dies entspricht einer maximalen Flußänderung von $\Phi_0/2$. Die resultierende Fluß-zu-Spannungs-Transferfunktion $V(\Phi)$ weist einen dreiecksförmigen Verlauf mit der Periode Φ_0 auf (vgl. Abb. 2.13b). Ihre Spannungsamplitude ΔV_T ergibt sich aus der Differenz von (2.25) und (2.26) zu

$$\Delta V_T = V^{(n)}_T - V^{(n+\frac{1}{2})}_T = \frac{\omega_0 L_x \Phi_0}{2M}.$$ \hspace{1cm} (2.27)

Für die Messung kleiner magnetischer Flußänderungen ist ein möglichst großer Spannungshub ΔV_T wünschenswert. Dieser wird maximal, wenn der SQUID mit einem konstanten Pumpstrom von $I_{ext} = I_B$ im Bereich des ersten Plateaus zwischen B und C betrieben wird (vgl. Abb. 2.13). Der Transferkoeffizient zwischen externem Fluß und Schwingkreisspannung $\partial V_T/\partial \Phi_{\text{ext}}$, der den SQUID als Fluß-zu-Spannungswandler charakterisiert, ergibt sich als Steigung der Transferfunktion zu [Bra00a]

$$\frac{\partial V_T}{\partial \Phi_{\text{ext}}} = \frac{\Delta V_T}{\Phi_0 / 2} = \frac{\omega_0 L_x}{M} = \frac{\omega_0}{k} \sqrt{\frac{L_x}{L_g}}.$$ \hspace{1cm} (2.28)

Gleichung (2.28) legt die Vermutung nahe, daß durch beliebige Reduzierung der Kopplungskonstanten k zwischen SQUID und Schwingkreis die Spannungsamplitude ΔV_T beliebig weit erhöht werden kann. Es kann aber gezeigt werden, daß zur Erzielung eines maximalen Spannungshubs die Bedingung

$$k^2 \cdot Q > 1$$ \hspace{1cm} (2.29)

erfüllt sein muß [Sim71, Pas74, Jak75]. Eine möglichst hohe Güte Q des Schwingkreises, wie sie z.B. die sog. koplanaren Resonatoren aufweisen (Kap. 2.2.5), ist also zur Erzielung einer hohen Spannungsamplitude und damit für eine Verbesserung des Signal-zu-Rausch-Verhältnisses wünschenswert.

Der Transferkoeffizient (2.28) hängt über das Spannungsrauschen $S_V^{1/2}$, das über dem SQUID abfällt, direkt mit dem magnetischen Flußrauschen $S_\Phi^{1/2}$ zusammen \footnote{Das magnetische Flußrauschen $S_\Phi^{1/2}$ wird im allgemeinen als Effektivwert in den Einheiten $\Phi_0/\sqrt{\text{Hz}}$ angegeben und ermittelt sich aus der spektralen Leistungsleistung S_Φ.} [Cla96]:

$$S_\Phi^{1/2} = \frac{S_V^{1/2}}{\partial V_T / \partial \Phi_{\text{ext}}}.$$ \hspace{1cm} (2.30)
Aus (2.28) und (2.30) wird deutlich, daß eine große Amplitude ΔV_T der Transferfunktion bzw. ein großer Transferkoeffizient zu einem niedrigen Flußrauschen führen. Amplitude und Stabilität der Transferfunktion stellen damit wichtige Betriebsparameter des rf-SQUID dar [Fal75].

Eine Übersicht über die Rauschbeiträge im rf-SQUID-System wird im nächsten Kapitel gegeben. Darauf aufbauend wird im nachfolgenden Abschnitt der Einfluß eines Magnetfeldes auf den SQUID-Parameter β_L und die Auswirkungen einer Reduktion von β_L auf die Transferfunktion und damit auf das Sensorrauschen erörtert (Kap.2.2.3).

2.2.2 Beiträge zum Rauschen im rf-SQUID-System

Hauptursache für das 1/f-Rauschen, bei dem die spektrale Leistungsichte mit dem Kehrwert der Frequenz skaliiert, sind thermisch aktivierte Bewegungen von Abrikosov-Flußwirbeln im Supraleiter [Fer94, Dan96, Sel98]. Ebenso kann ein niederfrequenter Rauschanstieg durch Fluktuationen des kritischen Stroms hervorgerufen werden [Gro91, Mik92, Mar95]. Der Rauschbeitrag durch Stromfluktuationen wird jedoch aufgrund des hochfrequenten rf-Pumpstroms in rf-SQUIDs eliminiert und kann im Fall von dc-SQUIDs durch Modulation des Biasstroms bei Frequenzen von mehreren kHz ebenfalls unterdrückt werden [Müe94, Dru01].

Oberhalb der Eckfrequenz ist die spektrale Leistungsichte unabhängig von der Frequenz und wird durch thermische Fluktuationen der Ladungsträger verursacht. Im Fall dieses weißen
Rauschens unterscheidet man beim rf-SQUID im wesentlichen drei Anteile: das intrinsische Rauschen des SQUID, das Rauschen des Tankschwingkreises und das Rauschen des Vorverstärkers der rf-Elektronik.

Der Rauschanteil des Vorverstärkers ist bei HTSL-SQUIDs vernachlässigbar klein und wird von den übrigen Beiträgen dominiert. Durch Kühlung der Elektronik wird eine nur unwesentliche Verbesserung des Gesamtrauschens erzielt.

Der Rauschbeitrag des Tankschwingkreises kann durch die Verwendung von supraleitenden Streifenleitern, sog. koplanaren Resonatoren mit hoher Güte Q, reduziert werden (vgl. Kap. 2.2.5).

Der intrinsische Beitrag S^i_Φ des rf-SQUID hängt von der Betriebsart ab. Bei der Bestimmung der Rauschkomponenten muß zwischen den beiden Modi $\beta_L < 1$ und $\beta_L > 1$ unterschieden werden. Für den nicht-hysteretischen Betriebsmodus ($\beta_L < 1$) gilt nach [Kur73, Dan76]

$$S^i_\Phi \approx \frac{1.22}{\beta_L} \left(\frac{4k_B T L_s}{R_N} \right)^\frac{1}{2}.

L_s$ bezeichnet die SQUID-Induktivität, R_N den ohmschen Widerstand des Kontakts. Für den hysteretischen SQUID-Betrieb ($\beta_L > 1$) ergibt sich ein intrinisches Rauschen von

$$S^i_\Phi \approx \frac{\beta^2_L}{\omega_0} \cdot \left(\frac{2\pi k_B T}{I_C \Phi_0} \right)^\frac{1}{2},

wobei ω_0 die Resonanzfrequenz des Tankschwingkreises bezeichnet. Hier wird deutlich, daß eine Erhöhung der Tankkreisfrequenz zu einer Senkung des weißen Flußrauschens führt. Aus diesem Grunde werden HTSL-rf-SQUIDs heutzutage bei sehr hohen Frequenzen von bis zu 1 GHz betrieben [He98].

2.2.3 Der optimale Arbeitsbereich

Die intrinsischen Rauschbeiträge des rf-SQUID im dissipativen ($\beta_L > 1$) (2.31) und dispersiven Modus ($\beta_L < 1$) (2.32) führen zu dem Schluß, daß der Sensor zur Erzielung eines möglichst geringen weißen Flußrauschens, welches nach (2.28) und (2.30) direkt von der Amplitude der $V(\Phi)$-Transferfunktion abhängt, nahe $\beta_L \sim 1$ betrieben werden muß. Dieser Sachverhalt konnte experimentell bestätigt werden [Pas74, Fal75]. Die gemessene Amplitude der Transferfunktion weist in Abhängigkeit vom SQUID-Parameter β_L ein deutliches Maximum auf und fällt für Werte $\beta_L < 1$ deutlich ab. Neuere theoretische und experimentelle
Untersuchungen des Verhaltens von rf-SQUIDs haben außerdem gezeigt, daß der optimale Arbeitsbereich in Gegenwart hoher thermischer Fluktuationen bei 77 K bei Werten von bis zu $\beta_L \sim 3$ liegen kann [Che98, Zen00].

Entscheidend für die im Rahmen der Arbeit durchzuführenden Untersuchungen ist der folgende Sachverhalt: Wird der kritische Strom I_c im Kontakt eines rf-SQUID durch ein externes Magnetfeld nach (2.13) reduziert, so wird auch der Parameter β_L, der nach (2.21) direkt proportional zu I_c ist, reduziert. Dies wird in jedem Fall zu einer Reduktion der Amplitude der Transferfunktion führen, wenn β_L auf den optimalen Wert eingestellt ist [Fal75]. Damit können externe Magnetfelder empfindlich die Funktion eines rf-SQUID beeinträchtigen und zu einem Anstieg des weißen Rauschens führen.

2.2.4 Die Feldempfindlichkeit

Ein niedriges Flußrauschen alleine ist für eine empfindliche Messung von Magnetfeldern nicht ausreichend. Gleichermassen bedeutsam ist die Feldempfindlichkeit eines SQUID-Magnetometers, deren direktes Maß die effektive Sensorfläche A_{eff} ist. Sie wird über den Feld-zu-Flußkoeffizienten $\partial B / \partial \Phi$ definiert und gibt an, wieviel magnetischer Fluß bei einem gegebenen äußeren Magnetfeld in den SQUID eingekoppelt wird:

$$\frac{1}{A_{\text{eff}}} = \frac{\partial B}{\partial \Phi} \quad (2.33)$$

Je kleiner der Feld-zu-Fluß-Koeffizient bzw. je größer die effektive Sensorfläche, desto größer ist die Empfindlichkeit des SQUID für äußere Magnetfelder.

Durch washer-Strukturen der rf-SQUIDs und durch große Flußfokussierer kann A_{eff} vergrößert werden. Diese Vergrößerung bietet Vor- und Nachteile. Zunächst die Vorteile:

Das magnetische Feldrauschen $S_B^{1/2}$ bestimmt unter Berücksichtigung der Frequenzbandbreite Δv die Auflösungsgrenze B_0 des Sensors für äußere Magnetfelder mit $B_0 = S_B^{1/2} \cdot (\Delta v)^{1/2}$. Das Feldrauschen ergibt sich aus dem Feld-zu-Fluß-Koeffizienten, bzw. der effektiven Fläche, und dem magnetischen Flußrauschen $S_\phi^{1/2}$ des SQUID zu

3 Das magnetische Feldrauschen $S_B^{1/2}$ wird im allgemeinen als Effektivwert in den Einheiten $\text{T} / \sqrt{\text{Hz}}$ angegeben.
\[S_{B}^{\%} = \frac{\partial B}{\partial \Phi} \cdot S_{\Phi}^{\%} = \frac{1}{A_{\text{eff}}} \cdot S_{\Phi}^{\%}. \]

(2.34)

Ein für die meisten Anwendungen wünschenswertes niedriges Feldrauschen kann bei vorteilhafter Steigerung der Feldempfindlichkeit durch die Erhöhung der effektiven Sensorfläche \(A_{\text{eff}} \) realisiert werden.

Beim rf-SQUID wird die effektive Fläche im allgemeinen durch die Verwendung einer sog. washer-Struktur vergrößert [Zha92], die als Aufnahmespule für magnetischen Fluß dient (Abb.2.14a). Infolge der in der washer-Struktur angeregten Abschirmströme wird verstärkt magnetischer Fluß ins SQUID-Loch eingekoppelt. Damit wirkt die Struktur wie ein Konzentrator für magnetischen Fluß. Nach Ketchen et al. läßt sich die effektive Fläche eines quadratischen washer-SQUID mit

\[A_{\text{eff}} = \alpha \cdot d \cdot D^{*} \]

(2.35)

berechnen [Ket85]. Hier bezeichnet \(d \) die Kantenlänge des SQUID-Lochs, \(D^{*} \) die Kantenlänge der washer-Struktur (siehe Abb.2.14a) und \(\alpha \sim 1,1 \) einen dimensionslosen Parameter. Diese Gleichung gilt nur näherungsweise und kann auf die meisten Entwürfe (Layouts) von rf-SQUID-Sensoren nicht angewendet werden, da die heutzutage vielfach eingesetzten Magnetometer aus einem kreisförmigen washer mit Radius \(R_{w} \) mit einem viereckigen SQUID-
Loch mit Kantenlänge d bestehen (Kap.3.3). Für dieses Layout existiert kein analytischer Ausdruck für A_{eff}. Sehr viel zuverlässiger wird die effektive Fläche des SQUID-Magnetometers experimentell in einem kalibrierten homogenen Magnetfeld bestimmt [Slo94], wobei der mit dem SQUID gemessene magnetische Fluß mit der angelegten magnetischen Flußdichte in Relation gesetzt wird. Mit (2.33) erhält man A_{eff}. Im Rahmen der vorliegenden Arbeit wird dieses Verfahren für die Ermittlung der effektiven Flächen der charakterisierten rf-SQUID-Sensoren eingesetzt.

Eine weitere Möglichkeit zur Vergrößerung der effektiven Fläche bietet sich in der Verwendung von Flußkonzentratoren (Abb.2.14b), die in sog. 'flip-chip-Konfiguration' mit einem washer-SQUID betrieben werden [Ock97]. Dabei wird der Flußfokussierer direkt auf den SQUID gelegt. Die in der größeren supraleitenden Fläche des Fokussierers zusätzlich induzierten Abschirmströme (siehe Abb.2.14b) fließen am SQUID-Loch vorbei und koppeln proportional zum Strom magnetischer Fluß in den SQUID. Auch für eine derartige Sensoranordnung wird die effektive Fläche i.a. experimentell bestimmt.

2.2.5 Koplanare Resonatoren

Zur Senkung des magnetischen Feldrauschens von rf-SQUID-Sensoren ist also nach den bisher vorgestellten Betrachtungen eine Senkung des Flußrauschens wünschenswert bei sowohl hoher Empfindlichkeit für magnetische Felder als auch kleiner geometrischer Sensorfläche.

Der sog. koplanare Resonator mit integriertem Flußkonzentrator bietet nun die Möglichkeit, die Feldempfindlichkeit des washer-SQUID durch einen Flußfokussierer zu erhöhen und gleichzeitig den Rauschbeitrag des Tankschwingkreises durch den Einsatz eines supraleitenden Resonators hoher Güte zu reduzieren, der den normalleitenden Schwingkreis ersetzt [Zha97a].
Nach (2.28) wird das Flußrauschen gesenkt, wenn der Kopplungskoeffizient \(k = M (L_S L_T)^{-\frac{1}{2}} \) zwischen rf-SQUID mit Induktivität \(L_S \) und Schwingkreis mit Induktivität \(L_T \) reduziert wird. Nach (2.29) muß aber die Bedingung \(k^2 Q > 1 \) erfüllt sein. Eine hohe Güte des Schwingkreises ermöglicht die Reduzierung von \(k \) und damit die Senkung des Flußrauschens.

Abb.2.15 Schematische Darstellung von koplanaren Resonatoren mit integrierten Flußkonzentratoren für Resonanzfrequenzen von (a) 850, (b) 650 und (c) 600 MHz [Zha97a].

Beim koplanaren Resonator wird unbelastet eine hohe Güte von \(Q > 5000 \) durch den Einsatz von zwei supraleitenden, resonierenden Streifenleitern realisiert, die koplanar auf einem Substrat angeordnet sind und einen Flußkonzentrator umschließen. Beispiele für Layouts von koplanaren Resonatoren sind in Abb.2.15 dargestellt. Die Schichtdicke des epitaktisch aufgewachsenen YBCO-Films beträgt i.a. 200 nm.

Die Ankopplung an den rf-SQUID erfolgt induktiv, indem der SQUID auf den Konzentratorkopplungsbereichlegt wird (flip-chip-Konfiguration). Mit der Größe des Flußkonzentrators wächst dabei die effektive Fläche bzw. die Feldempfindlichkeit der SQUID/Resonator-Anordnung. Das Signal des Schwingkreises wird mit Hilfe einer normalleitenden Spule induktiv ausgelesen (vgl. dazu auch Abb.3.8b in Kap.3.3.2.1).

Eine Variation des Winkels \(\theta \) zwischen den Streifenleitern (Abb.2.15) führt aufgrund der Änderung der effektiven Kapazität \(C_{eff} \) des Resonators zu einer Änderung der Resonanzfrequenz \(\omega_0 \). Mit wachsendem Winkel \(\theta \) sinkt \(\omega_0 \), wie anhand von Berechnungen der Winkelabhängigkeit von \(C_{eff} \) [Kur97] in qualitativer Übereinstimmung mit experimentellen Werten [Zha98b] gezeigt werden konnte. Bei Vergrößerung des Durchmessers des Flußkonzentrators sinkt aufgrund von längeren Streifenleitern die Resonanzfrequenz ebenfalls. Eine detaillierte Charakterisierung unterschiedlicher Resonator-Layouts in Abhängigkeit von der Positionierung der Streifenleiter und der Größe der Flußkonzentratoren findet sich in [Zha98b]. Typische Resonanzfrequenzen liegen zwischen 580 MHz und 1,2 GHz.
Mit der Möglichkeit, mit Hilfe des Layouts auf einfache und reproduzierbare Weise die gewünschte Resonanzfrequenz einzustellen, ist dieses Bauelement für den Einsatz in Multikanalsystemen besonders gut geeignet. Durch Wahl unterschiedlicher rf-Pumpfrequenzen kann hochfrequentes Übersprechen zwischen den Sensoren reduziert und damit ein stabiler SQUID-Betrieb realisiert werden [Bou00]. Aus diesem Grund und aufgrund der erzielbaren niedrigen Rausch niveaus mit Bestwerten von weniger als 30 fT/√Hz für das Feldrauschen bei geometrischen Sensorflächen von 1 cm² [Zha98b] wird die flip-chip-Anordnung von rf-SQUID und koplanarem Resonator heutzutage in den meisten Anwendungsgebieten eingesetzt [Zha01a].

Neben koplanaren Resonatoren mit Flußkonzentratoren gibt es die Möglichkeit, mehrlagige Flußtransformatoren in Verbindung mit supraleitenden Resonatoren zur Erhöhung der Flußfokussierung bei gleichbleibender Substratgröße zu verwenden. Durch das Einbringen einer supraleitenden Überkreuzung ist es möglich, die Windungszahl der supraleitenden Einkoppelspule zu erhöhen und damit das magnetische Feldrauschen im weißen Frequenzbereich bis auf Bestwerte von 11,5 fT/√Hz zu senken [Zha99b, Yi00]. Aus bisher noch nicht zufriedenstellend geklärten Gründen weisen derartige Sensoren ein stark überhöhtes 1/f-Rauschen auf, das bereits bei Frequenzen oberhalb von 1 kHz einsetzt [Zha01a]. Infolgedessen und aufgrund der verhältnismäßig aufwendigen Herstellung der supraleitenden Überkreuzung in Multilagentechnologie, haben sich diese Bauelemente in der Anwendung noch nicht durchsetzen können.
2.3 Die Reduktion magnetischer Störsignale

2.3.1 Methoden zur Störsignalunterdrückung

Die effektivste Unterdrückung von magnetischen Störsignalen wird durch passive Abschirmungen erreicht, die aus mehreren Lagen μ-Metall⁴ hoher Permeabilität und Aluminium bestehen. Sie können in Abhängigkeit von der verwendeten Materialmenge und der Konstruktion Dämpfungen um den Faktor 50 – 10.000 bei 1 Hz bzw. 10.000 bis 300.000 oberhalb von 10 Hz aufweisen [Ern81, Sul87, Dav00]. In einer neu errichteten Abschirrmkammer in der Physikalisch-Technischen-Bundesanstalt in Berlin, bestehend aus 7 Lagen μ-Metall, wird sogar eine Unterdrückung von 3×10⁶ bei 1 Hz und 7×10⁸ bei 10 Hz erreicht [Schu01]. Magnetische Abschirmkammern sind jedoch noch zum einen sehr kostspielig (je nach Ausführung einige 100.000 bis einige Millionen DM) und können zum anderen aufgrund ihrer Unbeweglichkeit und eingeschränkten Dimension nicht in allen Anwendungen eingesetzt werden [Wik95].

Eine weitere Möglichkeit zur Störsignalreduktion besteht in der Überlagerung des Störfeldes durch ein Gegenfeld derart, daß eine sog. aktive Kompensation der Störung erfolgt. Das Gegenfeld wird durch Magnetfeldspulen erzeugt, die über Referenzsensoren, welche die Störsignale messen, und einen geeigneten Regelkreis angesteuert werden [Bra93, Vrb00]. Nachteilig ist hier, daß bei weniger empfindlichen Referenzsensoren dem Meßsignal das Rauschen der Referenzsensoren und der Stromquellen der Spulen überlagert wird.

⁴ μ-Metall ist eine Nickel-Eisen-Legierung mit einer Permeabilität von etwa 80.000–120.000 [Bes99].

Eine besonders effektive Möglichkeit zur Unterdrückung von magnetischen Störsignalen bilden gradiometrische Methoden zur räumlichen Filterung [Zim71], die sich in Kombination mit einer oder mehreren der oben erwähnten Verfahren in den meisten Anwendungsgebieten durchgesetzt haben. Die Grundlagen der Gradiometrie werden in den folgenden Abschnitten beschrieben.

2.3.2 Das Prinzip der Gradiometrie

Das Feld magnetischer Quellen kann in erster Näherung durch das Feld eines Dips beschrieben werden [Cle96]:

\[
B(r) = \frac{1}{4\pi} \left(\frac{3(M \cdot \hat{r}) \cdot r}{r^5} - \frac{M}{r^3} \right) \propto \frac{M}{r^3}.
\]

(2.36)

Hier bezeichnen \(M\) das magnetische Dipolmoment und \(\hat{r}\) den Ortsvektor zwischen Sensor und Dipol. Das Magnetfeld fällt mit \(M/r^3\), das Gradientenfeld erster bzw. zweiter Ordnung mit \(M/r^4\) bzw. \(M/r^5\) ab. Den starken Abfall der Felder im Nahbereich einer Quelle und die Tatsache, daß der Abstand zwischen Sensor und Nutzsignalquelle oft klein ist gegen den Abstand zwischen Sensor und Störquelle, macht man sich bei der Gradiometrie zunutze.

Weit entfernte Störsignale sind am Meßort näherungsweise homogen und besitzen dort einen kleinen Gradienten. Hingegen weisen Nutzsignale im Nahfeld eines Sensors einen großen Gradienten auf. Wie in Abb.2.16 anschaulich dargestellt, ist das Magnetfeld einer entfernten Störquelle (Fahrzeug) am Ort des Sensors im Gegensatz zum Magnetfeld des Nutzsignals (menschliches Herz) nahezu homogen.

Im einfachsten Fall kann man nun mit zwei Sensoren A und B im Nahfeld der Nutzsignalquelle das anliegende Magnetfeld messen. Dabei ist ein Sensor nahe an der Quelle, der andere weiter entfernt positioniert. Den Abstand zwischen beiden Sensoren bezeichnet man als Basislänge \(b_L\). Durch die Bildung der Differenz der beiden Signale a und b lassen
sich nun entfernte Störfelder aufgrund ihrer Homogenität am Meßort gut unterdrücken, wohingegen das Nutzsignal hauptsächlich mit dem näher zur Quelle positionierten Sensor erfaßt wird. Das Meßsignal s dieses Gradiometers 1. Ordnung lautet:

$$s = a - b.$$ \hfill (2.37)

Ein Gradiometer 1. Ordnung mißt den Magnetfeldgradienten, d.h. die Richtungsableitung 1. Ordnung, streng genommen den Differenzenquotienten $\Delta B_i/\Delta j$ aufgrund des endlichen Abstands der Meßpunkte $(i,j \in x,y,z)$. Entsprechend mißt ein Gradiometer n-ter Ordnung den Magnetfeldgradienten bzw. den Differenzenquotienten n-ter Ordnung $(n \in N)$.

Die Unterdrückung von Störsignalen kann durch die Verwendung von Gradiometern höherer Ordnung proportional zum Faktor b_r/r gesteigert werden [Vrb80]. Dies ist in Abb.2.16 gezeigt. Die Messung des Signals des menschlichen Herzens mit einem wesentlich kleineren Dipolmoment als dem der Störquelle ist im dargestellten Fall nicht mit dem Gradiometer 1. Ordnung (Abb.2.16c) sondern nur mit einem Gradiometer höherer Ordnung (Abb.2.16d) möglich.

Abb.2.16 Magnetfeld des Herzens mit einem Dipolmoment von $M = 20 \, \text{fTm}^3$ (a) und die gradiometrische Filterung des Störfeldes eines 70 m entfernten Fahrzeugs mit einem Dipolmoment von $M = 0.1 \, \text{Tm}^3$ durch (b) ein Magnetometer, (c) ein Gradiometer 1. Ordnung und (d) ein Gradiometer 2. Ordnung mit einer Basislänge von $b_L = 7.5 \, \text{cm}$, modifiziert nach [Vrb80]. Mit einem Gradiometer 2. Ordnung im Nahfeld der Nutzsignalquelle läßt sich das Herzsignal gut detektieren.
2.3.3 Die Realisierung von Gradiometern

Es existieren verschiedene Realisierungsmöglichkeiten von Gradiometern. Je nachdem, welche Richtungsableitung gemessen werden soll, unterscheidet man zunächst zwischen planaren und axialen Gradiometern, welche im Fall eines Gradiometers 1. Ordnung den Differenzenquotienten $\Delta B_i/\Delta j$ (planar) bzw. $\Delta B_j/\Delta i$ (axial) messen ($i,j \in \{x,y,z\}$). Dies wird durch die Ausrichtung der Einkoppelspulen bzw. der Magnetfeldsensoren bestimmt. Abb.2.17 zeigt entsprechende Beispiele.\(^5\)

![Diagramme für Gradiometer 2.17](image)

Abb.2.17 Realisierungsmöglichkeiten von Gradiometern: Intrinsisches Axialgradiometer (a), intrinisches Planargradiometer (b) und elektronisches Axialgradiometer (c). Ein axiales Software-Gradiometer wird durch Verrechnung der beiden Magnetometersignale im Computer gebildet (d), entspricht aber ansonsten dem elektronischen Gradiometer.

Die Subtraktion der Signale an den unterschiedlichen Meßpunkten kann z.B. durch eine entsprechende Kopplung der Aufnahmespulen vorgenommen werden, so daß die durch das Magnetfeld in den Spulen induzierten Ströme entgegengesetzte Polarität besitzen und ein induktiv angekoppelter SQUID nur das Differenzsignal mißt (Abb.2.17a und b). Derartige Ausführungen werden intrinsische Gradiometer genannt.

\(^5\) Allgemein ist für die vollständige Erfassung des Gradienten 1. Ordnung, der durch einen 9-komponentigen Tensor Ω bestimmt ist, die Messung von 5 unabhängigen Richtungsableitungen notwendig [Vrb96]. Dies läßt sich z.B. mit einer entsprechenden Kombination aus 8 einzelnen Magnetometern realisieren [Bou00].
Aus Hochtemperatursupraleitern lassen sich aufgrund der elektrischen und strukturellen Anisotropie (vgl. Kap.2.1.3.1) keine axialen gradiometrischen Einkoppelspulen herstellen. Einzige Möglichkeit, mit HTSL ein intrinsisches Gradiometer zu realisieren, ist die planare Anordnung zweier Einkoppelspulen auf einem Substrat [Zak94, Zha97b]. Auf diese Weise lassen sich aber nur Basislängen von wenigen Millimetern erreichen, da bei Erhöhung des Spulenabstands aufgrund einer wachsenden Schlitzinduktivität ein erhöhtes Flußrauschen resultiert [Mau99].

$$ S_G = \sqrt{\sum_i (m_i \cdot k_i \cdot S_{mi})^2} . \tag{2.38} $$

Hier bezeichnen S_{mi} das Rauschen und k_i die Gewichtung des i-ten Magnetometers. Der Parameter $m_i \in N$ beschreibt, wie oft ein und dasselbe Magnetometersignal zur Bildung des gradiometrischen Signals eingesetzt wurde. Für ein Gradiometer 1. Ordnung, das aus einem Meß- und einem Referenzsensor gebildet wird, ergibt sich z.B. im Vergleich zum
Einzelsensor eine Erhöhung des Rauschens um den Faktor $\sqrt{2}$, wenn beide Sensoren gleiches Rauschen aufweisen.

2.3.4 Die Balancierung

Die Unterdrückung von homogenen magnetischen Feldern durch gradimetrische Sensoranordnungen ist nicht unendlich groß. Grund sind zum einen die Grenzen der Genauigkeit, mit denen sich Gradiometer mechanisch anfertigen lassen. Dies wirkt sich in unterschiedlich großen Flußaufnahmeflächen (Abb.2.18a) aus, die zudem gegeneinander verkippt sein können (Abb.2.18b). Darüberhinaus kann das Magnetfeld am Ort der Flußaufnahmeschleifen durch supraleitende Objekte verzerrt werden (Abb.2.18c). Normalleitende Objekte in der Nähe der Gradiometer rufen durch Wirbelstromeffekte zusätzlich eine frequenzabhängige Verzerrung des homogenen Feldes hervor. Diese Einflüsse führen dazu, daß Gradiometer n-ter Ordnung ebenfalls Beiträge homogener Magnetfelder und Gradientenfelder niedrigerer Ordnung messen [Vrb96].

Abb.2.18 Unbalance aufgrund unterschiedlich großer Flußaufnahmeflächen (a), aufgrund der Verkippung der Aufnahmeflächen (b) oder aufgrund eines supraleitenden Objekts in der Nähe des Gradiometers (c), aus [Vrb96].

Zur Maximierung der Balance werden verschiedene Verfahren eingesetzt, die man gewöhnlich als Balancierung des Gradiometers bezeichnet. Hier und im folgenden wird ein erweiterter Begriff der Balancierung verwendet: unter Balancierung wird nicht nur die Minimierung des CMRR (d.h. bestmögliche Unterdrückung homogener Magnetfelder), sondern allgemein der Abgleich des Meßsystems zur bestmöglichen Unterdrückung externer Störfelder unabhängig von deren Gradientenanteil verstanden.

Eine Möglichkeit zur Balancierung von intrinsischen Gradiometern aus Tieftemperatur-supraleitern besteht in der Variation der Flußaufnahmeäquivalenzen dreier orthogonalen Korrektur-magnetometer durch justierbare supraleitende Abschirmungen, so daß sich die Stromflüsse in den gradiometrisch angeordneten Spulen entsprechend aufheben [Sar77]. Intrinsische HTS-SQUID-Gradiometer lassen sich auf diese Weise nicht balancieren, da nur planare Strukturen realisiert werden können. Die Balance ist hier durch die Genauigkeit der photolithographischen Strukturierung begrenzt und kann i.a. nach der Herstellung nicht mehr variiert werden [Dör97, Zha97b].

1. Das einfachste Verfahren besteht im elektronischen Abgleich von Meßsensor A und Referenzsensor B (vgl. Abb. 2.17c). Dabei werden Unterschiede in der Größe der effektiven Sensorfläche ausgeglichen, indem das Signal des Referenzsensors mit einem entsprechenden Faktor k, dem Balancierungscoefficienten, gewichtet wird, so daß (2.37) modifiziert wird zu

\[s = a - k \cdot b. \] \hspace{1cm} (2.39)

Der Sensorabgleich kann hier ebenfalls durch Verrechnung der Einzelsignale im PC erfolgen.

2. Ein möglicher zusätzlicher Abgleich besteht in der Verwendung von drei orthogonalen, supraleitenden Flächen, die durch ihre Magnetfeldverdrängung aufgrund des Meissner-Effekts das Feld am Ort des Referenzsensors beeinflussen [Sar77, Ove78]. Durch entsprechende Justierung der Flächen läßt sich die Abstimmung zwischen Referenz- und Meßsensor vornehmen [Bor97a].
3. Eine weitere Möglichkeit besteht in der Verkippung der Magnetometer in alle drei Raumrichtungen mittels einer kardanischen Justiereinheit mit differentiellem Getriebe. So können die Sensoren mechanisch abgeglichen werden [Tav94].

4. Sowohl der mechanische Abgleich als auch die Balancierung mittels supraleitender Flächen ist sehr aufwendig und insbesondere für Mehrkanalsysteme nicht geeignet. Zur Balancierung werden deshalb gelegentlich Vektormagnetometer eingesetzt, die aus 3 orthogonalen Magnetometern bestehen und in Abb.2.17c bzw. Abb.2.17d das einzelne Referenzmagnetometer ersetzen [He98, Lud00]. Dabei werden die Meßsignale der drei orthogonalen Magnetometer mit entsprechenden Balancierungskoeffizienten \(k_i \) \((i = x, y, z) \) gewichtet, so daß sich für den Ausgang eines Gradiometers 1. Ordnung

\[
s = a - \sum_i k_i \cdot b_i
\]

ergibt. Somit werden der Winkelversatz zum Meßsensor in allen drei Raumrichtungen und unterschiedlich große Sensorflächen ausgeglichen. Der Abgleich der Magnetometer erfolgt elektronisch über Potentiometer [He98] oder durch Verrechnung im PC [Lud00]. Nachteilig ist hier jedoch die größere Anzahl von benötigten Referenzsensoren.

Entscheidend für die Wirksamkeit der Unterdrückung von Störmagnetfeldern ist die Ermittlung von geeigneten Balancierungskoeffizienten zwischen Meß- und Referenzsensoren. Dies gilt sowohl für die Verrechnung der Sensorsignale und den elektronischen Abgleich nach (2.39) und (2.40) als auch für die Balancierung mittels mechanischer Justiereinheit oder supraleitenden Flächen, bei denen ebenfalls Balancierungskoeffizienten (z.B. die Position der supraleitenden Flächen) festgelegt werden müssen.

Es gibt verschiedene Methoden zur Durchführung der Balancierung, sprich zur Ermittlung der entsprechenden Koeffizienten. Es können homogene Felder mittels Helmholtzspulen angelegt werden [Bor97b], oder das Gradiometer kann im hinreichend homogenen Magnetfeld der Erde rotiert werden [Tav93]. Durch Anpassung der Balancierungskoeffizienten wird das Gradiometersignal minimiert und dabei die Balance hinsichtlich homogener Felder maximiert. Die Koeffizienten können auch adaptiv an eine spezielle Störungslage angepaßt werden, sofern deren Charakter zeitlich hinreichend konstant ist [Vrb96].

Kapitel 3

Magnetfeldabhängigkeit von HTSL-rf-SQUID-Magnetometern

3.1 Zielsetzung

Der kritische Strom in einem Josephson-Kontakt wird durch ein externes Magnetfeld aufgrund des Eindringens von Josephson-Flußwirbeln mit der Magnetfeldperiode ΔB0 moduliert (vgl. Kap.2.1.4). Die Reduktion des kritischen Stroms im rf-SQUID führt mit $b_L = 2\pi L_l / \Phi_0$ zu einer Reduktion des Parameters b_L. Ist der SQUID auf seinen optimalen Arbeitsbereich eingestellt, so sollte jede Reduzierung von b_L zu einer Reduzierung der Transferfunktion (vgl. Kap.2.2.3) und damit entsprechend den Gleichungen (2.28) und (2.30)
zu einem Rauschanstieg führen. Für die Stabilität der Transferfunktion ist daher eine möglichst große Magnetfeldperiode des kritischen Stroms ΔB_0 wünschenswert.

Auf der Basis der Gleichungen für die Magnetfeldabhängigkeit von planaren Korngrenzenkontakten, (2.17) und (2.18) (vgl. Kap.2.1.4) werden zunächst Rechnungen durchgeführt, welche die Flußfokussierung des SQUID-washers berücksichtigen. Die Unterdrückung des kritischen Stroms im Kontakt von rf-SQUIDs in Abhängigkeit von der effektiven Sensorfläche A_{eff} und der Josephson-Kontaktbreite w wird quantifiziert (Kap.3.2). Die Rechnungen zeigen, daß - und in welchem Maße – bei gegebener Sensorfläche die Kontaktbreite reduziert werden muß, damit sich die Magnetfeldperiode ΔB_0 des kritischen Stroms vergrößert.

Die Herstellung von HTSL-rf-SQUID-Magnetometern mit schmalen Kontakten, sowie die im Rahmen der Arbeit aufgebauten bzw. erweiterten Meßplätze werden in Kap.3.3 beschrieben.

Zur experimentellen Charakterisierung der SQUID-Sensoren wird zunächst die Unterdrückung der Transferfunktion durch äußere Magnetfelder sowie die Korrelation mit dem Anstieg des weißen Flußbrausens gemessen. Desweiteren wird die Magnetfeldperiode der Transferfunktion, $\Delta B_{0,v}$, als Funktion der effektiven Fläche und der Kontaktbreite experimentell ermittelt. Die Ergebnisse werden mit den Vorhersagen der in Kap.3.2 vorgestellten Modelle verglichen (Kap.3.4).

Die Ermittlung einer optimalen Kontaktbreite für ein gegebenes Magnetfeld basiert auf der Berechnung der Magnetfeldperiode ΔB_0 des kritischen Stroms (Kap.3.2). Das Kriterium für den SQUID-Betrieb ist aber die Magnetfeldperiode $\Delta B_{0,v}$ der Transferfunktion. Für eine zuverlässige Berechnung der Kontaktbreite ist daher die Kenntnis der Korrelation zwischen ΔB_0 und $\Delta B_{0,v}$ von entscheidender Bedeutung. Zur Ermittlung des Zusammenhangs zwischen ΔB_0 und $\Delta B_{0,v}$ ist die experimentelle Bestimmung der $l_0(B)$-Abhängigkeit sowie des Parameters β_L notwendig. Im Gegensatz zur Messung der Amplitude der Transferfunktion ist die Messung des kritischen Stroms eines rf-SQUID ohne Zerstörung des Sensors nicht direkt möglich. Kap.3.3.3 geht daher zunächst auf die Probenpräparation und die Meßmethodik ein, die eine Messung der $l_0(B)$-Kurve nach Auftrennung des SQUID-washers ermöglichen. In Kap.3.5 schließlich wird die Magnetfeldperiode ΔB_0 des kritischen Stroms einiger ausgewählter SQUIDs experimentell charakterisiert und durch Vergleich mit der Periode der Transferfunktion $\Delta B_{0,v}$ die Gültigkeit der Rechnungen überprüft.
3.2 Berechnung der Magnetfeldabhängigkeit von rf-SQUIDs

Ausgehend von den Gleichungen (2.17) und (2.18) für die Magnetfeldperiode ΔB_0 von Korngrenzenkontakten, die in den untersuchten SQUIDs eingesetzt werden (Kap.3.3.1), wird im folgenden die Unterdrückung des kritischen Stroms im rf-washer-SQUID berechnet. Es wird gezeigt, daß ΔB_0 von der effektiven Sensorfläche und der Breite des Kontakts abhängt. Die Berechnungen sollen die Ermittlung von geeigneten Sensorparametern für den Betrieb in externen Magnetfeldern ermöglichen.

3.2.1 Berücksichtigung der Flußfokussierung durch den SQUID-washer

Zwei Einflüsse müssen bei der Berechnung von ΔB_0 für den rf-washer-SQUID berücksichtigt werden: einmal die lokale Feldüberhöhung, die bei planaren Korngrenzenkontakten der Breite w durch die Verdrängung des Magnetfeldes zum Rand der Elektroden in den Barrierenbereich verursacht wird [Ros91], zum anderen die Fokussierung des magnetischen Flusses durch die washer-Struktur. Dabei müssen die beiden Grenzfälle für dünne ($t \ll \lambda_L$) und für dicke Schichten ($t \gg \lambda_L$) unterschieden werden (vgl. auch Kap.2.1.4), wobei t die Schichtdicke bezeichnet.

Der magnetische Fluß Φ_{jk} in einem planaren Josephson-Kontakt beträgt im Dünnschichtfall in Gegenwart eines senkrecht auf den Kontakt gerichteten externen Magnetfeldes B_{ext} nach Rosenthal et al. [Ros91] ausgehend von (2.18)

$$\Phi_{jk} = \frac{B_{ext} \cdot w^2}{1.84}, \quad (3.1)$$

wobei w die Breite des Kontakts bezeichnet.

Die washer-Struktur des SQUID fokussiert nun zusätzlich magnetischen Fluß in das SQUID-Loch [Ket85]. Allgemein läßt sich für einen washer-SQUID beliebiger Geometrie der magnetische Fluß im SQUID-Loch Φ_{Loch}, der durch ein externes Magnetfeld B_{ext} erzeugt wird, mit Hilfe seiner effektiven Fläche A_{eff} angeben:

$$\Phi_{Loch} = A_{eff} \cdot B_{ext}, \quad (3.2)$$

Die effektive Fläche des Sensors kann experimentell ermittelt werden (Kap.2.2.4). Für einen SQUID mit quadratischem SQUID-Loch beträgt die mittlere magnetische Flußdichte B_M im Loch damit

$$B_M = \frac{\Phi_{Loch}}{d^2} = A_{eff} \cdot B_{ext} \cdot \frac{1}{d^2}, \quad (3.3)$$
wobei d die Kantenlänge des Lochs bezeichnet.

Die im Rahmen der Arbeit charakterisierten rf-SQUIIDs bestehen aus einer kreisförmigen washer-Struktur mit quadratischem SQUID-Loch. Der Josephson-Kontakt ist am Rand des Lochs positioniert (vgl. dazu Abb.3.4 in Kap.3.3.1). Für diesen Fall folgt mit (3.1) und (3.3) unter der Annahme, daß die magnetische Flüßdichte im Loch homogen verteilt ist, für den magnetischen Fluß $\Phi_{jk}^{(s)}$ im Kontakt des SQUID:

$$\Phi_{jk}^{(s)} = \frac{B_m \cdot w^2}{1,84} = A_{eff} \cdot B_{ext} \cdot \frac{1}{d^2} \cdot \frac{w^2}{1,84}.$$ \hspace{1cm} (3.4)

Der kritische Strom in einem Josephson-Kontakt wird nach (2.13) vollständig unterdrückt, wenn ein magnetisches Flußquant Φ_0 eingedrungen ist. Damit ergibt sich für das erste Minimum der I_c(B)-Kurve und damit für die Magnetfeldperiode ΔB_0 des kritischen Stroms im Kontakt des rf-washer-SQUID:

$$\Delta B_0 = 1,84 \cdot \Phi_0 \cdot \frac{d^2}{w^2 \cdot A_{eff}}.$$ \hspace{1cm} (3.5)

Diese Gleichung gilt im Grenzfall dünner Schichten, da sie aus (3.1) bzw. (2.18) abgeleitet ist. Für den Fall dicker Schichten ($t \gg \lambda_L$) erhält man mit (2.17) in analoger Weise

$$\Delta B_0 = \frac{\Phi_0 \cdot t \cdot d^2}{1,2 \cdot w^2 \cdot 2\lambda_L \cdot A_{eff}}.$$ \hspace{1cm} (3.6)

Experimentell ermittelte Werte der Magnetfeldperiode von YBCO-Korngrenzenkontakten ohne SQUID-Ring mit Schichtdicken zwischen $t = 200$ nm und $t = 300$ nm sowie einer London-Eindringtiefe von $\lambda_L \sim 200$ nm weisen auf die Gültigkeit des Dünnschichtfalls hin [Ros91, Edw92, Hum93, Vau96, Mit99]. Aus diesem Grunde sei im folgenden zunächst von der Annahme ausgegangen, daß für rf-SQUIIDs aus YBCO-Filmen mit einer Schichtdicke von $t \sim 200$ nm und einer Eindringtiefe von $\lambda_L \sim 200$ nm ebenfalls der Dünnschichtfall vorliegt.

Damit hängt nach (3.5) die Magnetfeldperiode ΔB_0 des kritischen Stroms eines rf-washer-SQUID also insbesondere von (i) der effektiven Sensorfläche, (ii) der Kantenlänge des SQUID-Lochs und (iii) der Breite des Josephson-Kontakts ab.

(i) Je größer die effektive Fläche eines SQUID-Magnetometers ist, desto geringer ist nach (2.34) das magnetische Feldrauschen. Eine Senkung der effektiven Fläche zur Erhöhung der Magnetfeldperiode gemäß (3.5) wird also in jedem Fall auch das magnetische Feldrauschen erhöhen. Dies verdeutlicht das Beispiel von dc-SQUID-Magnetometern mit sehr kleinen effektiven Flächen von $\sim 3 \cdot 10^{-3}$ mm², die einen Betrieb in Magnetfeldern von
mehrerem mT ermöglichen, aber durch ihre geringe Feldempfindlichkeit ein hohes Feldrauschen von einigen pT/√Hz aufweisen [Fal99].

(ii) Nach (3.5) läßt sich eine Verbesserung der Magnetfeldstabilität ebenfalls durch eine Vergrößerung der Lochkantenlänge d erreichen. Für die Induktivität \(L_\phi \) eines rf-SQUID gilt aber \(L_\phi \approx 1,25 \cdot \mu_0 \cdot F^{1/2} \) [Jay81], wobei F die Fläche des SQUID-Lochs bezeichnet. Eine Erhöhung der Lochkantenlänge d wird also die SQUID-Induktivität erhöhen. Dies führt aber zu einer schlechteren Ankopplung an den Tankschwingkreis und nach (2.28) und (2.30) zu einem erhöhten Flußrauschen. Das im Rahmen dieser Arbeit hauptsächlich verwendete SQUID-Layout mit einem SQUID-Loch von 150 µm x 150 µm (Kap.3.3.1.1) stellt eine geeignete Ankopplung an koplanare Resonatoren dar. Die Bedingung (2.29), \(k^2Q > 1 \), ist sehr gut erfüllt [Zha01a]. Jede Erhöhung von d wird die SQUID-Funktion beeinträchtigen und zu einem höheren Flußrauschen führen.

Da die washer-Struktur verstärkt magnetischen Fluß in das SQUID-Loch und damit in den am Lochrand positionierten Kontakt einkoppelt, liegt zur Steigerung der Magnetfeldstabilität die Überlegung nahe, den Kontakt aus dem Lochbereich heraus an den Außenrand der washer-Struktur zu verlegen. Die entstehende Schlitzinduktivität vergrößert aber die Gesamtinduktivität des SQUID [Mau99], so daß diese Maßnahme wiederum zu einem Anstieg des Flußrauschens führt.

(iii) Damit sollte eine Reduzierung der Kontaktbreite die bestmögliche Methode sein, um die Magnetfeldperiode zu erhöhen und somit die Magnetfeldstabilität zu verbessern. Nur auf diese Weise bleibt gleichzeitig die Feldempfindlichkeit, d.h. die effektive Fläche, und eine geeignet niedrige SQUID-Induktivität zur Erzielung eines geringen Flußrauschens erhalten.

3.2.2 Berücksichtigung der Feldüberhöhung am Kontakt

Bei der Herleitung der Gleichungen (3.5) bzw. (3.6) für die Magnetfeldperiode von rf-washer-SQUIDs im vorangegangenen Kapitel wurde vorausgesetzt, daß die Flußdichte im SQUID-Loch homogen verteilt ist. In diesem Abschnitt wird gezeigt, daß der Abschirmstrom, der am Rand des Lochs entlang fließt, zu einer stark inhomogenen Verteilung der magnetischen Flußdichte im Loch führt. Die daraus resultierende Feldüberhöhung am Ort des Josephson-Kontakts, welche zu einer Unterdrückung des kritischen Stroms bereits bei kleineren Magnetfeldern führen sollte, als von (3.5) vorhergesagt, wird abgeschätzt.

Die Stromverteilung in einer kreisförmigen washer-Struktur mit Lochradius \(r_1 \) unter Einfluß eines Magnetfeldes ist von Ketchen et al. berechnet worden [Ket85] und kann auf die Stromverteilung in der washer-Struktur eines rf-SQUID übertragen werden. Danach gilt für
die tangentielle Stromkomponente $I(r)$ in Abhängigkeit von ihrer Entfernung zum Lochmittelpunkt für $r > r_1$

$$I(r) = \frac{\Phi_{\text{Loch}}}{\mu_0 \cdot \pi \cdot r \cdot \sqrt{r^2 - r_1^2}}.$$

(3.7)

Dabei bezeichnet Φ_{Loch} den gesamten Fluß, der durch das SQUID-Loch tritt.

Abb.3.1 Schematische Skizze eines rf-washer-SQUID (Ausschnitt) mit kreisförmigem SQUID-Loch zur Abschätzung der Feldüberhöhung am Ort des Josephson-Kontakts infolge der radialen Verteilung der Abschirmströme $I(r)$ am Rand des Lochs.

In Abb.3.1 ist zur Veranschaulichung der gewählten Bezeichnungen der Ausschnitt eines rf-washer-SQUID mit dem am Rand des SQUID-Lochs positionierten Kontakt dargestellt. Sloggett et al. haben mit Hilfe des Gesetzes von Biot-Savart die aus dieser Stromverteilung resultierende Verteilung der magnetischen Flußdichte $B(\rho)$ für einen Radius $\rho < r_1$ im Innern des Lochs berechnet [Slo97].

Für die Lochmitte ergibt sich relativ zur mittleren magnetischen Flußdichte im Loch, B_M, eine Reduzierung der Flußdichte auf $B(0) = B_M / 2$.

Für Punkte, die sich sehr nahe am Rand des SQUID-Lochs, d.h. nahe am Josephson-Kontakt befinden ($r_1 - \rho < r_1$), ergibt sich die folgende Näherung für die magnetische Flußdichte:

$$B(\delta) = B_M \cdot \sqrt{\frac{r_1}{8 \cdot \delta}}.$$

(3.8)
Hier bezeichnet $\delta = r_1 - \rho \ll r_1$ den Abstand vom Lochrand (Abb.3.1). Es resultiert demnach eine zum Rand des SQUID-Lochs hin steigende Feldüberhöhung $B(\delta)/B_M$. In Abb.3.2 ist diese Feldüberhöhung gegen die relative Entfernung vom Lochrand bzw. vom Kontakt dargestellt.

![Diagramm](image)

Abb.3.2 Feldüberhöhung, $B(\delta)/B_M$ am Rand des Lochs ($\delta \ll r_1$) eines kreisförmigen washer-SQUID in Abhängigkeit der Entfernung vom Lochrand nach (3.8).

Gleichung (3.8) kann nur eine grobe Abschätzung für die zu erwartende Feldüberhöhung B_{JK}/B_M am Ort des Josephson-Kontakts ($\delta \rightarrow 0$) liefern. Nach (3.7) wird der Abschirmstrom $I(r)$ für $r \rightarrow r_1$ und damit auch $B(\delta)$ für $\delta \rightarrow 0$ beliebig groß, was aber aufgrund der endlichen kritischen Stromdichte des HTSL infolge der Verankerung von Abrikosov-Flußwirbeln mit normalleitendem Kern nicht möglich ist. Dies führt zu einer Begrenzung der Feldverstärkung am Ort des Kontakts. Zum anderen basieren die vorgestellten Berechnungen auf der Stromverteilung in einer kreisförmigen washer-Struktur. Dagegen weisen die im Rahmen dieser Arbeit charakterisierten rf-SQUIDs quadratische SQUID-Łöcher auf.

Diese Vorbehalte werden aber an einer grundsätzlich zu erwartenden Tendenz einer Feldüberhöhung am Kontakt mit $B_{JK}/B_M \gg 1$ nichts ändern (vgl. Abb.3.2). Die Feldüberhöhung führt zu einer verstärkten Unterdrückung des kritischen Stroms im Kontakt. Aufgrund dessen wird zur Abschätzung der Magnetfeldperiode ΔB_0 eines HTSL-rf-washer-SQUID die folgende Modifikation von (3.5) notwendig:

$$\Delta B_0 = 1,84 \cdot \Phi_0 \cdot \frac{d^2}{w^2 \cdot A_{eff}} \left(\frac{B_{JK}}{B_M} \right)^{-1}.$$

(3.9)

Die Ermittlung des Verstärkungsfaktors B_{JK}/B_M muß dabei aus den oben genannten Gründen experimentell vorgenommen werden. Dies wird in Kap.3.4 vorgestellt.
Abb. 3.3 Notwendige Kontaktbreite \(w \) in Abhängigkeit von der erforderlichen Magnetfeldperiode \(\Delta B_0 \) gemäß den im Text beschriebenen Modellvorhersagen für \(t=200 \text{nm}, \lambda_s=200 \text{nm} \) bei 77 K, \(d=150 \mu \text{m} \) und \(A_{\text{eff}}=0.31 \text{mm}^2 \): (a) Planarer Kontakt, Dünnsschichtfall, nach (2.18); (a2) Planarer Kontakt, Dickschichtfall, nach (2.17); (a3) washer-SQUID, Dünnsschichtfall, nach (3.5); (a4) washer-SQUID, Dickschichtfall, nach (3.6); (b) Berücksichtigung einer möglichen Feldüberhöhung am Kontakt für \(B_{1W}/B_{W}=[1, \ldots, 4] \) für einen washer-SQUID, Dünnsschichtfall, nach (3.9).

Wie in Kap. 3.2.1 diskutiert, ist eine Reduzierung der Kontaktbreite das geeignetste Mittel, um die Magnetfeldstabilität von rf-SQUIDs zu erhöhen. In Abb. 3.3 ist nun die notwendige Kontaktbreite \(w \) in Abhängigkeit der zu erreichenden Magnetfeldperiode \(\Delta B_0 \) zusammenfassend für alle beschriebenen Modelle dargestellt. \(^1\) Dabei wurde eine effektive Fläche von \(A_{\text{eff}}=0.31 \text{ mm}^2 \) und eine Lochkantenlänge von \(d=150 \mu \text{m} \) sowie eine Schichtdicke von \(t=200 \text{ nm} \) zugrundegelegt, wie sie der Großteil der im Rahmen der Arbeit charakterisierten rf-washer-SQUIDs aufweist (Kap. 3.3.1). Allen Modellvorstellungen ist gemein, daß eine \(1/w^2 \)-Abhängigkeit der Magnetfeldperiode erwartet wird.

Für einen stabilen SQUID-Betrieb in externen Magnetfeldern \(B_{\text{ext}} \) ist eine Magnetfeldperiode \(\Delta B_0 \gg B_{\text{ext}} \) erforderlich. Diese Aussage wird in Kap. 3.4.2 näher quantifiziert. Aus Abb. 3.3b wird deutlich, daß aus diesem Grunde für einen SQUID-Betrieb im Erdmagnetfeld (\(B_{\text{erd}} \approx 50 \mu \text{T} \)) Kontaktbreiten in der Größenordnung eines Mikrometers realisiert werden müssen.

\(^1\) An dieser Stelle sei bemerkt, daß die Magnetfeldperiode grundsätzlich eine Funktion der Kontaktbreite \(w \) ist. Hier und auch im folgenden wird aber \(\Delta B_0 \) auf der Abszisse dargestellt, da letztendlich die notwendige Kontaktbreite für den Betrieb von rf-SQUID-Sensoren in Abhängigkeit eines externen Magnetfelds (z.B. des Erdmagnetfelds) ermittelt werden soll.
3.3 Probenpräparation und experimenteller Aufbau

In den folgenden Kapiteln werden die Vorhersagen der im vorigen Abschnitt beschriebenen Modelle experimentell überprüft und gleichzeitig Möglichkeiten zur Verbesserung der Magnetfeldstabilität aufgezeigt. Dazu wurden HTSL-rf-SQUID-Magnetometer mit unterschiedlichen Kontaktbreiten von \(w = 0,7 \) bis 3 \(\mu m \) charakterisiert, sowie die effektiven Sensorflächen durch den Einsatz von koplanaren Resonatoren mit integrierten Konzentratoren unterschiedlicher Größe variiert.

Im folgenden werden zunächst das Layout sowie der Herstellungsprozess von rf-washer-SQUIDs mit schmalen Kontakten beschrieben. Im Anschluß werden die im Rahmen der Arbeit realisierten Meßplätze zur Charakterisierung des Magnetfeldverhaltens der Transferfunktion und des kritischen Stroms von rf-SQUID-Sensoren in externen Magnetfeldern vorgestellt. Dabei werden Probenpräparation und Methodik detailliert erläutert, die zur direkten Messung des kritischen Stroms im rf-SQUID und dessen Magnetfeldverhalten eingesetzt wurden.

3.3.1 rf-washer-SQUIDs mit schmalen Kontakten

3.3.1.1 SQUID-Layout und -Herstellung

Der SQUID-Sensor besteht aus einer kreisförmigen washer-Struktur mit einem Durchmesser von \(D_s = 3,5 \) mm sowie einem quadratischen SQUID-Loch mit einer Lochkantenlänge von \(d = 150 \mu m \) (Abb.3.4a). Der Stufenkontakt ist am Rand des SQUID-Lochs positioniert, um den Einfluß einer zusätzlichen Schlitzinduktivität zu vermeiden (Abb.3.4b). Die SQUID-Induktivität beträgt nach [Jay81] \(L_s \sim 235 \) pH. Für die experimentell ermittelte effektive Sensorfläche ergibt sich ein Wert von \(A_{eff} = 0,31 \pm 0,015 \) mm\(^2\). Eine Zusammenfassung der wichtigsten Sensorparameter zeigt Tabelle 3.1 im nächsten Abschnitt.

Aufgrund der komplexen Korngrenzenstruktur ist die Herstellung von Stufenkontakten mit reproduzierbaren Kontaktparametern nicht einfach [Bra00a]. Ein weiterer Vorteil des beschriebenen Layouts liegt daher in der geringen washer-Größe, die eine Herstellung von 4 Magnetometern auf einem 1 cm\(^2\) großen Substrat ermöglicht. Damit läßt sich die Sensorausbeute steigern. Zur Erhöhung der effektiven Fläche können die Sensoren mit koplanaren Resonatoren und integrierten Konzentratoren betrieben werden, die
verhältnismäßig einfach hergestellt werden können. Damit wird gleichzeitig ein niedriges Fluß- und Feldrauschen realisiert.

Der beschriebene Typ des rf-washer-SQUID wird in den meisten Anwendungsgebieten eingesetzt [Zha01a] und ist aufgrund seiner optimalen Ankopplung an koplanare Resonatoren besonders gut für die im Rahmen der vorliegenden Arbeit durchgeführten Untersuchungen des Magnetfeldverhaltens geeignet.

Abb.3.4 Schematische Darstellung des Layouts der charakterisierten rf-SQUID-Magnetometer (a). Der Kontaktbereich mit Kontaktbreite w (b) sowie ein Schnitt durch den Stufenkontakt mit Korngrenzen und Graben (c) sind vergrößert dargestellt (vgl. hierzu auch Abb.2.6).

Alle YBa$_2$Cu$_3$O$_{7-5}$-Schichten wurden mittels gepulster Laserablation (Pulsed-Laser-Deposition, PLD) hergestellt [Str90, Sch00a]. Bei der Laserablation wird ein hochenergetischer Laserstrahl auf ein rotierendes YBa$_2$Cu$_3$O$_{7.5}$-Target gelenkt und dadurch ein Plasma aus YBa$_2$Cu$_3$O$_{7-5}$-Teilchen erzeugt (Abb.3.5a). Der Laser arbeitet mit einer Wellenlänge von 248 nm und einer Energie von 1 Joule pro Puls. Die Pulsfrequenz beträgt 1 ~ 25 Hz bei einer Pulslänge von ~ 20 ns. Die Energiedichte am Target beträgt mehr als 2,5 J/cm2 [Sch00a]. Die YBCO-Teilchen werden auf einem geheizten, einkristallinen Substrat aus LaAlO$_3$ bei einer Temperatur von ~ 780 °C und einem Sauerstoffdruck von ~ 1 mbar abgeschieden. Unter diesen Bedingungen liegt YBCO in tetragonaler Phase vor und geht erst während des Abkühlens auf Raumtemperatur in die supraleitende orthorhombische Phase über.

Zur Realisierung der Stufenkontakte im rf-washer-SQUID muß vor der Schichtdeposition ein Graben in das LaAlO$_3$-Substrat geätzt werden, an dessen Kanten sich beim Abscheiden des YBCO Korngrenzen ausbilden (vgl. Abb.3.4c und Abb.2.6). Das Substrat wird dazu zunächst mit einem Goldfilm von ~ 40 nm Dicke beschichtet, um die Erzeugung von scharfen Kanten zu ermöglichen. Mit Hilfe eines konventionellen Photolithographieverfahrens wird auf der

Abb.3.5 Schematischer Aufbau der verwendeten Laserablationsanlage (a) und der Ionenstrahlätzanlage (b), aus [Mau99].

Nach der Herstellung der Grabenstruktur und der Entfernung der Goldschicht wird YBCO mittels Laserablation mit einer Schichtdicke von t = 200 nm auf das 1 cm² große LaAlO₃-Substrat abgeschieden. Nach der photolithographischen Herstellung einer entsprechenden Lackmaske, wird die washer-Struktur der rf-SQUIDs mittels Ionenstrahlätzten oder mittels naß-chemischem Ätzen (Kap.3.3.1.2) in die YBCO-Schicht übertragen. Nähere Details zum Herstellungsverfahren der im Rahmen der Arbeit charakterisierten washer-SQUIDs finden sich in [Sch00a] und [Far01a].

3.3.1.2 Herstellung schmaler Kontakte

Die Berechnungen in Kap.3.2 haben gezeigt, daß für eine hohe Magnetfeldstabilität von rf-SQUID-Sensoren eine möglichst geringe Kontaktbreite w erforderlich ist. Standardmäßig werden Kontaktbreiten von >3 μm realisiert. Im folgenden wird die Herstellung von sehr geringen Kontaktbreiten von bis zu w = 0,7 μm beschrieben, die mit Hilfe des sog. naß-chemischen Ätzverfahrens vorgenommen werden konnte.

Zur Übertragung der washer-Struktur des rf-SQUID in die YBCO-Schicht kann nach dem Aufbringen der Lackmaske entweder das Ionenstrahlätzten oder aber das naß-chemische Ätzen eingesetzt werden, mit dem sehr schmale Strukturen von wenigen 100 nm realisiert werden können [Kam98].
Beim naß-chemische Ätzen macht man sich den Effekt des sog. 'Unterätzens' zunutze (Abb.3.6), der auf der Isotropie des Ätzvorgangs beruht [Kam98]. Das mit YBCO beschichtete Substrat, auf dem die Lackmaske mit der SQUID-Struktur aufgebracht ist, wird für eine Zeitdauer \(\Delta t \) einer stark verdünnten Phosphorsäure (Verhältnis Säure/destilliertes Wasser 1:200) ausgesetzt. Das YBCO wird dabei an den nicht mit Lack bedekkten Stellen entfernt. An der Lackkante selbst kommt es zu einem horizontalen Ätzvorgang, der den Supraleiter unterhalb des Lacks zerstört (Abb.3.6). Dies führt insbesondere am Kontakt zu einer Reduzierung der Stegbreite und damit zu einer Reduzierung der Kontaktbreite \(w \). Durch Variation der Ätzdauer \(\Delta t \) bei identischer Lackmaske läßt sich die Breite des Stufenkontakts variieren. Sie liegt für \(w \approx 3 \mu m \) (Abmessung der Lackmaske) bei etwa 5 s und für Stegbreiten von \(w \approx 1 \mu m \) bei einigen 10 s.

Hier wird ein Nachteil des Verfahrens deutlich. Die Ätzrate ist aufgrund von Schwankungen in der Schichtdicke des YBCO oder Schichtinhomogenitäten nicht gut kontrollierbar. Die Werte für die Ätzzeit für eine gewünschte Kontaktbreite schwanken daher von Probe zu Probe. Aus diesem Grund wird die Breite \(w \) des Kontakts in mehreren Ätzschritten von \(\Delta t \approx 5 s \) in situ an den gewünschten Wert angenähert.

Abb.3.6 *Prinzip des Unterätzens: Es findet ein horizontaler Ätzvorgang unterhalb der Ränder der Lackmaske statt. Das Unterätzen ist damit ein Weg zur Realisierung schmaler Strukturen.*

Der Prozess des Unterätzens findet nicht nur im Kontaktbereich sondern auch in den Randbereichen der gesamten washer-Struktur statt. Damit wird beim naß-chemischen Ätzen das YBCO je nach gewünschter Kontaktbreite weiter abgetragen als beim Ionenstrahlätzen, d.h. die washer-Fläche wird verkleinert und das SQUID-Loch vergrößert. Bei der Reduzierung der Kontaktbreite von z.B. 3 \(\mu m \) beim Ionenstrahlätzen auf 1 \(\mu m \) durch naß-chemisches Ätzen wird sowohl am Rand des Lochs als auch am Außenrand der washer-Struktur ein 1 \(\mu m \) breiter Steg abgetragen. Wie experimentell gezeigt werden konnte, liegt die sich ergebende Änderung der effektiven Fläche jedoch unterhalb des Meßfehlers von etwa 5 \%, der sich bei der Bestimmung des Feld-zu-Flußkoeffizienten ergibt. Die Lochkantenlänge vergrößert sich maximal von 150 auf \(\approx 152 \mu m \). Die damit verbundene Erhöhung der SQUID-Induktivität von gut 1 \% ist ebenfalls vernachlässigbar klein. Diese Effekte werden also bei der Charakterisierung des Magnetfeldverhaltens der Sensoren keinen meßbaren Einfluß haben.
Im Rahmen der Arbeit wurden insgesamt 24 rf-SQUIDs mit Kontaktbreiten zwischen 0,7 und 3 \(\mu \text{m} \) charakterisiert. In Abb.3.7 sind REM-Aufnahmen des Kontaktbereichs zweier Sensoren dargestellt. Abb.3.7a zeigt einen Kontakt, der nach Herstellung mittels Ionenstrahlätzen entstanden ist. Dieser Ätzprozeß erhält die Struktur in ihren Abmessungen. Es findet kein Unterätzen statt und die Kontaktbreite entspricht den Abmessungen der verwendeten Photomasken. In Abb.3.7b ist der Kontaktbereich eines SQUID nach Herstellung mittels naß-chemischem Ätzen abgebildet. Der wesentlich schmalere Steg entsteht aufgrund des beschriebenen Prozesses des Unterätzens.

Zur Ermittlung der tatsächlichen geometrischen Kontaktbreite aller 24 Proben wurde zunächst eine REM-Aufnahme mit Aufsicht auf den Kontaktbereich (senkrechte Orientierung) eines ausgewählten rf-SQUID erstellt, der im folgenden als Standard diente. Die Breite des Kontakts konnte anhand der Aufnahme bis auf 0,1 \(\mu \text{m} \) genau bestimmt werden. Bei der Erstellung von REM-Aufnahmen kann aufgrund des Beschusses des Josephson-Kontakts mit Elektronen und des mechanischen Drucks infolge der zuvor notwendigen gründlichen Probenreinigung eine Veränderung der Kontaktparameter nicht ausgeschlossen werden. Daher wurden zur zerstörungsfreien Ermittlung der Kontaktbreiten der übrigen Sensoren lichtmikroskopische Aufnahmen des Kontaktbereichs mit 1000 facher Vergrößerung angefertigt. Durch Vergleich der lichtmikroskopischen Aufnahme der zuvor im REM exakt vermessen Standardprobe konnten die Kontaktbreiten aller Sensoren mit einer Genauigkeit von etwa 0,2 \(\mu \text{m} \) bestimmt werden.

![REM-Aufnahmen des Kontaktbereichs: (a) washer-SQUID 20.200 fache Vergrößerung) und (b) washer-SQUID naß-chemisch geätzt (20.700 fache Vergrößerung) [Far00a]. Naß-chemisches Ätzen ermöglicht die Realisierung schmaler Kontakte.](image)

Insgesamt wiesen nur 6 der 24 charakterisierten SQUIDs Kontaktbreiten von \(\leq 1 \mu \text{m} \) auf (Kap.3.4.4), da diese schwer herzustellen sind. Oftmals lieferten die Magnetometer gar kein
Signal, weil der schmale Kontaktbereich an der Korngrenze aufgrund von Inhomogenitäten so stark gestört war, daß keine Josephson-Kopplung mehr möglich war. Hier sind sicherlich weitere technologische Optimierungen hinsichtlich der Schichtqualität und des Ätzverfahrens notwendig, um eine verbesserte Reproduzierbarkeit von rf-SQUIDs mit sehr schmalen Kontakten zu erzielen. Zudem wird zur Zeit untersucht, ob mittels Ionenstrahlätzen schmale Kontaktbreiten kontrolliert und reproduzierbar herzustellen sind [Far01b].

In der folgenden Tabelle sind die wichtigsten Parameter der rf-washer-SQUID-Magnetometer zusammengefaßt.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schichtdicke</td>
<td>$t = 200\ \text{nm}$</td>
</tr>
<tr>
<td>Stufenwinkel</td>
<td>$\alpha_t > 70^\circ$</td>
</tr>
<tr>
<td>Außendurchmesser</td>
<td>$D_s = 3,5\ \text{mm}$</td>
</tr>
<tr>
<td>Lochkantenlänge</td>
<td>$d = 150\ \mu\text{m}$</td>
</tr>
<tr>
<td>Induktivität</td>
<td>$L_s \sim 235\ \text{p}\mu\text{H}$</td>
</tr>
<tr>
<td>Effektive Fläche</td>
<td>$A_{\text{eff}} = 0,31 \pm 0,015\ \text{mm}^2$</td>
</tr>
<tr>
<td>Kontaktbreite</td>
<td>$w = 0,7 \text{ bis } 3\ \mu\text{m}$</td>
</tr>
</tbody>
</table>

Tabelle 3.1 Parameter der charakterisierten rf-washer-SQUIDs (Layout siehe Abb.3.4).

3.3.2 Meßplatz zur Charakterisierung der Transferfunktion

3.3.2.1 Schwingkreise und rf-SQUID-Elektronik

Um das SQUID-Signal auslesen zu können, ist der rf-SQUID induktiv an einen Schwingkreis gekoppelt. Die über dem Schwingkreis abfallende Spannung wird mit einer rf-Elektronik ausgelesen, die gleichzeitig den rf-Pumpstrom liefert. Im Rahmen der Arbeit wurden zwei Möglichkeiten zur Realisierung des Schwingkreises eingesetzt:

Die sog. doppeltinduktive Ankopplung der rf-Elektronik über einen normalleitenden Schwingkreis an den SQUID nach [He98] wurde für den Betrieb und die Charakterisierung von einzelnen rf-washer-SQUIDs verwendet. Diese Art der Ankopplung ermöglicht hohe rf-
Pumpfrequenzen von bis zu 1 GHz und damit einen rauscharmen Sensorbetrieb von rf-SQUIDs ohne Flußfokussierer. Dazu wird ein normalleitender Schwingkreis, bestehend aus einer Kupferspule mit 4 Windungen mit einem Durchmesser von \(\sim 2,5 \text{ mm} \) sowie einem Keramik-Scheibenkondensator mit \(C = 1 \text{ pF} \), durch Presskontakt induktiv an den SQUID angeschaltet (Abb.3.8a). An diesen Schwingkreis koppelt nun die rf-Elektronik über eine 50 \(\Omega \)-Leitung und eine zweite Kupferspule mit 2 Windungen und einem Durchmesser von \(\sim 2 \text{ mm} \) wiederum induktiv an. Die Impedanzanpassung wird über Variation des Abstandes zwischen den Spulen mit den Induktivitäten \(L_T \) und \(L_A \) vorgenommen. Zur Fixierung werden die beiden handgewickelten Spulen verklebt. Eine derartige Stabilisierung des Aufbaus ist wichtig, da nur so reproduzierbare Messungen der Fluß-zu-Spannungs-Transferfunktion und des magnetischen Flußrauschens möglich sind. Der auf diese Weise realisierte Schwingkreis erreicht bei einer Resonanzfrequenz von etwa 650 MHz unbelastet eine Güte von \(\sim 200 \) und belastet eine Güte von \(\sim 60 \) bei 77 K.

Abb.3.8 (a) Doppeltinduktive Ankopplung des rf-SQUID mit Induktivität \(L_A \) über den Tankschwingkreis mit Induktivität \(L_T \) an die rf-Elektronik über eine Ankopplspule mit Induktivität \(L_{rfs} \); (b) flip-chip-Anordnung von rf-SQUID und koplanarem Resonator mit integriertem Konzentratoren. Die Ankopplung an die rf-Elektronik findet über eine normalleitende Spule statt.

Koplanare Resonatoren mit integrierten Konzentratoren, die den normalleitenden Schwingkreis ersetzen (vgl. Kap.2.2.5), wurden im Rahmen der Arbeit zur Variation der effektiven Sensornfläche eingesetzt (Kap.3.4.3). In Abb.3.8b ist schematisch die Ankopplung des Resonators an den rf-SQUID abgebildet. Die Kopplung an die rf-Elektronik erfolgt hier ebenfalls induktiv über eine normalleitende Spule. Die Impedanzanpassung an die Elektronik wird durch Variation des Abstandes der Spule vom Resonator vorgenommen, so daß ein maximaler Spannungshub des SQUID-Signals am Ausgang der Elektronik resultiert. Der optimale Abstand hängt vom Layout der Resonatoren ab und beträgt zwischen 1,6 und 3 mm.
Durch die Verwendung einer auf Platinenmaterial gedruckten, planaren Kupferspule mit 2 Windungen mit einem Durchmesser von 7 mm sowie Abstandshaltern aus Peek® zur Fixierung des Spulenabstands konnte ein stabiler Aufbau realisiert werden, der reproduzierbare Messungen der Transferfunktion und des Sensorrauschens ermöglicht. Je nach Layout der Resonatoren (vgl. dazu Tabelle 3.2 in Kap.3.4.3) werden die Magnetometer bei rf-Pumpfrequenzen von ~650 und ~920 MHz betrieben.

Zur Erzeugung des rf-Pumpstroms und zur Messung der über dem Schwingkreis abfallenden Spannung wurden zwei verschiedene Versionen einer Ausleeselektronik eingesetzt, die von Zhang et al. im Forschungszentrum Jülich entwickelt worden sind [Zha97c]. Sie unterscheiden sich nur in ihrem Frequenzbereich: Version 2.0 (600) kann zwischen 410 und 750 MHz und Version 2.0 (900) zwischen 650 MHz und 1 GHz betrieben werden. In Abb.3.9 ist ein Blockschaltbild abgebildet. Frequenz und Amplitude des rf-Pumpstroms werden mittels eines spannungsgesteuerten Oszillators (VCO) und eines Abschwächers (Att.) eingestellt. Zur Erzeugung der äußeren Flußmodulation \(\Phi_{\text{ext}} \) wird ein externer Funktionsgenerator bei Frequenzen von ~120 Hz verwendet.

Das rf-Signal des Schwingkreises durchläuft zunächst rauscharme Hochfrequenz-Vorverstärker und wird dann im Mixer demoduliert. Ein nachgeschalteter Niederfrequenz-Vorverstärker liefert am Ausgang A das SQUID-Signal (Abb.3.9). Die Amplitude dieser Wechselspannung, Spitze zu Spitze (peak-to-peak), ist proportional zur Amplitude der Fluß-Spannungs-Transferfunktion \(\Delta V_T \) (vgl. Abb.2.13b) und wird im folgenden mit \(V_{s,\text{pp}} \) bezeichnet. Sie ist ein Maß für die Betriebsstabilität der rf-SQUID-Magnetometer.

Das SQUID-Signal, welches am Ausgang A anliegt, besitzt eine maximale Dynamik von \(\Phi_0 / 2 \) (vgl. Abb.2.13b). Dies entspricht im Fall der beschriebenen rf-washer-SQUIDs mit einer effektiven Fläche von 0,31 mm² einem Magnetfeld von nur etwa 3,3 nT. Um die Dynamik zu vergrößern, wird der SQUID als Nullfelddetektor in einer Flußregelschleife (flux locked loop, FLL) betrieben. Dazu wird das gemessene Signal verstärkt, integriert und über die

Abb.3.9 Blockschaltbild der rf-Elektronik nach [Zha97c]. Beschreibung siehe Text.
normalleitende Ankoppelspule in den SQUID zurückgekoppelt. Das Meßsignal an Ausgang B (Abb.3.9) entspricht dem Rückkoppelstrom, der für die Kompensation des von außen am SQUID anliegenden Flusses notwendig ist. Mit der beschriebenen Elektronik wird damit eine Dynamik von etwa $\pm 300 \Phi_0$ und eine maximale Signal-Anstiegsrate (slew rate) von $>10^6 \Phi_0/s$ erreicht. Alle Rauschmessungen im Rahmen dieser Arbeit wurden mit geschlossener Flußregelschleife durchgeführt.

3.3.2.2 Aufbau des Meßplatzes

In Abb.3.10 ist eine schematische Skizze des Meßaufbaus dargestellt. Die Proben werden in einem Bad-Kryostaten aus GfK (Glasfaserverstärkter Kunststoff) mit einer Öffnung von $\varnothing = 50 \text{ mm}$ und einer Standzeit von etwa 3 Tagen in flüssigem Stickstoff bei einer Temperatur von $\sim 77 \text{ K}$ gekühlt. Zur Reduzierung magnetischer Störquellen werden alle Messungen innerhalb einer Abschirmtonne durchgeführt, die aus drei einzelnen, ineinander verschachtelten μ-Metall-Zylindern mit jeweils 1 mm Wandstärke besteht. Die Abschirmtonne hat außen einen Durchmesser von 560 mm und eine Höhe von 1050 mm, während der Innenraum einen Durchmesser von 500 mm und eine Höhe von 990 mm besitzt. Durch eine Entmagnetisierung der Abschirmtonne konnte das Restmagnetfeld der Erde auf Werte $<20 \text{ nT}$ reduziert werden. Da bei Kontaktbreiten von $w<3 \mu\text{m}$ die Magnetfeldperiode der rf-SQUIDs nach den Berechnungen in Kap.3.2 in der Größenordnung einiger μT liegt, sollte eine Beeinflussung durch dieses Restfeld vernachlässigbar klein sein.

Es wurde jeweils ein Probenhalter zur Charakterisierung von einzelnen rf-washer-SQUIDs und zur Charakterisierung von rf-washer-SQUIDs mit koplanaren Resonatoren aufgebaut. Am Kopf jedes Probenrohrs aus GfK wurden dazu jeweils Ankoppelspule, Schwingkreis und SQUID (vgl. Abb.3.8a und b) angebracht. Dabei wurde sorgfältig auf die Vermeidung magnetischer Komponenten geachtet, die das Meßergebnis verfälschen können. Die 50Ω-Zuleitung zur rf-Elektronik ist dreifach geschirmt, um hochfrequente elektromagnetische Störeinflüsse möglichst effektiv zu reduzieren. Die rf-Elektronik wird mit einer rauscharmen, batteriegespeisten Spannungsversorgung von $\pm 15 \text{ V}$ betrieben. Amplitude und Frequenz der externen Flußmodulation für den SQUID-Sensor werden mit Hilfe des Funktionsgenerators Voltcraft$^\circledR$ FG1617 erzeugt.

Das SQUID-Signal am Ausgang A der Elektronik (Abb.3.9) kann mit einem digitalen Oszilloskop (Tektronix TDS420A) gemessen werden, welches die direkte Anzeige der Amplitude, V_{ppt}, ermöglicht. Für Rauschmessungen an rf-SQUID-Magnetometern, welche mit geschlossener Flußregelschleife durchgeführt werden, steht ein Spektrumanalysator (HP 35670A) mit einer Bandbreite von 100 kHz zur Verfügung.
Abb. 3.10 Schematische Skizze des Meßaufbaus zur Charakterisierung der Transferfunktion von rf-SQUID-Magnetometern in Abhängigkeit externer Magnetfelder bei 77 K.

Zur Erzeugung möglichst homogener Magnetfelder am Ort der Proben wurden zwei drehbar gelagerte Helmholtzspulen-Paare A und B konstruiert und angefertigt (Abb. 3.10). Mit dem am Probenhalter im flüssigen Stickstoff angebrachten Spulenpaar B mit einem Durchmesser von 48 mm können Magnetfelder in einem Winkelbereich von \(\alpha = 0^\circ \) (parallel zur Sensorfläche) bis \(\alpha = 6^\circ \) erzeugt werden. Magnetfelder im Winkelbereich zwischen \(\alpha = 0^\circ \) und \(\alpha = 90^\circ \) (senkrecht zur Sensorfläche) werden mit dem von außen am Kryostat befestigten Spulenpaar A mit einem Durchmesser von 380 mm erzeugt.

Zur Stromversorgung der Spulen stehen 2 Strom- bzw. Spannungsquellen zur Verfügung. Für die Realisierung großer Felder wird eine manuell regelbare Spannungsversorgung mit einer maximalen Ausgangsspannung von \(\pm 30 \text{ V} \) (Voltcraft® TNG235) verwendet. Auf diese Weise können maximale magnetische Flußdichten von \(\sim 700 \mu \text{T} \) mit Spulenpaar A und \(\sim 6 \text{ mT} \) mit Spulenpaar B erreicht werden. Die Spannung wird dabei über einen in Serie geschalteten Widerstand mittels Multimeter gemessen und so der Spulenstrom und damit das angelegte Magnetfeld ermittelt.

Für kleine Felder wird eine rechnergesteuerte Stromquelle [Ott92] eingesetzt, die einen maximalen Strom von 35 mA liefert. Mit Hilfe dieser Stromquelle kann die Aufzeichnung der Magnetfeldabhängigkeit der Transferfunktion, \(V_{s_{pp}}(B) \), automatisiert werden, wobei \(V_{s_{pp}} \)
dabei nicht mit dem Oszilloskop sondern über einen Analog-Digital-Konverter mittels PC
gemessen wird. Das Steuerprogramm wurde von D. Lomparski entwickelt [Lom00].

Die Kalibrierung der Helmholtzspulen wurde mit einem Fluxgatemagnetometer der Firma
magnetische Flußdichte kann danach am Ort der Sensoren mit einem Fehler von etwa 5 %
angegeben werden.

Es hat sich als sehr wichtig erwiesen, die regelbare Spannungsversorgung bzw. die
Stromquelle über einen Tiefpaßfilter mit der Helmholtzspule zu koppeln und sehr sorgfältig
auf die Vermeidung von Massenschleifen zu achten. Nur so können elektromagnetische
Störungen, die insbesondere von der Spannungsversorgung selbst erzeugt werden (50Hz-
Netzfrequenz), in ausreichender Weise gedämpft werden, so daß eine zuverlässige
Bestimmung der Amplitude der Transferfunktion möglich wird.

3.3.3 Meßplatz zur Charakterisierung des kritischen Stroms

Um die Korrelation zwischen der Magnetfeldabhängigkeit des kritischen Stroms und der
Fluß-zu-Spannungs-Transferfunktion, \(I_c(B)\) bzw. \(V_{s.pp}(B)\), zu untersuchen, sind direkte
Messungen des kritischen Stroms der rf-SQUIDs sowie die Ermittlung des SQUID-
Parameters \(\beta_L\) notwendig. Da der Josephson-Kontakt durch den SQUID-Ring
kurzgeschlossen ist, sind direkte \(I_c\)-Messungen an rf-SQUIDs nicht zerstörungsfrei möglich.
Der SQUID-washer muß geöffnet und zur Durchführung von Strom-Spannungs-Messungen
in Vierpunktgeometrie\(^2\) galvanisch kontaktiert werden [Zen00] (vgl. Abb.3.11).

Im folgenden werden die dazu notwendige Prüparation der SQUIDs sowie der im Rahmen der
Arbeit realisierte Meßplatz zur temperaturabhängigen Messung von \(I_c(B)\)-Kurven und zur
Bestimmung von \(\beta_L\) bei hohen thermischen Fluktuationen (\(T = 77\) K) erläutert.

3.3.3.1 Probenpräparation

Bei den Prozessen zur Öffnung des SQUID-Rings sowie zur galvanischen Kontaktierung muß
durchaus darauf geachtet werden, daß sich die Eigenschaften des Josephson-Kontakts,
d.h. die kritische Stromdichte bzw. der kritische Strom und damit letztendlich der Wert für \(\beta_L\)
rechtlich nicht verändern. Ansonsten sind die Meßergebnisse für die Untersuchung des Zusammen-
hangs zwischen \(\Delta B_0\) und \(\Delta B_{0,v}\) nicht aussagekräftig.

\(^2\) Vierpunktmessungen eliminieren die Widerstände der galvanischen Kontakte und der Zuleitungen.

Abb. 3.11 Schematische Skizze eines rf-washer-SQUID mit geöffnetem SQUID-Ring und galvanischer Kontaktierung zur Messung von Strom-Spannungs-Kennlinien in Vierpunkt-Geometrie.

Abb. 3.12 Lichtmikroskopische Aufnahme eines mit einem Diamantschneider geöffneten SQUID-washers.
Die galvanische Kontaktierung der Proben wurde wie das Öffnen des Rings bei Raumtemperatur vorgenommen. Dazu wurde die Probe in einem unmagnetischen Chipträger, der später in die Messapparatur (Kap.3.3.3.2) eingebaut werden konnte, mit Hilfe von Vakuumfett befestigt. Mittels Ultraschallbonden wurde 25 μm dicker Golddraht direkt mit der YBCO-Oberfläche kontaktiert, womit auf den Prozess des Aufdampfens von Kontaktflächen verzichtet werden konnte. Es zeigte sich zunächst, daß die Verwendung von Aluminiumdraht zu halbleitenden Kontaktwiderständen von einigen 100 Ω führte. Mit Golddraht konnten hingegen metallische Kontaktwiderstände von <5 Ω realisiert werden. Zur mechanischen Stabilisierung wurde jeder der für die Vierpunktmesung notwendigen Kontaktpunkte mit 5-6 Drähten versehen.

Um zu überprüfen, ob sich die Kontaktparameter durch den mechanischen Druck des Diamantschneiders oder durch das Ultraschallbonden ändern, wurde eine Probe nur teilweise in der Nähe des SQUID-Lochs angeschnitten und gebondet. Danach wurden die Bonddrähte wieder entfernt. Messungen der Amplitude der Transferfunktion und des Flußrauschens vor und nach diesem Prozeß zeigten eine gute Übereinstimmung.

Weiterhin muß überlegt werden, ob sich durch das Auftrennen der washer-Struktur die Flußfokussierung am Kontakt ändert. Dies würde die Magnetfeldperiode des kritischen Stroms ΔB₀ beeinflussen und einen Vergleich der Iₐ(B)- und Vₑ₊ₓ(B)-Abhängigkeit der rf-SQUIDs erschweren oder unmöglich machen. Wie Abb.3.13 verdeutlicht, ist die Flußfokussierung jedoch vor und nach der Öffnung des SQUID-Rings die gleiche. Die Stromflüsse entlang der Trennlinie sind gleich groß und gegenläufig (Abb.3.13b). Die durch sie erzeugten Magnetfelder heben sich gegenseitig auf. Es resultiert der gleiche effektive Stromfluß, wie im ungeöffneten SQUID (Abb.3.13a). Dies ist für die Untersuchung der Korrelation von ΔB₀ und ΔB₀-V wichtig.

Abb.3.13 Schematische Skizze des Stromflusses in a) einem washer-SQUID und b) einem washer-SQUID mit geöffnetem SQUID-Ring in Gegenwart eines senkrecht zum SQUID orientierten Magnetfeldes.
3.3.3.2 Aufbau des Meßplatzes

Ein im Labor bereits existierender Meßplatz zur temperaturabhängigen Charakterisierung von rf-SQUID-Magnetometern und -Gradiometern [Far00b] wurde für dieMessung des kritischen Stroms von rf-SQUIDs und ihres Magnetfeldverhaltens erweitert und optimiert. Eine schematische Skizze des Aufbaus ist in Abb.3.14 dargestellt.

Die Proben werden in einem Heliumkryostaten gekühlt, der durch Höhenverstellung des Probenhalters im Heliumgas temperaturabhängige Messungen des kritischen Stroms bis hinab zu Temperaturen von $\sim 5\, \text{K}$ mit einer Temperaturstabilität von $\pm 0,1\, \text{K}$ ermöglicht.

Für eine effiziente HF-Schirmung wird ein geschlossener Aluminium-Probenstab verwendet, dessen Kaltkopf, an dem die Halterung für den Chipträger befestigt ist, mit einem Zylinder aus Cryoperm3 versehen ist. Das gemessene Restmagnetfeld der Erde in der Cryoperm-Ummantelung beträgt weniger als 100 nT und sollte damit die Charakterisierung des Magnetfeldverhaltens, wie in Kap.3.3.2.2 bereits erwähnt, nicht wesentlich beeinflussen.

Über eine AD/DA-Wandlerkarte wird die Stromquelle mit einem PC gesteuert und die verstärkte Spannung ausgelesen. Die Aufnahme der Kennlinien erfolgt mit Hilfe eines Computerprogramms [Oel97].

Zur Erzeugung von Magnetfeldern mit senkrechter Orientierung zur Probenoberfläche ($\alpha = 90^\circ$) wird eine selbstgewickelte Zylinderspule mit 500 Windungen und einem Innendurch-

messer von 21 mm verwendet, welche die Halterung des Chipträgers am Kaltkopf des Probenhalters umschließt. Mit Hilfe einer zweiten rauscharmen Stromquelle mit einem maximalen Ausgangsstrom von 35 mA können magnetische Flußdichten von bis zu 900 \(\mu \) T erzeugt werden. Die Kalibrierung der Spule wurde mit einem Hallsensor (Gaußmeter 912, RFL Elec.Inc.) durchgeführt. Der Fehler bei der Bestimmung des Magnetfeldes am Ort der Probe beträgt etwa 5 \%.

\[\text{Abb. 3.14 Schematische Skizze des Meßaufbaus zur temperaturabhängigen Charakterisierung des kritischen Stroms mittels Vierpunktmessung am geöffneten rf-washer-SQUID. Die Probentemperatur kann bis auf } \sim 5 \text{ K gesenkt werden.} \]

Zur Messung der Magnetfeldperiode \(\Delta B_0 \) des kritischen Stroms bzw. der Magnetfeldabhängigkeit \(I_c(B) \) muß \(I_c \) für verschiedene Magnetfeldstärken ermittelt werden. Dazu wird das Magnetfeld mit vorgegebener Schrittweise rechnergesteuert geändert. Zu jedem Feld wird eine I-U-Kennlinie mit dem Startwert \(I = 0 \) aufgenommen und der Strom erhöht. Solange der kritische Strom noch nicht erreicht ist, fällt keine Spannung über dem Kontakt ab. Der Strom wird nun solange erhöht, bis über dem Josephson-Kontakt eine sehr kleine Spannung \(V_k \) abfällt (vgl. Abb. 3.15). Dann ist der kritische Strom überschritten und der Wert des eingeprägten Stroms entspricht näherungsweise dem des kritischen. Das entsprechende Spannungskriterium \(V_k \) wurde zu 30 \(\mu \) V gewählt. Der mit Hilfe dieses Spannungskriteriums bestimmte Stromwert wird als kritischer Strom abgespeichert. Es stellte sich bei den
Messungen der Magnetfeldabhängigkeit aller untersuchten rf-SQUIDs heraus, daß die Höhe des Spannungskriteriums (es wurde zwischen 10 μV und 100 μV variiert) keinen Einfluß auf Form und Periode der $I_c(B)$-Kurve besitzt und sich nur die Skalierung des Stromes ändert. Diese Messung ermöglicht damit eine zuverlässige Ermittlung der Magnetfeldperiode ΔB_0 des kritischen Stroms.

![Diagram](image)

Abb.3.15 Prinzip der Ermittlung des kritischen Stroms I_c mit Hilfe eines festgelegten Spannungskriteriums V_k beispielhaft für zwei verschiedene Werte von I_c. Beschreibung siehe Text.

Für die Bestimmung der Probentemperatur wird ein Tieftemperatursensor (Halbleiterdiode DT470) mit Ausleseelektronik (Cryogenic Thermometer 820) der Firma Lake Shore verwendet. Der Sensor besitzt im Temperaturbereich von 4 - 90 K eine absolute Genauigkeit von ± 0,5 K. Die Kenntnis der absoluten Temperatur an der Probe ist für eine zuverlässige Charakterisierung des rf-SQUID, insbesondere bei der Bestimmung des Parameters β_L wichtig (siehe Abschnitt 3.5.2).
Um eine Temperatur von z.B. $T = 77 \, \text{K}$ einzustellen, muß die Probe im Heliumdampf über dem flüssigen Helium positioniert werden. Dort ist der Temperaturgradient groß. Ist der Temperatursensor nicht exakt in Höhe der Probe angebracht oder thermisch unzureichend angekoppelt, so kann es zu erheblichen Unterschieden in der gemessenen und der tatsächlichen Temperatur kommen. Um festzustellen, mit welcher Genauigkeit die absolute Temperatur am Ort der Probe bestimmt werden kann, wurde die Sprungtemperatur T_c eines mit YBa$_2$Cu$_3$O$_{7-\delta}$ beschichteten LaAlO$_2$-Substrats zunächst induktiv in der Standardmeßapparatur des ISI bestimmt [Sch00b]. Die derart charakterisierte Probe wurde in die eigene Meßapparatur eingebaut und die Sprungtemperatur mittels resistiver Vierpunktmessung ermittelt. Ein Vergleich beider Messungen zeigt eine gute Übereinstimmung (Abb.3.16). Unter Berücksichtigung dieses Ergebnisses und der Meßgenauigkeit des Temperatursensors von $\pm 0,5 \, \text{K}$, ist die Bestimmung des Absolutwerts der Temperatur in der Vierpunkt-Meßapparatur am Ort der Probe mit einer Genauigkeit von etwa $\Delta T \sim \pm 1 \, \text{K}$ möglich.

Abb.3.16 Induktive Messung der Sprungtemperatur einer YBa$_2$Cu$_3$O$_{7-\delta}$-Dünnschicht in einer Standardmeßapparatur (a). Vergleich mit der resistiven Messung der Sprungtemperatur derselben Probe in der eigenen Meßapparatur (b). Die absolute Temperatur kann im eigenen Meßplatz am Ort der Probe bis auf $\Delta T \sim \pm 1 \, \text{K}$ genau bestimmt werden.
3.4 Die Magnetfeldabhängigkeit der Transferfunktion

Das Ziel dieses Kapitels ist die systematische Untersuchung des Magnetfeldverhaltens der Transferfunktion von rf-washer-SQUIDs, die das Stabilitätskriterium für den SQUID-Betrieb und für das Sensorrauschen in externen Magnetfeldern darstellt. Im folgenden werden zunächst die Unterdrückung der Transferfunktion durch äußere Magnetfelder sowie der Zusammenhang mit dem weißen Flußrauschen experimentell untersucht. Im Anschluß wird das Magnetfeldverhalten der Transferfunktion in Abhängigkeit der effektiven Sensorfläche und der Breite des Josephson-Kontakts charakterisiert und damit die in Kap.3.2 vorgestellten Modelle überprüft. Zuletzt sollen Aussagen über die Abhängigkeit der Magnetfeldperiode $\Delta B_{0,V}$ der Transferfunktion von der Richtung externer Magnetfelder getroffen werden.

Innerhalb dieses Kapitels (3.4) sei zunächst vorausgesetzt, daß die für die Magnetfeldperiode ΔB_0 des kritischen Stroms abgeleiteten Gleichungen aus Kap.3.2 auch für die Magnetfeldperiode $\Delta B_{0,V}$ der Transferfunktion gelten. Eine detaillierte Analyse des Zusammenhangs zwischen ΔB_0 und $\Delta B_{0,V}$ wird in Kap.3.5.4 vorgenommen. Dazu ist allerdings die Zerstörung der rf-SQUIDs notwendig, um den kritischen Strom direkt messen zu können. An dieser Stelle sei vorweggenommen, daß ΔB_0 und $\Delta B_{0,V}$ übereinstimmen. Dies wird für SQUIDs gezeigt, die mit $b_L < 1,5$ auf ihren optimalen Arbeitsbereich eingestellt sind (vgl. Kap.3.5).

Bei allen Untersuchungen wird die in Kap.3.3.2 beschriebene Meßapparatur verwendet (Abb.3.10). Die Sensoren werden im Nullfeld bei 77 K eingekühlt und alle Messungen in magnetischer Schirmung durchgeführt, um einen Einfluß des Erdmagnetfeldes auszuschließen. Wenn nicht anders erwähnt, weisen die charakterisierten rf-washer-SQUIDs die in Tabelle 3.1 (Kap.3.3.1.2) beschriebenen Parameter auf. Alle Rauschmodellmessungen werden mit geschlossener Flußregelschleife (FLL-Modus), alle Messungen der Amplitude der Transferfunktion mit geöffneter Flußregelschleife vorgenommen.

3.4.1 Die Unterdrückung der Transferfunktion durch Magnetfelder

Für insgesamt 24 rf-washer-SQUIDs wurde die Unterdrückung der Amplitude der Transferfunktion, $V_{s,pp}$, in Abhängigkeit von einem senkrecht zur Sensorfläche orientierten Magnetfeld gemessen.

Etwa 30 % der Sensoren zeigen eine Magnetfeldabhängigkeit, die ähnlich einem Fraunhofer-Muster verläuft. Sie ähnelt der Unterdrückung des kritischen Stroms in einem Josephson-Kontakt (Abb.2.9) und ist auf die Reduzierung des SQUID-Parameters b_L infolge der Reduzierung des kritischen Stroms im SQUID-Kontakt zurückzuführen. Ein Beispiel für die Modulation der Transferfunktion durch ein äußeres Magnetfeld ist in Abb.3.17 dargestellt. Es gibt ein klar ausgeprägtes Hauptmaximum und mehrere kleinere Nebenmaxima mit nahezu
identischer Periode. Die Transferfunktion wird an den Minima fast vollständig unterdrückt. Dies deutet auf geringe strukturelle Inhomogenitäten hin (vgl. Kap.2.1.4). Ein Vergleich mit dem $I_c(B)$-Muster für einen idealen Kontakt mit homogener Stromverteilung (Abb.2.9) läßt darauf schließen, daß auch hier eine nahezu homogene Stromverteilung innerhalb des Kontakts des rf-SQUID vorliegt.

![Graphik](image)

Abb.3.17 Amplitude der Transferfunktion, V_{app} eines rf-washer-SQUID ($w = 1,8 \, \mu m$) in Abhängigkeit von einem äußeren Magnetfeld, das senkrecht zur Sensorfläche orientiert ist. Die Unterdrückung der Transferfunktion folgt einem Fraunhofer muster. Das Fenster zeigt die Aufzeichnung des Bereichs des Hauptmaximums in kleineren Meßschritten.

Zur Bestimmung der Magnetfeldperiode ΔB_{0-V} der Transferfunktion wurde der Wert des Magnetfeldes am Ort des 1. Minimums der Kurve ermittelt. Um eine größere Genauigkeit zu erzielen, wurde dazu der Bereich des Hauptmaximums in kleineren Meßschritten aufgezeichnet (kleine Graphik in Abb.3.17). Die Magnetfeldperiode kann mit einem Fehler von etwa 6 % ermittelt werden.

Die SQUID-Sensoren mit einer derartigen Stromverteilung zeigen jedoch ebenfalls eine deutliche Ausbildung eines Hauptmaximums, so daß für alle untersuchten Magnetometer die Magnetfeldperiode \(\Delta B_{0-V} \) – d.h. der Wert des externen Magnetfeldes, der notwendig ist, um die Transferfunktion auf ihren 1. minimalen Wert zu unterdrücken – bestimmt werden kann. Dieser Wert ist für die Magnetfeldstabilität in externen Magnetfeldern entscheidend und eng mit einem Anstieg des weißen Flußrauschens korreliert, wie im nächsten Kapitel gezeigt wird.

Abb. 3.18 (a) Magnetfeldabhängigkeit der Transferfunktion, \(V_{spp}(B) \), bei stark inhomogener Stromdichteerteilung im Josephson-Kontakt eines rf-SQUID \((w = 2,4 \, \mu m)\); (b) Magnetfeldabhängigkeit der Transferfunktion eines rf-SQUID \((w = 3 \, \mu m)\) mit einem Betriebsparameter \(\beta_L \geq 1 \). Der Meßfehler für \(V_{spp} \) entspricht der Symbolgröße, das angelegte Magnetfeld \(B \) ist mit einer Genauigkeit von 5 % bekannt (vgl. Kap. 3.3.3.2).

Einige Sensoren weisen ein Magnetfeldverhalten auf, wie es beispielhaft in Abb. 3.18b dargestellt ist. Die Amplitude der Transferfunktion besitzt ihr Maximum nicht im Nullfeld. Dieses Verhalten ist damit zu erklären, daß der SQUID-Parameter \(\beta_L \) nicht auf den optimalen Wert eingestellt, sondern zu groß ist (vgl. Kap. 2.2.3). Eine Reduzierung des kritischen Stroms des Kontakts und infolgedessen des Parameters \(\beta_L \) durch ein äußeres Magnetfeld kann dann zu einem verbesserten Arbeitsbereich und damit zu einer größeren Amplitude der Transferfunktion führen. Im Fall des in Abb. 3.18b vermessenen Magnetometers liegt das für den Betrieb optimale Magnetfeld bei etwa 5 \(\mu T \).

Die Überlegung liegt nun nahe, den SQUID-Parameter \(\beta_L \) so einzustellen, daß der Sensor z.B. im Erdmagnetfeld \((B_{erd} \sim 50 \, \mu T)\) seinen optimalen Arbeitsbereich besitzt. Entscheidend ist jedoch, daß auch in diesem Fall jede Bewegung des Magnetometers im Magnetfeld, die eine Änderung des Totalfeldes am Ort des Sensors beinhaltet, zu einer Änderung des kritischen Stroms und damit nach (2.21) auch zu einer Änderung von \(\beta_L \) führt. Diese Änderung von \(\beta_L \)
vom eingestellten optimalen Wert wiederum führt nach [Pas74] und [Fal75] (vgl. Kap.2.2.3) zu einer Reduzierung der Transferfunktion. Einzige sinnvolle Möglichkeit zur Stabilisierung des Sensorbetriebs ist daher die Vergrößerung der Magnetfeldperiode ΔB_{ϕ}.\vspace{0.5cm}

3.4.2 Anstieg des weißen Rauschens in Magnetfeldern

Nach (2.28) und (2.30) ist die Amplitude der Transferfunktion eng mit dem weißen Flußrauschen korreliert. Die im vorigen Kapitel gezeigte Unterdückung der Transferfunktion in externen Magnetfeldern sollte danach zu einem Anstieg des weißen Flußrauschens S_ϕ^{rf} führen.

Ziel dieses Abschnitts ist es, den Zusammenhang zwischen der Amplitude der Transferfunktion, V_{spp}, und dem Anstieg des weißen Flußrauschens zu untersuchen. Insbesondere soll in Abhängigkeit einer gegebenen Magnetfeldperiode ΔB_{ϕ}, das kritische Magnetfeld B_{krit} ermittelt werden, bei dem eine signifikante Erhöhung des Flußrauschens auftritt. Auf diese Weise soll die notwendige Magnetfeldperiode für den Betrieb in einem externen Magnetfeld B_{ext} gefunden werden.

Dazu wurden die Amplitude der Transferfunktion und das Flußrauschen von 7 rf-SQUID-Magnetometern in Abhängigkeit von der angelegten magnetischen Flußdichte gemessen. Dabei war das Magnetfeld senkrecht zur supraleitenden Fläche der SQUIDs angelegt. Das weiße Flußrauschen wurde bei einer Frequenz von 5 kHz ermittelt, um den Einfluß niederfrequenter Störeinflüsse sicher ausschließen zu können, die u.a. durch Fluktuationen der Stromquelle der Helmholtzspule bei Frequenzen unterhalb von typisch einigen 100 Hz erzeugt werden.

Abb.3.19 Korrelation zwischen der Magnetfeldabhängigkeit der Transferfunktion $V_{spp}(B)$ und des weißen Flußrauschens $S_\phi^{\text{rf}}(B)$ für zwei verschiedene rf-washer-SQUIDs (a) und (b). Beschreibung siehe Text.
In Abb.3.19 ist das Ergebnis der Messungen beispielhaft für zwei Magnetometer dargestellt. Mit zunehmendem äußeren Magnetfeld und abnehmender Amplitude der Transferfunktion nimmt das Rauschen zu. Das erste Rauschmaximum von etwa 220 μΦ₀/√Hz, das um gut einen Faktor 7 über dem Rauschen von 30 μΦ₀/√Hz im Nullfeld liegt (Abb.3.19a), fällt mit dem 1. Minimum der Transferfunktion zusammen und wird demnach bei einer magnetischen Flüßdichte erreicht, die der Magnetfeldperiode ΔΒ₀,ν des Sensors entspricht. Diese Korrelation wurde für alle Magnetometer beobachtet. Wird die Transferfunktion im 1. Minimum sehr stark unterdrückt (Beispiel in Abb.3.19b), so ist kein SQUID-Betrieb in geschlossener Flußregelschleife mehr möglich.

Bis zu einem kritischen Magnetfeld B₆ₙkrit steigt das Flußrauschen der Sensoren nur unwesentlich an. Dabei sei B₆ₙkrit definiert als das Magnetfeld, bei dem das weiße Flußrauschen im Vergleich zum Wert im Nullfeld um mehr als 20 % angestiegen ist. Ein derart moderater Rauschanstieg ist für den Betrieb von rf-SQUID-Sensoren in den meisten Anwendungsgebieten tolerabel.

Um den Zusammenhang zwischen dem kritischen Magnetfeld und der Magnetfeldperiode der Sensoren zu ermitteln, wurde B₆ₙkrit für die 7 vermessenen Magnetometer bestimmt. In Abb.3.20 ist das kritische Magnetfeld in Einheiten der jeweiligen Magnetfeldperiode, B₆ₙkrit/ΔΒ₀,ν, in Abhängigkeit von ΔΒ₀,ν aufgetragen.

![Diagramm]

Abb.3.20 Kritisches Magnetfeld B₆ₙkrit von 7 rf-washer-SQUIDs in Einheiten ihrer jeweiligen Magnetfeldperiode aufgetragen in Abhängigkeit von ΔΒ₀,ν. Für nahezu alle Magnetometer ist das kritische Magnetfeld größer als die halbe Magnetfeldperiode. Das bedeutet, daß in Gegenwart eines externen Magnetfeldes, das kleiner als ΔΒ₀,ν/2 ist, kein signifikanter Anstieg des Rauschens festgestellt wird.
Für nahezu alle Sensoren gilt: $B_{\text{krit}} \geq \Delta B_{0,\nu}/2$. Daraus folgt, daß die Magnetfeldperiode etwa doppelt so groß wie das kritische Magnetfeld sein muß, damit ein Sensorbetrieb mit einem moderaten Rauschanstieg von maximal 20% möglich ist. Das Kriterium für den stabilen Betrieb von rf-SQUIDs in externen Magnetfeldern mit magnetischer Flußdichte B_{ext} lautet demnach:

$$\Delta B_{0,\nu} \geq 2 \cdot B_{\text{ext}}. \quad (3.10)$$

Die im Rahmen dieses Abschnitts durchgeführten Untersuchungen haben also zunächst gezeigt, daß die Unterdrückung der Transferfunktion von rf-washer-SQUIDs eng mit einem Anstieg des weißen Flußrauschens korreliert ist. Des Weiteren wurde ein Kriterium für die erforderliche Magnetfeldperiode beim SQUID-Betrieb in externen Magnetfeldern ermittelt. Dessen Kenntnis ist notwendige Voraussetzung für die Ermittlung einer geeigneten Kontaktdichte in Abhängigkeit der effektiven Sensorfläche.

In den folgenden Kapiteln wird nun zunächst der Einfluß der effektiven Fläche und schließlich der Einfluß der Kontaktdichte auf das Magnetfeldverhalten der Transferfunktion untersucht.

3.4.3 Einfluß der effektiven Fläche auf die Magnetfeldabhängigkeit

In vielen Anwendungen von HTSL-rf-SQUIDs werden zur Senkung des weißen Flußrauschens und zur Erhöhung der Magnetfeldempfindlichkeit koplanare Resonatoren mit integrierten Konzentratoren eingesetzt [Zen98, Bic99a, Pan00, Zha00, Les01, Pan01]. Ein Beispiel für die Reduzierung des Fluß- und des Feldrauschens eines rf-washer-SQUID durch seinen Betrieb mit einem koplanaren Resonator zeigt Abb.3.21.⁴

Die höhere Feldempfindlichkeit der SQUID/Resonator-Anordnung wird durch eine größere effektive Fläche erzielt. Die Rechnungen in Kap.3.2 haben jedoch gezeigt, daß größere effektive Flächen die Magnetfeldperiode reduzieren. Es ist daher besonders wichtig, den Einfluß der effektiven Fläche auf die Magnetfeldabhängigkeit der Transferfunktion zu bestimmen, um für eine gegebene Sensorkonfiguration aus rf-SQUID und koplanarem Resonator, d.h. für eine gegebene effektive Fläche, die optimale Kontaktdichte für den Betrieb in externen Magnetfeldern unter Berücksichtigung von (3.10) ermitteln zu können.

⁴ Die im Rahmen der Arbeit untersuchten rf-SQUID-Magnetometer mit koplanaren Resonatoren weisen ein Flußrauschen zwischen 15 und $35 \mu \Phi_0/\sqrt{\text{Hz}}$ auf. Die besten Rauschwerte liegen für die in vielen Anwendungen eingesetzte Konfiguration SRL mit 1 cm²-Substratfläche (siehe Tabelle 3.2) bei etwa $35 \text{ fT}/\sqrt{\text{Hz}}$.
Abbildung 3.21 Reduzierung des Flußrauschens (a) und des Feldrauschens (b) eines rf-washer-SQUID (d = 150 μm) durch den Betrieb mit einem koplanaren Resonator bei integriertem Konzentrat mit 8,5 mm Kantenlänge (Konfiguration SR1 in Tabelle 3.2). Die Messung wurde in magnetischer Schirmung (Meßplatz aus Abb.3.10) durchgeführt.

Nach (3.5) bzw. (3.9) wird erwartet, daß die Magnetfeldperiode umgekehrt proportional zur effektiven Fläche ist: $\Delta B_{0-V} \sim 1/A_{\text{eff}}$. Dann sollte sich die Magnetfeldperiode $\Delta B_{0-V}^{(S)}$ eines einzelnen washer-SQUID durch seinen Betrieb mit einem koplanaren Resonator um den Faktor A_{S}/A_{SR}, dem Verhältnis der effektiven Flächen der beiden Sensorkonfigurationen, verkleinern. Somit erwartet man für die Magnetfeldperiode $\Delta B_{0-V}^{(SR)}$ einer beliebigen SQUID/Resonator-Anordnung:

$$\Delta B_{0-V}^{(SR)} = \frac{A_S}{A_{SR}} \cdot \Delta B_{0-V}^{(S)}.$$ (3.11)

Diese Abhängigkeiten sollen im folgenden experimentell überprüft werden. Dazu werden zur Realisierung unterschiedlicher effektiver Flächen rf-washer-SQUIDs in flip-chip Anordnung (vgl. Abb.3.8b) mit koplanaren Resonatoren unterschiedlicher Dimension betrieben. Neben dem bislang verwendeten SQUID-Layout (Abb.3.4) werden für eine umfassendere Überprüfung von (3.11) zusätzlich rf-SQUID-Magnetometer mit einer kleineren Lochkantenlänge von $d = 100 \, \mu m$, welche zu einer kleineren effektiven Fläche führt (vgl. Kap.2.2.4), eingesetzt.

Für den Nachweis der $1/A_{\text{eff}}$-Abhängigkeit der Magnetfeldperiode muß die Kantenlänge d nach (3.5) konstant bleiben. Nur die effektive Fläche darf variiert werden. Daher sind koplanare Resonatoren, die keine Änderung der Lochkantenlänge bewirken, zur Variation der
Sensorfläche besonders gut geeignet. Für jedes der beiden SQUID-Layouts (d = 100 und 150 μm) werden jeweils drei Sensorkonfigurationen mit unterschiedlichen effektiven Flächen untersucht. Tabelle 3.2 gibt eine Übersicht über die verwendeten Konfigurationen und ihre Parameter. Die effektiven Flächen der einzelnen SQUIDs, A_s, und der Anordnungen mit Resonatoren, A_{SR1} und A_{SR2}, wurden experimentell im Feld der kalibrierten Helmholtzspule A (Abb.3.10) bestimmt.

<table>
<thead>
<tr>
<th>Layout</th>
<th>SQUID</th>
<th>SR1</th>
<th>SR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D [μm]</td>
<td>A_s [mm²]</td>
<td>A_{SR1} [mm²]</td>
<td>A_{SR2} [mm²]</td>
</tr>
<tr>
<td>100</td>
<td>0,21 ± 0,01</td>
<td>0,53 ± 0,025</td>
<td>0,79 ± 0,04</td>
</tr>
<tr>
<td>150</td>
<td>0,31 ± 0,015</td>
<td>0,78 ± 0,04</td>
<td>1,11 ± 0,055</td>
</tr>
</tbody>
</table>

Tabelle 3.2: Layouts und effektive Flächen der verwendeten Sensorkonfigurationen. Zusammengefasst sind die effektiven Flächen der SQUIDs ohne Resonatoren, A_s, und die der flip-chip-Anordnungen von SQUID und Resonator, A_{SR1} bzw. A_{SR2}, jeweils für die beiden SQUID-Layouts mit d = 100 und 150 μm (D_2 = 3,5 mm). Die Resonanzfrequenzen der Resonatoren betragen ~ 920 MHz (SR1) bzw. ~ 650 MHz (SR2). Die Flussfokussierer der beiden Resonatoren besitzen die Abmessungen D_1 = 8,5 mm und D_2 = 13,4 mm.

Die Amplitude der Transferfunktion wurde für alle Sensorkonfigurationen in Abhängigkeit von einem äußeren, senkrecht zur Sensorfläche orientierten Magnetfeld für mehrere SQUIDs gemessen. In Abb.3.22 ist zunächst das Ergebnis für einen washer-SQUID mit Lochkantenlänge d = 150 μm und Kontaktbreite w = 3 μm dargestellt. Für alle drei Sensorkonfigurationen (SQUID, SR1 und SR2) wird die Amplitude der Transferfunktion jeweils durch ein äußeres Magnetfeld einem Fraunhofer-Muster ähnlich moduliert.

Wird nun die Magnetfeldabhängigkeit der Transferfunktion des einzelnen washer-SQUIDs \(V_{s-pp}^{(S)}(B) \) mit dem Verhältnis der effektiven Flächen entsprechend (3.11) gewichtet, so ergeben sich die in Abb.3.22 dargestellten Kurvenverläufe \(f_{sri}(B) = V_{s-pp}^{(S)}(A_{SR1}/A_s-B) \) (durchgezogene Linie), bzw. \(f_{sr2}(B) = V_{s-pp}^{(S)}(A_{SR2}/A_s-B) \) (gestrichelte Linie). Die Ergebnisse bestätigen die Gültigkeit von (3.11) durch die Übereinstimmung der nach dieser Gleichung berechneten Verläufe der Magnetfeldabhängigkeit der SQUID/Resonator-Konfigurationen: \(f_{sr1}(B) = V_{s-pp}^{(SR1)}(B) \), (i = 1, 2).
Abb. 3.22 Einfluß von koplanaren Resonatoren mit Flußkonzentratorenhk mit unterschiedlichen effektiven Flächen (SR1 und SR2, siehe Tabelle 3.2) auf die Magnetfeldabhängigkeit $V_{spp}(B)$ eines rf-washer-SQUID ($d = 150 \, \mu m, w = 3 \, \mu m$). Die Linien kennzeichnen den Verlauf der mit dem Verhältnis der effektiven Flächen gewichteten Magnetfeldabhängigkeit $V_{spp}(B)$ des einzelnen SQUID nach $f_{SR}(B) = V_{spp}^{(2)}(A_{SR}/A_{s}B)$. Beschreibung siehe Text.

Deutlich ist zu erkennen, daß koplanare Resonatoren mit Flußfokussierendem Form und Amplitude des Verlaufs der Magnetfeldabhängigkeit nicht verändern, sondern nur infolge der vergrößerten effektiven Sensorfläche gemäß (3.11) die Magnetfeldperiode reduzieren. Das gleiche Ergebnis wird für das SQUID-Layout mit $d = 100 \, \mu m$ gefunden und ist beispielhaft für einen der untersuchten washer-SQUIDs mit einer Kontaktbreite von $w = 3 \, \mu m$ in Abb. 3.23 dargestellt.

Trägt man die Magnetfeldperiode $\Delta B_{0,v}$ für die beiden rf-SQUID-Magnetometer aus Abb. 3.22 und Abb. 3.23 jeweils doppeltlogarithmisch gegen die effektive Fläche auf, so läßt sich sehr gut verdeutlichen, daß sich die Periode für beide Sensor-Layouts umgekehrt proportional zur effektiven Fläche verhält (Abb. 3.24). Die durchgezogenen Linien in Abb. 3.24 kennzeichnen dabei die $1/A_{ef}$-Abhängigkeit.
Abb. 3.23 Einfluss von koplanaren Resonatoren mit Flußkonzentratoren mit unterschiedlichen effektiven Flächen (SR1 und SR2, vgl. Tabelle 3.2) auf die Magnetfeldabhängigkeit $V_{sup}(B)$ eines rf-washer-SQUID ($d = 100 \ \mu m$, $w = 3 \ \mu m$). Beschreibung siehe Text und Abb. 3.22.

Abb. 3.24 Magnetfeldperiode $\Delta B_{0,V}$ der untersuchten Sensorkonfigurationen (einzeln SQUID, SR1 und SR2) in Abhängigkeit von ihrer effektiven Fläche für $d = 100 \ \mu m$ (offene Symbole) und $d = 150 \ \mu m$ (gefüllte Symbole). Die durchgezogenen Linien (a und b) kennzeichnen die $1/A_{eff}$-Abhängigkeit. Die Symbolgrößen entsprechen in etwa dem Messfehler.
Die im Rahmen dieses Abschnitts durchgeführten Untersuchungen haben gezeigt, daß die Magnetfeldperiode $\Delta B_{0,V}$ für eine gegebene Kantenlänge des SQUID-Lochs d umgekehrt proportional zur effektiven Fläche der SQUID-Sensoren ist, wie es die in Kap.3.2 abgeleiteten Gleichungen vorhersagen. Insbesondere konnte gezeigt werden, daß die Magnetfeldperiode $\Delta B_{0,V}^{(SR)}$ einer beliebigen flip-chip-Anordnung aus rf-SQUID und koplanaren Resonatoren über deren effektive Flächen mittels (3.11) bestimmt werden kann, wenn die Magnetfeldperiode $\Delta B_{0,V}^{(S)}$ des einzelnen rf-washer SQUID bekannt ist.

Im folgenden Abschnitt wird nun die Abhängigkeit der Magnetfeldperiode von der Breite der Stufenkontakte der rf-SQUIDs untersucht. Diese Analyse soll letztendlich die Bestimmung der erforderlichen Kontaktbreite für den Sensor-Betrieb in einem äußeren Magnetfeld ermöglichen und beinhaltet damit ein wesentliches Ergebnis der vorliegenden Arbeit.

3.4.4 Einfluß der Breite des Josephson-Kontakts auf die Magnetfeldabhängigkeit

Zur Ermittlung der Abhängigkeit der Magnetfeldperiode von der Kontaktbreite wurde das Hauptmaximum des $V_{spp}(B)$-Verlaufs für 24 rf-washer-SQUIDs ohne koplanare Resonatoren in kleinen Meßschritten aufgezeichnet, wie es in Kap.3.4.1 beschrieben worden ist. Die Kontaktbreiten wurden mit Hilfe lichtmikroskopischer Aufnahmen nach Kalibrierung durch eine REM-Aufnahme bestimmt, wie in Kap.3.3.1.2 beschrieben.

In Abb.3.25 ist die Breite w der Stufenkontakte der charakterisierten SQUIDs gegen die Magnetfeldperiode $\Delta B_{0,V}$ im Vergleich zu den in Kap.3.2 vorgestellten Modellvorhersagen aufgetragen. Dabei werden die Parameterwerte $t = 200 \text{ nm}$, $\lambda_L = 200 \text{ nm für } 77 \text{ K}$, $d = 150 \text{ \mu m}$ und $A_{eff} = 0.31 \text{ mm}^2$ zugrunde gelegt.

Es ist eine deutliche $1/w^2$-Abhängigkeit der gemessenen Werte zu erkennen, wie sie grundsätzlich für die Unterdrückung des kritischen Stroms in planaren Korngrenzenkontakten in [Ros91] vorhergesagt wird.

Für rf-washer-SQUIDs muß, wie in Kap.3.2.1 gezeigt, im Vergleich zu einzelnen Kontakten zusätzlich die Flußfokussierung durch die washer-Struktur nach (3.5) (Dünnschichtfall)
berücksichtigt werden. Deutlich ist in Abb.3.25 jedoch zu erkennen, daß die Meßpunkte weit unterhalb der nach (3.5) berechneten Kurve (dünn durchgezogene Linie) liegen. Dies bedeutet, daß die gemessene Feldüberhöhung am rf-SQUID-Kontakt sehr viel höher ist, als es dieses Modell vorhersagt.

Die mögliche Erklärung für dieses Verhalten ist die in Kap.3.2.2 erläuterte lokale Feldüberhöhung am Ort des Kontaks infolge der inhomogenen Verteilung der magnetischen Flußdichte im SQUID-Loch. Diese Feldüberhöhung, \(B_{\text{H}}/B_{\text{M}} \), wird durch den flußfokussierenden SQUID-washer verursacht und durch (3.9) berücksichtigt. Im Fall von einzelnen Kontakten gibt es keine washer-Struktur und damit auch keine zusätzliche Feldüberhöhung. Ein Vergleich von (3.9) mit den gemessenen Daten zeigt, daß ein Wert von \(B_{\text{H}}/B_{\text{M}} \sim 2,2 \) mit dem Großteil der Meßwerte übereinstimmt (dick durchgezogene Linie).

Abb.3.25 Breite des Stufenkontakts \(w \) aufgetragen gegen die Magnetfeldperiode \(\Delta B_{\text{o-v}} \): Vergleich der experimentellen Daten für 24 rf-washer-SQUIDs (Symbole) mit den verschiedenen Modell-Vorhersagen (Linien) für \(t = 200 \text{ nm} \), \(L = 200 \text{ nm} \), \(d = 150 \text{ \(\mu\)m} \) und \(A_{\text{eff}} = 0,31 \text{ mm}^2 \). Die Daten bestätigen eine klare \(1/w^2 \)-Abhängigkeit. Die Symbolgrößen entsprechen in etwa dem Meßfehler. Die beiden ausgefüllten Symbole entsprechen den Meßwerten der Proben, deren Magnetfeldabhängigkeit in Abb.3.17 (Dreieck) bzw. Abb.3.18a (Quadrat) dargestellt ist. Beschreibung siehe Text.

Tatsächlich weisen im vorliegenden Fall die Magnetometer, die vergleichsweise gut mit der theoretischen Vorhersage übereinstimmen, einen eher dem Fraunhofer-Muster ähnlichen Verlauf der $V_{s_{pp}}(B)$-Kurve auf. Ein Beispiel dafür zeigt Abb.3.17 in Kap.3.4.1. Dort ist die Magnetfeldabhängigkeit der Probe dargestellt, die in Abb.3.25 als ausgefülltes Dreieck gekennzeichnet ist, und gut mit der theoretischen Kurve übereinstimmt. Hingegen weisen die Magnetometer, die erheblich von der theoretischen Vorhersage abweichen, einen sehr unregelmäßigen Verlauf der $V_{s_{pp}}(B)$-Kurve auf. Ein Beispiel ist das Magnetometer, das als ausgefülltes Quadrat gekennzeichnet ist. Die zugehörige Magnetfeldabhängigkeit ist in Abb.3.18a dargestellt und läßt nach [Bar82] auf starke Inhomogenitäten in der Stromverteilung schließen. Es erscheint dabei zunächst paradox, daß ein 'schlechter' Kontakt mit inhomogener Stromverteilung in Hinsicht auf die Magnetfeldstabilität von rf-SQUID-Sensoren einen Vorteil gegenüber qualitativ hochwertigen Kontakten aufweist. Die Inhomogenität der Stromverteilung macht den Kontakt jedoch effektiv schmaler. Dabei konnte im Rahmen von vergleichenden Messungen ein Einfluß einer inhomogenen Stromverteilung auf das weiße Flußrauschen nicht festgestellt werden.

Aufgrund der oben erläuterten Streuung der Meßdaten kann die Bestimmung von B_{Jk}/B_{M} nicht exakt vorgenommen werden. Die experimentelle Ermittlung der Feldüberhöhung von $B_{Jk}/B_{M} \approx 2.2$ ermöglicht aber durchaus eine Abschätzung der notwendigen Kontaktbreite für den Betrieb von rf-washer-SQUIDs in einem externen Magnetfeld. Für den Betrieb im Erdmagnetfeld mit einer magnetischen Flußdichte von $B_{erd} \approx 50 \mu T$ ist nach (3.10) eine Magnetfeldperiode von $\Delta B_{0,V} \geq 2 \cdot B_{ext} = 2 \cdot B_{erd} \approx 100 \mu T$ notwendig. Dann sollten, wie in Kap.3.4.2 gezeigt, Feldvariationen von bis zu $50 \mu T$ keine signifikante Erhöhung des weißen Flußrauschens durch eine Unterdrückung der Transferfunktion verursachen. Für einen rf-washer-SQUID mit einer effektiven Fläche von $A_{eff} = 0,31 \text{ mm}^2$ und einer Lochkantenlänge
von $d = 150 \, \mu m$ ergibt sich dann mit (3.9) und $B_{K}/B_{M} \approx 2.2$ eine erforderliche Kontaktbreite von $w \approx 1.1 \, \mu m$.

In Abb.3.26 ist die Magnetfeldabhängigkeit des weißen Flußbrauschens und der Amplitude der Transferfunktion eines rf-SQUID mit dieser Kontaktbreite dargestellt. Bis zu externen Magnetfeldern von $\sim 65 \, \mu T$ ist kein signifikanter Rauschanstieg festzustellen. Mit einer Magnetfeldperiode von $\Delta B_{0,V} = 105 \, \mu T$ ist dieses Magnetometer damit sehr gut für den Betrieb im Erdmagnetfeld einsetzbar.

![Diagram](image)

Abb.3.26 Magnetfeldabhängigkeit des weißen Flußbrauschens S_{ϕ}^{HF} und der Amplitude der Transferfunktion V_{op} eines rf-washer-SQUID mit einer Kontaktbreite von $w = 1.1 \, \mu m$. Der Sensor ist mit einer Magnetfeldperiode von $105 \, \mu T$ und einem kritischen Magnetfeld von $\sim 65 \, \mu T$ sehr gut für einen Betrieb im Erdmagnetfeld geeignet (vgl. auch Abb.3.20).

Beim Betrieb von rf-SQUIDs mit koplanaren Resonatoren mit integrierten Flußfokussierern müssen nach (3.11) noch geringere Kontaktbreiten realisiert werden, da sich die effektiven Flächen der Sensoren vergrößern. Die erforderlichen Kontaktbreiten für den Betrieb im Erdmagnetfeld in Abhängigkeit der jeweiligen Sensorflächen von SQUID und Resonatoren lassen sich aber mit (3.9) und (3.11) abschätzen. Eine Zusammenstellung dieser Kontaktbreiten für die in Tabelle 3.2 aufgelisteten Sensorkonfigurationen findet sich in der Zusammenfassung dieses Ergebnisteils in Kap.3.6.
3.4.5 Einfluß der Magnetfeldrichtung auf die Transferfunktion

Bislang wurde die Magnetfeldabhängigkeit von rf-SQUID-Magnetometern für Felder mit senkrechter Orientierung zur Sensorfläche untersucht. Für die Ableitung allgemeingültiger Aussagen ist es wichtig zu klären, welche Winkelabhängigkeit vom äußeren Magnetfeld die Feldperiode der Transferfunktion besitzt und welchen Einfluß diese Winkelabhängigkeit auf die Ermittlung einer geeigneten Kontakbreite für den Betrieb von rf-SQUIDs außerhalb magnetischer Abschirmung hat.

In den vorangegangenen Kapiteln ist gezeigt worden, daß aufgrund der flüßfokussierenden washer-Struktur die Magnetfeldperiode des rf-SQUID wesentlich kleiner ist als die vergleichbarer Josephson-Kontakte ohne Fokussierer. Aufgrund der planaren Struktur des SQUID-washers ist es daher zu erwarten, daß – unabhängig von der Struktur des Kontakts – nur die senkrechte Komponente B_{\perp} des äußeren Magnetfeldes B_{tot} einen wesentlichen Einfluß auf die Transferfunktion besitzt.

Sei $\Delta B_{\perp} = \Delta B_{0\cdot V_{\perp}}$ die Magnetfeldperiode für ein Feld senkrecht zur Sensorfläche, so erwartet man für die Winkelabhängigkeit $\Delta B_{0\cdot V}(\alpha)$ den folgenden einfachen Zusammenhang:

$$\Delta B_{0\cdot V}(\alpha) = \frac{\Delta B_{\perp}}{\sin \alpha}. \quad (3.12)$$

Hier bedeutet $\alpha = 90^\circ$ senkrechte Orientierung (siehe Skizze in Abb.3.27). Dieser Zusammenhang wurde an rf-SQUID-Magnetometern mit unterschiedlichen Breiten des Stufenkontakts detailliert untersucht. Dazu wurde zunächst das drehbar gelagerte Helmholtzspulen-Paar A ($B_{\text{max}} \sim 700 \mu T$) eingesetzt (vgl. Meßaufbau in Abb.3.10). Die Richtung des Magnetfeldes wurde senkrecht zur Grabenstruktur des SQUID um den Winkel α variiert. Zur Bestimmung von α wurde das SQUID-Magnetometer jeweils in der Flußregelschleife betrieben. Das so gemessene SQUID-Signal entspricht dem zum SQUID-washer senkrechten Anteil B_{SQUID} des Gesamt magnetfeldes. Daraus konnte α für jeden Meßpunkt nach $B_{SQUID}/B_{\text{tot}} = \sin \alpha$ ermittelt werden.\(^5\)

Die Amplitude der Transferfunktion $V_{s\cdot p}$ wurde in Abhängigkeit vom äußeren Totalfeld B_{tot} jeweils für verschiedene Winkel α gemessen und die Magnetfeldperiode $\Delta B_{0\cdot V}$ ermittelt. Für einen rf-SQUID mit einer Kontaktbreite von $w = 2,4 \mu m$ ist diese Feldperiode in Abb.3.27 zum einen bezogen auf das Totalfeld B_{tot} (Quadrate), zum anderen bezogen auf die senkrechte Komponente des Totalfeldes B_{\perp} (Dreiecke) in Abhängigkeit des Winkels α dargestellt.

\(^5\) Hier sei angemerkt, daß der SQUID den magnetischen Fluß integral über seine gesamte Sensorfläche mißt. Lokale Inhomogenitäten des Magnetfeldes der Helmholtzspule über der Sensorfläche werden nicht erfaßt. Bei der Untersuchung der Winkelabhängigkeit der Magnetfeldperiode spielen diese aber auch keine Rolle. Es ist ausschließlich wichtig, wieviel Fluß durch ein senkrechtes Magnetfeld in den Kontakt eingekoppelt wird, d.h. wie groß das effektive Magnetfeld am Ort des Kontakts ist. Diese Größe wird durch Ermittlung von B_{SQUID}/B_{tot} sehr genau erfaßt. Der SQUID konnte so mit einer Genauigkeit von $0,01^\circ$ parallel zum Feld orientiert werden.

Abb.3.27 Magnetfeldperiode $\Delta B_{o,v}$ der Transferfunktion eines rf-SQUID ($d = 150 \mu m$, $w = 2,4 \mu m$) in Abhängigkeit vom Winkel α des äußeren Magnetfeldes bezogen auf das angelegte Totalfeld (Quadrate) und bezogen auf die zur washer-Struktur senkrechte Magnetfeldkomponente (Dreiecke). Die durchgezogene Linie stellt den nach (3.12) erwarteten Verlauf dar.

Bestätigt wird dieses Resultat durch Messungen des Flußrauschens in statischen Magnetfeldern. Schon bei kleinen Variationen der magnetischen Flußdichte von einigen 10 μT wird ein Rauschanstieg im niederfrequenten und im weißen Frequenzbereich im Vergleich zur Messung im Nullfeld beobachtet (Abb.3.28a). Magnetischer Fluß in Form von Abrikosov- und Josephson-Flußwirbeln dringt dabei aufgrund der fokussierenden Wirkung der washer-Struktur in den Supraleiter bzw. in den Kontakt ein.

Im Gegensatz dazu ist aufgrund der fehlenden Flußfokussierung und der damit verbundenen kleinen effektiven Fläche in Feldern parallel zur Sensorfläche kein Rauschanstieg festzustellen (Abb.3.28b). Dies weist darauf hin, daß im Parallelfeld keine Flußfokussierung durch die washer-Struktur existiert.
Abb. 3.28 Einfluß statischer Magnetfelder auf das Flussrauschen eines rf-washer-SQUID (d = 150 μm, w = 2,3 μm) in Feldern senkrecht (a) und parallel (b) zum SQUID-washer. Auch in großen magnetischen Feldern parallel zur Sensorfläche ist kein Rauschanstieg festzustellen.

Zur weiteren Analyse der Winkelabhängigkeit der Magnetfeldperiode muß zunächst auf die Untersuchungen des Magnetfeldverhaltens von YBCO-Stufenkontakten nach [Her95] eingegangen werden. Wie in Kap.2.1.4.1 erläutert, ruft nur ein senkrecht zur Normalen der Kontaktfläche orientiertes Magnetfeld eine Unterdrückung des kritischen Stroms im Kontakt hervor. Parallel orientierte Felder besitzen keinen Einfluß. In Stufenkontakten ist es a priori nicht klar, welche Orientierung die Kontaktebenen relativ zur Filmoberfläche besitzen. Für den unteren Kontakt, der mit seinem kleineren kritischen Strom das Josephson-Verhalten des gesamten Kontakts bestimmt, liegt aber eine nahezu senkrechte Orientierung vor (vgl. Abb.2.6). In diesem Fall sollte die Magnetfeldperiode des kritischen Stroms \(\Delta B_{0(\perp)} \) für Felder senkrecht zur Filmoberfläche wesentlich kleiner sein als die Magnetfeldperiode \(\Delta B_{0(\parallel)} \) für Felder parallel zur Filmoberfläche. Dies wurde in [Her95] für Stufenkontakte mit einer Breite zwischen 2 und 4 μm bestätigt. Für parallele Felder wird ein \(\Delta B_{0(\parallel)} \) von 2-5 mT angegeben, für senkrechte Felder ein \(\Delta B_{0(\perp)} \) von etwa 400 - 900 μT [Her95].

Ein washer-SQUID weist aufgrund der flußfokussierenden Wirkung der washer-Struktur für Magnetfelder senkrecht zur Filmoberfläche eine um mehr als eine Größenordnung niedrigere Magnetfeldperiode \(\Delta B_{1} \) auf als ein Stufenkontakt alleine ohne flußfokussierende Struktur.

6 Hier sei noch einmal darauf hingewiesen (vgl. Einleitung zu Kap.3.4), daß die Magnetfeldperiode \(\Delta B_{0,y} \) der Transferfunktion mit der Magnetfeldperiode \(\Delta B_{0} \) des kritischen Stroms übereinstimmt, daß also die Unterdrückung des kritischen Stroms im SQUID zur Unterdrückung der Transferfunktion führt. Dieser Sachverhalt wird in Kap.3.5 untersucht und bestätigt.
Für Magnetfelder parallel zur Sensorfläche gibt es entsprechend der in diesem Abschnitt durchgeführten Untersuchungen (Abb.3.27 und Abb.3.28) hingegen keine Flußfokussierung durch den SQUID-washer. Deshalb sollte sich das SQUID-Magnetometer hinsichtlich parallel zur Sensorfläche orientierten Magnetfeldern ähnlich wie ein einfacher Stufenkontakt verhalten. Eine mögliche Unterdrückung der Amplitude der Transferfunktion ist aus diesem Grunde, ebenso wie die Unterdrückung des kritischen Stroms im Stufenkontakt [Her95], in parallel orientierten Magnetfeldern erst im Bereich von einigen mT zu erwarten.

Bei den in Abb.3.27 dargestellten Messungen sind nur Felder von einigen 100 µT bei einem minimalen Magnetfeldwinkel von \(\alpha \sim 1,3^\circ \) erzeugt worden. In diesem Fall ist die senkrechte Magnetfeldkomponente \(B_\perp \) immer noch groß genug, um die Transferfunktion vollständig zu unterdrücken. Ein Einfluß der parallelen Magnetfeldkomponente \(B_\parallel \) kann sich erst dann bemerkbar machen, wenn zum einen größere Magnetfeldstärken \(B_{tot} \) von einigen mT erzeugt werden. Zum anderen müßt dabei der Winkel zur Sensorfläche so klein sein (\(\alpha \sim 1^\circ \)), daß die residuelle senkrechte Magnetfeldkomponente \(B_\perp \) nicht mehr zur Unterdrückung der Transferfunktion ausreicht, also kleiner ist als \(\Delta B_\perp \).

Sei \(\Delta B_\parallel = \Delta B_{0-V(\alpha)} \) die Feldperiode der Transferfunktion für ein Feld parallel zur Filmoberfläche. Dann erwartet man für die Winkelabhängigkeit der Magnetfeldperiode eines rf-SQUID, bezogen auf das angelegte Totalfeld, folgende Beziehung:

\[
\Delta B_{0-V}(\alpha) = \left(\frac{\sin \alpha}{\Delta B_\perp} + \frac{\cos \alpha}{\Delta B_\parallel} \right)^{-1}.
\] (3.13)

Dabei sollte \(\Delta B_\parallel \) aufgrund der fehlenden Flußfokussierenden Struktur parallel zur Sensorfläche sehr viel größer als \(\Delta B_\perp \) sein und sich der Einfluß von \(\Delta B_\parallel \) deshalb erst bei sehr kleinen Winkeln \(\alpha \) bemerkbar machen.

Zur Überprüfung dieses Sachverhalts wurde das zweite drehbar gelagerte Helmholtzspulen-Paar B (vgl. Abb.3.10) eingesetzt, mit dem Magnetfelder mit einer größeren Flußdichte von bis zu \(B_{max} = 6 \) mT erzeugt werden können.

In Abb.3.29 ist die gemessene Winkelabhängigkeit der Feldperiode eines SQUID (\(w = 3 \mu m \)) bis hin zu sehr kleinen Winkeln \(\alpha \) dargestellt. Man beobachtet den nach (3.13) erwarteten Verlauf. Mit Hilfe einer Anpassung an die Meßpunkte entsprechend (3.13) mit den freien Parametern \(\Delta B_\parallel \) und \(\Delta B_\perp \) (durchgezogene Linie) ergibt sich im Fall des betrachteten Sensors \(\Delta B_\perp \sim 11 \mu T \) und \(\Delta B_\parallel \sim 5,5 \) mT.

Der Wert für \(\Delta B_\parallel \) liegt etwas höher als die in der Literatur angegebenen Werte von 2-5 mT für Stufenkontakte ohne washer-Struktur mit einem Stufenwinkel von \(\alpha_s > 70^\circ \) und Kontaktbreiten von 2-4 \(\mu m \) [Her95], stimmt aber grundsätzlich gut mit ihnen überein. Dieses Ergebnis wurde ebenfalls für weitere Sensoren gefunden und deutet auf eine nahezu
senkrechte Ausrichtung der Habitusebene der Korngrenze mit dem kleineren kritischen Strom hin. Dabei wurden auf diese Weise die Magnetometer mit Kontaktbreiten von \(w = 2,7 \, \mu m \) bis 3 \(\mu m \) charakterisiert. Für schmale Kontakte war \(\Delta B_\parallel \) zu groß, so daß die maximale Magnetfeldstärke der Helmholtzspule von 6 mT nicht ausreichte.

Abb. 3.29 Magnetfeldperiode \(\Delta B_{oV} \) der Transferfunktion eines rf-washer-SQUID (\(d = 150 \mu m \), \(w = 3 \mu m \)) in Abhängigkeit vom Winkel \(\alpha \) des angelegten Magnetfeldes in einem Winkelbereich von \(\alpha = \{0,01^\circ, ..., 90^\circ\} \) bezogen auf das angelegte Totalfeld (Quadrate) und bezogen auf die Magnetfeldkomponente senkrecht zur Sensorfläche (Dreiecke). Der nach Gleichung (3.13) berechnete Verlauf der Winkelabhängigkeit (durchgezogene Linie) stimmt für \(\Delta B_\perp \sim 11 \mu T \) und \(\Delta B_\parallel \sim 5,5 \, mT \) gut mit den Meßwerten überein.

Die Meßergebnisse weisen zusammenfassend daraufhin, daß sich die Kontakte in den betrachteten rf-washer-SQUID-Sensoren in Bezug auf Magnetfelder parallel zur washer-Struktur wie isolierte Stufenkontakte verhalten. Dies ist eine wesentliche Bestätigung dafür, daß für die Magnetfeldstabilität der Sensoren nur die Flußfokussierung des SQUID-washers für Magnetfelder senkrecht zur Filmoberfläche entscheidend ist. Aus diesem Grunde muß zur Bestimmung der optimalen Breite des Stufenkontaktes für den Betrieb in magnetischen Feldern nur die senkrechte Magnetfeldkomponente berücksichtigt werden.
3.5 Die Magnetfeldabhängigkeit des kritischen Stroms

Die Analyse der Magnetfeldabhängigkeit der Transferfunktion von HTSL-rf-washer-SQUIDs, $\Delta B_{0,v}$, wurde in den vorangegangenen Kapiteln auf Basis der in Kap.3.2 durchgeführten Rechnungen vorgenommen. Die entsprechenden Gleichungen waren jedoch aus Modellen abgeleitet worden, welche die Unterdrückung des kritischen Stroms, nicht die Unterdrückung der Transferfunktion beschreiben. Strenggenommen ermöglichen (3.5) bzw. (3.9) damit nur die Berechnung der Magnetfeldperiode ΔB_0 des kritischen Stroms.

Im folgenden soll daher der Zusammenhang zwischen der Unterdrückung des kritischen Stroms und der Unterdrückung der Transferfunktion detaillierter analysiert werden. Insbesondere ist es das Ziel, die Korrelation von ΔB_0 und $\Delta B_{0,v}$ zu bestimmen. Damit soll die Gültigkeit der in Kap.3.2 abgeleiteten und in Kap.3.4 eingesetzten Gleichungen überprüft und so eine zuverlässige Berechnung der geeigneten Kontaktbreite von rf-SQUIDs für den Betrieb in externen Magnetfeldern ermöglicht werden.

Zu diesem Zweck sind direkte Messungen des kritischen Stroms am rf-SQUID erforderlich. Dies ist nur nach Öffnung des SQUID-Rings möglich (vgl. Kap.3.3.3.1), so daß diese Analyse erst nach der Charakterisierung der Transferfunktion vorgenommen werden konnte.

Zunächst wird überprüft, ob das Verhalten der Stufenkontakte in den charakterisierten SQUIDs dem RCSJ-Modell entspricht (Kap.3.5.1). Dann nämlich kann auf der Grundlage dieses Modells der SQUID-Parameter β_L bei hohen thermischen Fluktuationen bei 77 K ermittelt werden (Kap.3.5.2). Sollte β_L nicht wesentlich größer als 1 sein, so sollte eine Reduktion des kritischen Stroms auch zu einer Reduktion der Transferfunktion führen (vgl. Kap.2.2.3).

In Kap.3.5.3 bzw. 3.5.4 werden schließlich die $I_c(B)$-Kurven bei verschiedenen Temperaturen aufgezeichnet und der Zusammenhang zwischen den Magnetfeldperioden ΔB_0 sowie $\Delta B_{0,v}$ analysiert.

3.5.1 Der kritische Strom im rf-SQUID: I-U-Kennlinien

Strom-Spannungs-Messungen in Vierpunkt-Geometrie wurden an 4 der 24 bereits charakterisierten rf-washer-SQUIDs durchgeführt. Um Unsicherheiten bei der Analyse aufgrund von starken Inhomogenitäten im Kontaktbereich ausschließen zu können, wurden solche Magnetometer ausgewählt, deren Magnetfeldverhalten nicht erheblich von einem Fraunhofer-ähnlichen Muster abweicht. Zudem wurde darauf geachtet, daß das Maximum der $V_{spp}(B)$-Kurve bei $B=0$ liegt, so daß davon ausgegangen werden kann, daß der...
Betriebsparameter \(\beta_L \) nicht viel größer als 1 ist.\(^7\) Eine genaue Bestimmung von \(\beta_L \) zur Überprüfung dieses Sachverhalts wird im nächsten Abschnitt vorgenommen.

Die Präparation der Sensoren zur Öffnung des SQUID-Rings und galvanischen Kontaktierung sowie die Durchführung der Messungen sind in Kap.3.3.3 detailliert beschrieben worden.

In Abb.3.30 sind die I-U-Kennlinien eines rf-SQUID abgebildet, die bei verschiedenen Temperaturen zwischen 6,9 und 75,5 K aufgezeichnet worden sind.

Zunächst fällt, ausgehend von \(I = 0 \), bei Erhöhung des eingeprägten Stroms keine Spannung über dem Kontakt ab, bis der kritische Strom \(I_c \) erreicht ist. Bei 6,9 K liegt er bei etwa 52 \(\mu \)A und fällt mit steigender Temperatur aufgrund der reduzierten kritischen Stromdichte im Kontaktbereich ab, wie es grundsätzlich an Korngrenzenkontakten beobachtet wird [Lui98]\(^8\).

Der normalleitende Widerstand \(R_N \) des Kontakts kann aus der Steigung der I-U-Kennlinie im Bereich großer Ströme bestimmt werden.

\[\text{Abb.3.30 I-U-Kennlinien des Stufenkontakts eines rf-washer-SQUID nach Öffnung des SQUID-Rings in Abhängigkeit der Temperatur.}\]

\(^7\) Ein Gegenbeispiel mit \(\beta_L > 1 \) zeigt Abb.3.18b in Kap.3.4.1.
einzelnen Kontakte aber unterschiedlich groß. In der I-U-Kennlinie ist daher häufig nur der kleinste kritische Strom zu erkennen, dessen zugehöriger Kontakt nach [Her95] und [Lui98] an einer der unteren Grabenkanten positioniert ist. Entscheidend ist, daß dieser Kontakt mit dem kleinsten I_c das Josephson-Verhalten des gesamten Stufenkontakts bestimmt und damit auch für die weiteren Untersuchungen relevant ist. Liegen die kritischen Ströme der beiden unteren Kontakte nicht sehr weit auseinander, so können sie in der I-U-Kennlinie beobachtet werden, wie es am Beispiel eines der untersuchten SQUID-Magnetometer in Abb.3.34 in Kap.3.5.3 dargestellt wird.

Bei der Untersuchung des RCSJ-Vehaltns der rf-SQUID-Kontakte wird zunächst davon ausgegangen, daß die Kontakt-Kapazität vernachlässigbar klein ist ($\beta_c \sim 0$), wie es für YBCO-Stufenkontakte häufig beobachtet wird [Fol99]. Bei tiefen Temperaturen $T < T_c$ kann ebenfalls der Rauschparameter Γ vernachlässigt werden. Zur Überprüfung des RCSJ-Verhaltens wurde daher (2.7) mit den freien Parametern I_c und R_N an die experimentellen Daten angepaßt.

![Diagramm](image)

Abb.3.31 RCSJ-Fit nach (2.7) mit $\beta_c = 0$ mit den Parametern $R_N = 24.9 \, \Omega$ und $I_c = 41 \, \mu A$ an die bei 23 K gemessene I-U-Kennlinie eines rf-SQUID.

In Abb.3.31 ist beispielhaft ein solcher sog. 'RCSJ-Fit' an die I-U-Kennlinie eines rf-SQUID bei 23 K dargestellt. Theoretische und experimentelle Werte stimmen hervorragend überein und bestätigen die Gültigkeit des Modells für die untersuchten Proben. Die leichte Verrundung der Kennlinie ist dabei auf thermische Fluktuationen zurückzuführen, die an

8 Modelle zur Beschreibung des Temperaturverhaltens des kritischen Stroms in Korngrenzenkontakten finden sich in [Moe93] und [Lui98].
dieser Stelle nicht berücksichtigt wurden. Die Ermittlung des kritischen Stroms bei tiefen Temperaturen wird dadurch aber nicht wesentlich beeinflußt.

Bei hohen Temperaturen im Bereich der Betriebstemperatur von HTSL-SQUIDs bei etwa 77 K sind thermische Fluktuationen bei der Bestimmung des kritischen Stroms hingegen nicht mehr zu vernachlässigen. Insbesondere die Ermittlung des Betriebsparameters β_L hängt aber von der Kenntnis des kritischen Stroms bei 77 K ab. Das wird im folgenden Kapitel dargelegt.

3.5.2 Bestimmung von I_c und β_L bei hohen thermischen Fluktuationen

Thermische Fluktuationen bei Temperaturen um 77 K führen zu einer starken Verrundung der I-U-Kennlinien der SQUIDs, wie es in Abb.3.32a beispielhaft zu erkennen ist. Eine direkte Bestimmung von I_c ist hier sehr schwierig oder sogar unmöglich. Um dennoch den kritischen Strom empfindlich messen zu können, wurde nicht nur die I-U-Kennlinie, sondern zusätzlich auch die erste Ableitung, d.h. die Kennlinie des differentiellen Widerstands, dU/dI, aufgezeichnet (Abb.3.32b). Aus dem differentiellen Widerstand läßt sich dann der kritische Strom des SQUID bestimmen, wie im folgenden gezeigt wird.

![Diagram](image)

Abb.3.32 I-U-Kennlinie (a) und I-dU/dI-Kennlinie (b) eines rf-SQUID bei 77 K. Die I-U-Kennlinie ist aufgrund thermischer Fluktuationen so stark verrundet, daß keine direkte Ermittlung des kritischen Stroms möglich ist. Mit der Messung des differentiellen Widerstands dU/dI ist die Bestimmung der Parameter I_c und β_L aber möglich.
Nach Likharev gilt für den Zusammenhang zwischen Strom und Spannung in einem Josephson-Kontakt in Gegenwart hoher thermischer Fluktuationen [Lik86]:

\[u = i - \frac{i}{2(i^2 + \Gamma^2)} \quad \text{für} \quad \Gamma > 1. \quad (3.14) \]

Hier bezeichnen \(u = U/(I_c R_N) \) die normierte Spannung, \(i = I/I_c \) den normierten Strom und \(\Gamma = 2\pi k_B T/\langle \Phi_0 I_c \rangle \) den Rauschparameter nach (2.8). Diese Gleichung besitzt Gültigkeit, wenn der Kontakt RCSJ-Verhalten aufweist. Dies wurde im vorangegangenen Kapitel für die untersuchten rf-SQUIDs nachgewiesen.

Wird (3.14) differenziert, so erhält man den normierten differentiellen Widerstand \(du/di \): \n
\[\frac{du}{di} = 1 - \left[\frac{1}{2(i^2 + \Gamma^2)} + \frac{i}{(i^2 + \Gamma^2)^2} \right] \quad \text{für} \quad \Gamma > 1. \quad (3.15) \]

In Abb.3.33a ist der mittels (3.15) berechnete differentielle Widerstand \(dU/dI \) in Abhängigkeit vom normierten Strom \(I/I_c \) für verschiedene Rauschparameter \(\Gamma \) in Einheiten des normalleitenden Widerstands \(R_N \) aufgetragen.

\[\text{Abb.3.33 Analytische Berechnung des differentiellen Widerstands für verschiedene Rauschparameter} \quad \Gamma \quad \text{nach} \quad (3.15) \quad (a). \text{Ermittlung von} \quad \Gamma \quad \text{durch Vergleich von Theorie und Experiment} \quad (b). \]

Mittels Variation von \(\Gamma \) als einzigem freien Parameter läßt sich die analytisch berechnete Kurve an die gemessene \(dU/dI(I) \)-Kennlinie auf einfache Weise anpassen und damit \(\Gamma \) eindeutig ermitteln [Zen00]. Dies ist in Abb.3.33b für die Probe aus Abb.3.32 gezeigt. Für
\(\Gamma = 2.3 \) läßt sich hier die beste Übereinstimmung von theoretischem und experimentellem Verlauf erzielen. Aus \(\Gamma \) ermittelt sich mit Hilfe von (2.8) der kritische Strom \(I_c \) des rf-SQUID bei 77 K.

Damit läßt sich auch der für den SQUID-Betrieb entscheidende Parameter \(\beta_L \) bei 77 K bestimmen, der sich nach (2.21) aus dem kritischen Strom und der SQUID-Induktivität mit \(\beta_L = 2\pi L_0 I_c/\Phi_0 \) ergibt (vgl. Kap.2.2.1).

Die Genauigkeit der Bestimmung von \(\beta_L \) wird im wesentlichen durch zwei Faktoren begrenzt:

- Die ungenaue Kenntnis der SQUID-Induktivität \(L_q \): Die Induktivität kann nach [Jay81] mit \(L_q = 1,25 \cdot \mu_0 \cdot d \) nur abgeschätzt werden. Eine mögliche Abweichung von diesem Wert von etwa 10% erscheint realistisch [Zha01b], so daß im Fall der untersuchten SQUID-Magnetometer eine Induktivität von etwa \(L_q = 235 \, \text{pH} \pm 20 \, \text{pH} \) resultiert.

- Der Fehler bei der Temperaturbestimmung: Der kritische Strom und damit \(\beta_L \) hängen wesentlich von der Betriebstemperatur der Probe ab. Ungenau Kenntnis der absoluten Temperatur der Probe zum Zeitpunkt der Charakterisierung führt zu einer fehlerhaften Bestimmung von \(I_c \) und damit von \(\beta_L \). Wie in Kap.3.3.3.2 anhand induktiver und resistiver Messungen der Übergangstemperatur von YBCO-Dünnsschichten nachgewiesen wurde, kann mit der verwendeten Meßapparatur die Temperatur der Probe mit einer Genauigkeit von ca. 1 K bestimmt werden. Messungen zeigten, daß eine Variation von \(\Delta T = 1 \, \text{K} \) im Temperaturbereich zwischen 76 und 80 K eine Variation des kritischen Stroms von \(\Delta I_c \approx 0.3 \, \mu A \) bewirkt.

Damit kann der Gesamtfehler bei der Bestimmung von \(\beta_L \) abgeschätzt werden. Mit \(\Delta I_c = \pm 0.3 \, \mu A \), \(\Delta L_q = \pm 20 \, \text{pH} \), \(I_q = 235 \, \text{pH} \) für das verwendete SQUID-Layout \((d = 150 \, \mu m)\) und einem typischen kritischen Strom von \(I_c = 2 \, \mu A \) bei 77 K ergibt sich mit

\[
\Delta \beta_L = \frac{2\pi}{\Phi_0} \cdot \sqrt{(I_c \cdot \Delta I_q)^2 + (I_q \cdot \Delta I_c)^2}
\]

ein Fehler von \(\Delta \beta_L = \pm 0.25 \).

Für das in Abb.3.32 und Abb.3.33b betrachtete Magnetometer folgt mit \(\Gamma = 2.3 \) für den kritischen Strom ein Wert von \(I_c = 1,4 \, \mu A \pm 0,3 \, \mu A \) und für den Betriebsparameter ein Wert von \(\beta_L = 1,0 \pm 0,25 \). Eine Zusammenfassung der wichtigsten Parameter aller vier charakterisierten SQUIDs findet sich in Tabelle 3.3 (Kap.3.5.4).

Alle Magnetometer weisen Werte von \(\beta_L < 1,5 \) auf, so daß eine Unterdrückung des kritischen Stroms durch ein äußeres Magnetfeld ebenfalls eine Unterdrückung der Transferfunktion zur Folge hat. Ein Fehler der Größenordnung \(\Delta \beta_L = \pm 0.25 \) beeinflußt diese Aussage nicht
wesentlich. Damit sind diese Sensoren zur Überprüfung des Zusammenhangs zwischen ΔB_0 und $\Delta B_{0,V}$ gut geeignet. Dieser wird in den beiden folgenden Kapiteln untersucht.

3.5.3 Die Unterdrückung des kritischen Stroms durch Magnetfelder

![Graph mit I-U-Kennlinien für B = 0 µT und B = 35 µT](image)

Für alle 4 Sensoren wurde der kritische Strom in Abhängigkeit von einem externen Magnetfeld in kleinen Meßschritten unter Verwendung eines 30 µV-Kriteriums (vgl. Kap.3.3.3.2)
aufgezeichnet. Ein Beispiel für die gemessene I_c(B)-Abhängigkeit eines rf-SQUID ist in Abb.3.35 für verschiedene Temperaturen dargestellt.

Wie nach (2.13) erwartet, beobachtet man eine einem Fraunhofer-Muster ähnliche Modulation des kritischen Stroms durch ein äußeres Magnetfeld, wie sie bereits in gleicher Weise bei der Unterdrückung der Transferfunktion festgestellt werden konnte (vgl. Kap.3.4.1).

![Graph](image)

Abb.3.35 Kritischer Strom eines rf-SQUID in Abhängigkeit eines äußeren Magnetfeldes für verschiedene Temperaturen.

Wie im vorigen Kapitel gezeigt wurde, ist die exakte Ermittlung des kritischen Stroms bei hohen thermischen Fluktuationen bei 77 K sehr aufwendig und mit Fehlern behaftet. Deshalb wurde die I_c(B)-Abhängigkeit zunächst bei tieferen Temperaturen zwischen 6 und 71 K aufgezeichnet. Wie in Abb.3.35 zu erkennen ist, ändert sich weder die Form der Kurven noch ihre Periode wesentlich. Nur der absolute Wert des kritischen Stroms nimmt mit steigender Temperatur ab, was auf die abnehmende kritische Stromdichte zurückzuführen ist (vgl. Kap.3.5.1). Der absolute Wert von I_c ist aber für die Untersuchung der Magnetfeldperiode ΔB_0 nicht relevant.

Die London-Eindringtiefe λ_L nimmt gemäß $\lambda_L(T) = \lambda_L(0) \cdot \left(1 - \frac{T}{T_c}\right)^{1/2}$ mit wachsender Temperatur zu [Buc94]. Im Fall dünner Schichten ist die Magnetfeldperiode nach (2.18) bzw. (3.9) unabhängig von der London-Eindringtiefe. Dann sollte eine Temperaturvariation auch keine Änderung der Magnetfeldperiode bewirken. Im Gegensatz dazu ist ΔB_0 im Dickschichtfall nach (2.17) bzw. (3.6) umgekehrt proportional zur Eindringtiefe, $\Delta B_0 \sim 1/\lambda_L$, so daß mit steigender Temperatur eine Reduzierung der Magnetfeldperiode erwartet werden.
kann. Sie sollte bei Änderung der Temperatur von $T = 6 \text{ K}$ auf $T = 71 \text{ K}$ etwa 25% betragen, wie sich aus der Temperaturabhängigkeit der Eindringtiefe, einer kritischen Temperatur T_c von etwa 89 K und mit (2.17) bzw. (3.6) abschätzen läßt.

Für eine systematische Untersuchung dieses Sachverhalts wurde die Magnetfeldperiode aller Magnetometer anhand der aufgezeichneten $I_c(B)$-Kurven für verschiedene Temperaturen bestimmt. In Abb.3.36 ist die Magnetfeldperiode der 4 Sensoren gegen die Temperatur aufgetragen. Es kann im Rahmen der Meßgenauigkeit keine Abhängigkeit von der Temperatur festgestellt werden. Eine mögliche Abnahme der Magnetfeldperiode liegt mit Sicherheit weit unterhalb von 25%. Dies deutet zum einen auf die Gültigkeit des Dünnschichtfalls hin und bestätigt damit indirekt, daß die in Kap.3.4.4 beobachtete Feldüberhöhung auf die inhomogene Verteilung der magnetischen Flußdichte im SQUID-Loch zurückzuführen ist, die mit (3.9) erfaßt wird. Zum anderen kann somit die Bestimmung von ΔB_0 in zufriedenstellender Weise bei tiefen Temperaturen vorgenommen werden.

![Diagram](image)

Abb.3.36 Magnetfeldperiode des kritischen Stroms aufgetragen gegen die Temperatur für 4 rf-SQUIDs, gekennzeichnet durch unterschiedliche Symbole.

3.5.4 Korrelation zwischen der Magnetfeldabhängigkeit der Transferfunktion und des kritischen Stroms im rf-SQUID

In diesem Abschnitt wird der Zusammenhang zwischen der Magnetfeldperiode ΔB_0 des kritischen Stroms und der Magnetfeldperiode $\Delta B_{0,V}$ der Transferfunktion untersucht, dessen Kenntnis wichtige Voraussetzung für die Anwendbarkeit der in Kap.3.2 abgeleiteten Gleichungen darstellt.
Abb. 3.37 Vergleich der Magnetfeldabhängigkeit der Transferfunktion V_{pp} und des kritischen Stroms I_c von zwei verschiedenen rf-SQUIDs: $V_{\text{pp}}(B)$-Messungen bei 77 K (a und b); $I_c(B)$-Messungen derselben SQUIDs nach Öffnung des SQUID-Rings (c und d).

In Abb. 3.37 ist die Magnetfeldabhängigkeit der Transferfunktion, $V_{\text{pp}}(B)$, von zwei verschiedenen rf-SQUIDs im Vergleich zu $I_c(B)$-Messungen derselben SQUIDs nach Öffnung des SQUID-Rings gezeigt. Die Werte der Magnetfeldperioden ΔB_0 und $\Delta B_{0,V}$ zeigen für beide Proben jeweils eine gute Übereinstimmung. Auch die Verläufe der entsprechenden $V_{\text{pp}}(B)$- und $I_c(B)$-Kurven einschließlich der Verteilung der Nebenmaxima weisen eine verhältnismäßig gute Übereinstimmung auf. Ähnliche Ergebnisse wurden für die übrigen Proben gefunden. Eine vergleichende Zusammenfassung der untersuchten Parameter der 4 Sensoren ist in Tabelle 3.3 wiedergegeben.

Auffällig ist die Tatsache, daß die Magnetfeldabhängigkeit der Transferfunktion bei beiden Sensoren ein kleines Plateau im Hauptmaximum aufweist (Abb. 3.37a und b). Dies sollte eigentlich darauf hindeuten, daß der Betriebsparameter β_L etwas zu groß ist. Das wurde aber im Fall der hier charakterisierten SQUIDs durch die Bestimmung von β_L mit Werten < 1,5 in

<table>
<thead>
<tr>
<th>Probe</th>
<th>w [μm]</th>
<th>I_c [μA] bei 77K</th>
<th>β_L bei 77K</th>
<th>$\Delta B_{0,v}$ [μT] $V_{s,pp}(B)$</th>
<th>ΔB_0 [μT] $I_c(B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>JSA12</td>
<td>2,7</td>
<td>2,1</td>
<td>1,4</td>
<td>12,7 ± 1,0</td>
<td>14,2 ± 1,0</td>
</tr>
<tr>
<td>JSA13</td>
<td>1,9</td>
<td>1,3</td>
<td>0,9</td>
<td>32,6 ± 1,5</td>
<td>32,8 ± 1,5</td>
</tr>
<tr>
<td>JS1712</td>
<td>1,4</td>
<td>1,4</td>
<td>1,0</td>
<td>59,5 ± 3,0</td>
<td>56,0 ± 3,0</td>
</tr>
<tr>
<td>JS2012</td>
<td>1,1</td>
<td>2,1</td>
<td>1,4</td>
<td>105,0 ± 5,0</td>
<td>93,0 ± 5,0</td>
</tr>
</tbody>
</table>

Tabelle 3.3 Vergleich der untersuchten SQUID-Parameter. Die Fehler bei der Ermittlung von I_c und β_L bei 77 K liegen bei $\Delta I_c = ± 0,3$ μA bzw. $\Delta \beta_L = ± 0,25$.

Durch Vergleich der Magnetfeldabhängigkeit $V_{s,pp}(B)$ der Transferfunktion und der Magnetfeldabhängigkeit $I_c(B)$ des kritischen Stroms von mehreren rf-SQUID-Magnetometern wurde eine gute Übereinstimmung der entsprechenden Magnetfeldperioden $\Delta B_{0,v}$ und ΔB_0 nachgewiesen. Diese Übereinstimmung wird bestätigt durch die Tatsache, dass der SQUID-Parameter β_L aller vier charakterisierten Sensoren nicht viel größer als ~1 ist. In diesem Fall führt eine Reduktion des kritischen Stroms auch zu einer Reduktion der Transferfunktion.

Sind also die rf-SQUID-Sensoren auf ihren optimalen Arbeitsbereich eingestellt, so können die Gleichungen, die in den vorangegangenen Kapiteln für die Magnetfeldperiode ΔB_0 des kritischen Stroms abgeleitet wurden, für die Ermittlung der erwarteten Magnetfeldperiode
$\Delta B_{0,Y}$ der Transferfunktion eingesetzt werden. Dies ist entscheidend, da die Transferfunktion und nicht der kritische Strom letztendlich das Stabilitätskriterium für den SQUID-Betrieb in externen Magnetfeldern darstellt. Damit ist die Festlegung eines geeigneten Sensor-Layouts mit entsprechender Kontaktbreite und effektiver Sensorfläche in Abhängigkeit von einem externen Magnetfeld möglich.

3.6 Fazit

Im Rahmen dieses Kapitels, das den Schwerpunkt der vorliegenden Arbeit bildet, wurde der Einfluß externer Magnetfelder auf die Fluß-zu-Spannungs-Transferfunktion und damit auf die Betriebsstabilität von HTSL-rf-SQUID-Magnetometern systematisch untersucht. Auf diese Weise wurde die Ermittlung geeigneter Sensorparameter für den Betrieb in externen Magnetfeldern ermöglicht.

Der kritische Strom in einem Josephson-Kontakt wird durch ein äußeres Magnetfeld aufgrund des Eindringens von Josephson-Flußwirbeln einem Fraunhofer-Muster ähnlich mit der Periode ΔB_0 moduliert. Dies führt zu einer Beeinflussung des SQUID-Parameters β_L und damit der Transferfunktion des rf-SQUID. Eine möglichst große Magnetfeldperiode ΔB_0 ist für einen stabilen Betrieb in externen Magnetfeldern wünschenswert.

Berechnungen der Magnetfeldperioden wurden auf der Basis der Unterdrückung des kritischen Stroms in planaren Josephson-Kontakten unter der Berücksichtigung der flußfokussierenden Wirkung des SQUID-washers durchgeführt (Kap.3.2). Die Rechnungen zeigten, daß – und in welchem Maße – eine Erhöhung der Magnetfeldperiode ΔB_0 des kritischen Stroms im rf-SQUID bei gegebener effektiver Sensorfläche durch eine Reduzierung der Kontaktbreite erreicht werden kann.

Zur systematischen Untersuchung dieses Sachverhalts wurden sowohl rf-washer-SQUIDs mit schmalen Kontaktbreiten (Tabelle 3.1) als auch rf-washer-SQUIDs mit koplanaren Resonatoren mit unterschiedlichen effektiven Flächen (Tabelle 3.2) im Magnetfeld charakterisiert. Im Rahmen der Arbeit wurden dazu Meßplätze zur Charakterisierung der Transferfunktion und des kritischen Stroms aufgebaut bzw. erweitert (Kap.3.3).

Zunächst wurde das Magnetfeldverhalten der Transferfunktion untersucht. Sie stellt die charakteristische Größe für den SQUID-Betrieb dar. Es zeigte sich, daß die Amplitude der

9 *ist keine exakte Bestimmung des SQUID-Parameters β_L notwendig, so läßt sich ohne Zerstörung des Sensors abschätzen, ob das jeweilige β_L wesentlich zu groß ist. Dann führt nämlich eine Erwärmung der Probe durch Herausnahme aus dem flüssigen Stickstoff mit einer Reduktion von I_c zu einer Vergrößerung der Transferfunktion, was am Oszilloskop beobachtet werden kann. Desweiteren sollte bei einem zu großen β_L das Maximum der $V_{pp}(B)$-Kurve nicht bei $B = 0$ liegen (vgl. das Beispiel in Abb.3.18b).*
Transferfunktion durch ein externes Magnetfeld einem Fraunhofer-Muster ähnlich mit der Periode $\Delta B_{0,V}$ moduliert wird (Kap. 3.4.1). Die Unterdrückung der Transferfunktion ist dabei eng mit einem Anstieg des weißen Flußrauschens korreliert. Es konnte, bezogen auf das äußere Magnetfeld B_{ext} mit (3.10) ein Kriterium für die notwendige Magnetfeldperiode $\Delta B_{0,V}$ gefunden werden, bei welcher ein signifikanter Anstieg des Flußrauschens vermieden wird (Kap. 3.4.2).

Durch Variation der Sensorflächen konnte die vorausgesagte $1/A_{eff}$-Abhängigkeit der Magnetfeldperiode experimentell nachgewiesen werden (Kap. 3.4.3). Höhere effektive Flächen, d.h. eine höhere Feldempfindlichkeit, führen zu einer kleineren Magnetfeldperiode und damit zu einer geringeren Magnetfeldstabilität.

Die Messungen der Magnetfeldperiode der Transferfunktion von rf-washer-SQUIDs mit unterschiedlichen Kontaktbreiten zwischen $w = 0,7$ und $w = 3 \mu m$ zeigten eine klare $1/w^2$-Abhängigkeit. Schmale Kontakte erhöhen danach die Magnetfeldstabilität erheblich (Kap. 3.4.4).

In Bezug auf Magnetfelder parallel zur Sensorfläche verhalten sich rf-SQUID-Sensoren wie isolierte Stufenkontakte. Aufgrund der planaren washer-Struktur beeinflusst nur die senkrechte Komponente eines äußeren Magnetfeldes die SQUID-Funktion wesentlich (Kap. 3.4.5).

Durch die direkte Messung des kritischen Stroms nach Öffnung des SQUID-Rings konnte eine Übereinstimmung zwischen der Unterdrückung der Transferfunktion und der Unterdrückung des kritischen Stroms im rf-SQUID nachgewiesen werden (Kap. 3.5). Dies wurde für Magnetometer gezeigt, die mit einem Betriebsparameter von $\beta_L < 1,5$ in etwa auf ihren optimalen Arbeitsbereich eingestellt waren, so daß eine Reduktion von I_c auch zu einer Reduktion der Transferfunktion führte. Insbesondere konnte ein indirekter Nachweis für die Gültigkeit des Modells für dünne Schichten (Kap. 3.2) im Fall der charakterisierten rf-SQUIDs erbracht werden: Die Magnetfeldperiode ΔB_0 ist in diesem Modell unabhängig von der London-Eindringtiefe; die deshalb erwartete Temperaturunabhängigkeit von ΔB_0 wurde verifiziert. Diese Untersuchungen wurden wegen der notwendigen Zerstörung der SQUIDs erst nach der Charakterisierung der Transferfunktion durchgeführt. Die Übereinstimmung von ΔB_0 und $\Delta B_{0,V}$ bestätigte in zufriedenstellender Weise, daß die in Kap. 3.2 für die Magnetfeldabhängigkeit des kritischen Stroms abgeleiteten Gleichungen auch für die Transferfunktion Gültigkeit besitzen.

Mittels Vergleich der experimentellen Daten mit Modellvorhersagen wurde die aus der inhomogenen Flußdichteverteilung im SQUID-Loch resultierende Feldüberhöhung am Josephson-Kontakt zu $B_W/B_M \sim 2,2$ abgeschätzt. Damit kann mittels (3.9) die geeignete Kontaktbreite in Abhängigkeit von der effektiven Sensorfläche für den stabilen Betrieb in einem gegebenen externen Magnetfeld bestimmt werden. Für die drei in Kap. 3.4.3 untersuchten Sensorkonfigurationen (Tabelle 3.2) ist in Abb. 3.38 zusammenfassend die nach (3.9) berechnete Kontaktbreite gegen die Magnetfeldperiode der Transferfunktion aufgetragen. Mit dem Kriterium (3.10) ergibt sich für den Betrieb im Erdmagnetfeld eine
erforderliche Periode von etwa 100 μT. Demnach ist eine Kontaktbreite des rf-SQUID von 1,1 μm notwendig, um im Erdfeld einen stabilen Betrieb ohne signifikanten Anstieg des weißen Flußrauschens zu ermöglichen. Verwendet man koplanare Resonatoren mit einem Durchmesser von 8,5 mm (SR1) oder 13,4 mm (SR2), so sinkt die erforderliche Kontaktbreite auf 0,7 μm bzw. 0,6 μm.

![Diagram](image)

Abb. 3.38 Breite des Josephson-Kontakts des rf-SQUID aufgetragen gegen die Magnetfeldperiode für die drei Sensorconfigurationen aus Tabelle 3.2 für das SQUID-Layout mit \(d = 150 \mu m \), berechnet nach (3.9) mit \(B_{th}/B_M = 2,2 \).

Gelegentlich stellt man fest, daß ein rf-SQUID-Sensor 'magnetisch stabil' ist, obwohl sein Kontakt geometrisch breit ist. Dies kann auf stark inhomogene Stromdichteverteilungen im Stufenkontakt und eine somit reduzierte effektive Kontaktbreite zurückgeführt werden (Kap. 3.4.4). Für die Reproduzierbarkeit von magnetisch stabilen rf-SQUIDs ist jedoch die Strukturierung schmaler Kontakte unumgänglich.
Kapitel 4

Störsignalreduktion beim Betrieb von HTSL-SQUID-Systemen

4.1 Zielsetzung

Im allgemeinen werden Messungen des Herzmagnetfeldes zur Reduktion von magnetischen Störsignalen innerhalb magnetischer Abschirmkammern durchgeführt [Str98, Mül99]. Die hohen Kosten derartiger Kabinen (vgl. Kap.2.3.1) beschränken die MKG-Anwendung auf wenige Forschungseinrichtungen und Kliniken. Dies ist einer der Gründe, weshalb sich die Magnetokardiographie in der routinemäßigen Diagnostik noch nicht hat durchsetzen können [Str98]. Es ist daher wünschenswert, Magnetokardiogramme außerhalb magnetischer Abschirmung aufzuzeichnen. Zu diesem Zweck sind verschiedene HTSL-SQUID-Gradiometer 1. und 2. Ordnung entwickelt worden [Tav93, Bor97a, Wei97, Bor99, Kou99, Lud00, Pan00, Zha00], die gegenüber konventionellen SQUID-Gradiometern aus Tieftemperatursupraleitern den Vorteil geringerer Betriebskosten aufgrund der einfacheren Kühlung mit flüssigem Stickstoff aufweisen.

Die Grenzen herkömmlicher Gradiometrie

HTSL-SQUID-Gradiometer für die Magnetokardiographie bestehen aufgrund der erforderlichen großen Basislänge zumeist aus einer Kombination aus Meß- und Referenzsensoren (vgl. Kap.2.3.3). Entscheidend für eine effiziente Unterdrückung von Störsignalen ist die Balancierung der GradiometerSysteme (vgl. Kap.2.3.4). Dazu werden in der konventionellen Software- und in der elektronischen Gradiometrie die Balancierungskoeffizienten zwischen Meß- und Referenzsensoren im Rahmen einer Systemkalibrierung einmal ermittelt und sind während der eigentlichen Messung konstant [Vrb96]. Zur Bestimmung der Koeffizienten gibt es zwei mögliche Vorgehensweisen:

Methode (i): Die Koeffizienten können - z.B. im Feld einer Helmholtzspule - derart ermittelt werden, daß homogene Magnetfelder und (für Gradiometer n-ter Ordnung) Gradientenfelder niedrigerer Ordnung am Ort des Meßsensors optimal unterdrückt werden [Tav93, Bor97a, Sha00].

Methode (ii): Ebenfalls möglich ist eine adaptive Balancierung, d.h. die Abstimmung der Koeffizienten auf die entsprechende Störumgebung. Dabei werden unabhängig von der Art der Gradientenfelder alle Störsignale berücksichtigt [Rob89, Vrb96, Pan00]. Dazu paßt man
die Koeffizienten k_i im Zeitbereich ohne anliegendes Nutzsignal - also vor der eigentlichen Messung - so an, daß das rechnerisch resultierende Signal $s = a - \Sigma k_i b_i$ minimal wird [Rob89], wobei a das Signal des Meßsensors und b_i das Signal des i-ten Referenzsensors bezeichnen. Der Charakter der Störungen darf sich jedoch während der eigentlichen Messung des Nutzsignals nicht verändern, da die Koeffizienten nicht zeitlich angepaßt auf die Störumgebung (zeitlich adaptiv) ermittelt werden.

Die Unterschiede der beiden Balancierungsmethoden sind in [Pan00] am Beispiel eines axialen HTSL-SQUID-Gradiometers 1. Ordnung, bestehend aus einem Meßsensor und 3 orthogonalen Referenzsensoren, außerhalb magnetischer Abschirmung untersucht worden. In Abb.4.1 ist das Ergebnis dargestellt. Deutlich ist zu erkennen, daß die Unterdrückung der externen Störfelder (Abb.4.1a) nach Balancierung auf homogene Magnetfelder gemäß Methode (i) wesentlich geringer ist (Abb.4.1b), als nach adaptiver Balancierung gemäß Methode (ii) (Abb.4.1c). Grund sind Gradientenstörfelder höherer Ordnung, die von einem Gradiometer 1. Ordnung, das in einem homogenen Magnetfeld balanciert wurde, nicht unterdrückt werden können. Der Vorteil der adaptiven Balancierung bleibt nur erhalten, solange sich der Charakter der Störungen zeitlich nicht ändert 1 [Pan00].

![Graph](image.png)

Abb.4.1 Vergleich unterschiedlicher Balancierungsverfahren: Die spektrale Rauschdichte externer Störungen in ungeschirrter Laborumgebung (a) wird durch ein Gradiometer 1. Ordnung, das in einem homogenen Magnetfeld balanciert worden ist, schlechter unterdrückt (b) als nach adaptiver Balancierung (c), nach [Pan00].

In [Pan00] wurde ebenfalls festgestellt, daß eine optimale Balancierung entweder nur für niederfrequente Störungen < 50 Hz oder nur für Störungen bei der Netzfrequenz (50 Hz) und

1 Der Charakter der Störungen kann z.B. durch eine Veränderung der Position der Störquellen varieren.
Harmonischen erreicht werden kann. Ursache ist der hohe Gradientanteil diskreter Störer, die sich in geringer Entfernung vom Meßsystem befinden, typischerweise Netzleitungen (50 Hz) und Computermonitor (typische vertikale Bildwiederholfrequenz: 75 oder 90 Hz). Je nach Position und Art der Störquellen können also bei verschiedenen Frequenzen unterschiedliche Gradienten am Ort des Meßsystems anliegen.

Wünschenswert ist also einerseits eine Ermittlung von frequenzabhängigen Koeffizienten $k(f)$. Da der Charakter der Störungen während der Messung erheblich variieren kann, ist es zudem erforderlich, die Balancierungskoeffizienten zeitlich adaptiv während der eigentlichen Messung zu bestimmen.

Unter Berücksichtigung dieser Überlegungen ist von Rüders et al. das Verfahren der frequenzabhängigen Gradiometrie (Frequency Dependent Gradiometry, FDG) entwickelt worden [Rüd97]. Im folgenden wird zunächst das Prinzip der FDG-Methode vorgestellt. Die grundsätzlichen Vorteile und die freien Parameter des Verfahrens werden erläutert (Kap.4.2). Die Methode wird am Beispiel der Aufzeichnung von Magnetokardiogrammen eingehend in magnetisch störrämer (Kap.4.3) und magnetisch stark gestörter Umgebung (Kap.4.4) charakterisiert. Zu diesem Zweck wurden HTSL-rf-SQUID-Systeme verwendet, die zur Zeit bgl. ihrer Störsignalunterdrückung und ihren Magnetfeldempfindlichkeiten den Stand der aktuellen Forschung in der HTSL-Technologie darstellen. Ein Vergleich der konventionellen Gradiometrie mit festen Balancierungskoeffizienten und der frequenzabhängigen Gradiometrie zeigt Vor- und Nachteile beider Verfahren auf.

4.2 Das Verfahren der frequenzabhängigen Gradiometrie (FDG)

4.2.1 Das Prinzip des Verfahrens

Ziel des Verfahrens ist die Bestimmung von frequenzabhängigen Balancierungskoeffizienten zwischen Meß- und Referenzsensoren während der Messung des Nutzsignals, um den in Kap.4.1 beschriebenen Nachteilen der herkömmlichen Gradiometrie Rechnung zu tragen.

Zunächst werden die zeitlich synchron gemessenen Zeitreihen von Meß- und Referenzsensoren in eine Frequenzdarstellung transformiert. Dazu werden die Zeitreihen in sich zur Hälfte überlappende Zeitintervalle eingeteilt und jedes Intervall nach Multiplikation mit einem Hanning-Fenster fouriertransformiert. Dabei legen die Rate, mit der das Signal abgetastet wird (typisch 1 kHz) und die Länge des Zeitsfensters (typisch 1024 Datenpunkte mit einer

2 Eine detaillierte Beschreibung der Fouriertransformation und der verschiedenen Formen der Fenstermultiplikation findet sich in [Pre92].
Überlappung von 512 Datenpunkten, d.h. 1,024 s) die niedrigste enthaltene und die nach Nyquist höchste auflösbare Frequenz \(f \), d.h. die betrachtete Signalbandbreite fest [Pre92]. In diesem Fall (1024 Datenpunkte bei einer Abtastrate von 1 kHz) gilt: 0,98 Hz < \(f \) < 500 Hz.

Für jedes der Zeitfenster liegen nun die komplexen Amplituden der Signale von Meßsensor, \(a(f) \), und Referenzsensoren, \(b_j(f) \), mit

\[
a(f) = |a(f)| \cdot e^{i\varphi(f)} \quad \text{und} \quad b_j(f) = |b_j(f)| \cdot e^{i\psi_j(f)}
\]

für jede Frequenz \(f \) vor, wobei \(j \) den \(j \)-ten Referenzsensor und \(\varphi(f) \) und \(\psi_j(f) \) die entsprechenden Phasen bezeichnen. Liegt gleichzeitig ein Nutzsignal an, so sind Stör- und Nutzsignalanteile zu unterscheiden. Seien \(a_{\text{st}}(f) \) und \(b_{\text{st}}(f) \) die Amplituden der Störsignale und \(a_{\text{m}}(f) \) und \(b_{\text{m}}(f) \) die Amplituden des Nutzsignals in den jeweiligen Sensoren. Sei weiterhin mit \(k_{\text{stj}}(f) \) das Verhältnis der Störsignale und mit \(k_{\text{mj}}(f) \) das Verhältnis des Nutzsignals im Meß- und im \(j \)-ten Referenzsensor bezeichnet:

\[
k_{\text{stj}}(f) = \frac{a_{\text{st}}(f)}{b_{\text{st}}(f)}, \quad k_{\text{mj}}(f) = \frac{a_{\text{m}}(f)}{b_{\text{m}}(f)}.
\]

(4.2)

Dann läßt sich die Amplitude des Nutzsignals \(a_{\text{m}}(f) \) im Frequenzraum mittels

\[
a_{\text{m}}(f) = \frac{k_{\text{mj}}(f)}{k_{\text{mj}}(f) - k_{\text{stj}}(f)} \cdot \left(a(f) - k_{\text{stj}}(f) \cdot b_j(f) \right)
\]

(4.3)

für jedes Zeitfenster berechnen, wenn die Koeffizienten \(k_{\text{stj}}(f) \) und \(k_{\text{mj}}(f) \) bekannt sind. Dabei stellen die Faktoren \(k_{\text{stj}} \) gerade die Balancierungskoeffizienten dar, die in der herkömmlichen Gradiometrie frequenzunabhängig vor der eigentlichen Messung ohne anliegendes Nutzsignal ermittelt werden. Unter der Annahme, daß überhaupt kein Nutzsignal in den Referenzsensoren enthalten ist (d.h. sie sind unendlich weit von der Quelle entfernt, \(k_{\text{mj}} \to \infty \)), reduziert sich (4.3) auf \(a_{\text{m}}(f) = a(f) - k_{\text{stj}}(f) \cdot b_j(f) \).

Die Vorgehensweise bei der Anwendung des FDG-Verfahrens läßt sich kurz zusammenfassen: Die auszuwertenden Zeitreihen von Meß- und Referenzsensoren werden zunächst in Frequenzdarstellungen konvertiert. Im Frequenzraum werden die entsprechenden Koeffizienten berechnet (Kap.4.2.2), anschließend wird ebenfalls im Frequenzraum mittels (4.3) die Korrektur der Signale des Meßsensors vorgenommen und schließlich die so korrigierte Frequenzdarstellung mittels inverser Fouriertransformation zurück in die Zeitreihe konvertiert.

Die Vorgehensweise bei der Berechnung der erforderlichen frequenzabhängigen Koeffizienten wird im folgenden Abschnitt beschrieben.
4.2.2 Bestimmung der frequenzabhänfigen Koeffizienten

Die nach Fouriertransformation für jedes Zeitfenster vorliegenden komplexen Signalamplituden setzen sich allgemein aus dem Nutzsignal, dem Störsignal und dem intrinsischen Rauschen des Meßsystems zusammen: \[a = a_m + a_{st} + a_r \text{ bzw. } b_j = b_{mj} + b_{sj} + b_{rj}. \] Hier und im folgenden seien alle betrachteten Größen frequenzabhängig zu verstehen. Um die unterschiedlichen Signalanteile mit ausreichender Genauigkeit bestimmen und damit die Berechnung der Koeffizienten nach (4.2) vornehmen zu können, muß über mehrere Zeitfenster gemittelt werden. Mittelt man aber die komplexen Fourieramplituden, so führt diese Mittelung zur Abschwächung bis hin zur Eliminierung aller Signale, deren (absolute) Phase sich von Zeitfenster zu Zeitfenster – z.B. aufgrund von Phasensprüngen – ändert.

Der Lösungsansatz besteht darin, nur auf Informationen zurückzugreifen, die von der absoluten Phase der Sensorsignale unabhängig sind. Aus diesem Grunde werden vor der Mittelung komplexe Amplitudenprodukte der Form

\[a \cdot b^* = |a| \cdot e^{i\phi} \cdot |b| \cdot e^{-i\psi} = |a| \cdot |b| \cdot e^{(\phi-\psi)} \quad (4.4) \]

gebildet, die nicht mehr von der absoluten Phase sondern nur noch von der Phasendifferenz abhängen. Hier bezeichnet das komplexe konjugierte Element. Entscheidend ist, daß nur die Signale, die in den Sensoren phasenkorreliert auftreten, eine feste Phasendifferenz aufweisen, die unabhängig ist vom gewählten Zeitfenster. Mit diesem Ansatz bleibt nach Mittelung über die Zeitfenster nur die gewünschte Information über die phasenkorrelierten Signale erhalten. Die gesuchten Koeffizienten sind gerade die Verhältnisse der Signale, die phasenkorreliert in Meß- und Referenzsensor auftreten.

Da Nutzsignal, Störsignale und Rauschen nicht miteinander korreliert sind, entfallen bei der Mittelung alle Mischprodukte der Form \[a_m a_r^*, a_{st} a_m^* \text{ und } a_m a_r^* \text{.} \] Da die intrinsischen Rauschbeiträge unterschiedlicher Sensoren ebenfalls nicht korreliert sind, entfallen auch Produkte der Form \(a_r b_r^* \). Es resultiert (nach Mittelung über die Zeitfenster) das folgende Gleichungssystem:

\[a \cdot a^* = a_m \cdot a_m^* + a_{st} \cdot a_{st}^* + a_r \cdot a_r^* \]
\[b_j \cdot b_j^* = b_{mj} \cdot b_{mj}^* + b_{sj} \cdot b_{sj}^* + b_{rj} \cdot b_{rj}^* \]
\[a \cdot b_j^* = a_m \cdot b_{mj}^* + a_{st} \cdot b_{sj}^* \]
\[b_j \cdot b_l^* = b_{mj} \cdot b_{ml}^* + b_{sj} \cdot b_{sl}^* \quad \text{für } j \neq l. \quad (4.5) \]

\[\text{Die vollständige Liste der Mischprodukte lautet } a_m a_r^*, a_{st} a_m^*, a_m a_r^*, a_r b_r^*, a_{st} b_r^*, a_m b_r^*, a_m b_{st}^*, a_r b_{st}^*, a_r b_m^*, b_r b_r^*, b_r b_{st}^* \text{ und } b_m b_r^*. \]
An dieser Stelle sei noch einmal betont, daß alle Werte frequenzabhängig sind, und sich die Gleichungen erst nach Mittelung über die Zeitfenster ergeben. Zur eindeutigen Lösung des Gleichungssystems (4.5) sind 4 Referenzsensoren, d.h. insgesamt 5 Sensoren notwendig, wie man sich leicht verdeutlicht: Jedes Sensorsignal beinhaltet Nutzsignal, Störsignal und Rauschen, d.h. es liegen 15 unbekannte Größen vor. Demgegenüber lassen sich aus jedem gemessenen Sensorsignal das Betragssquadrat (z.B. \(a \cdot a^*\)), also insgesamt 5 Gleichungen, sowie die Produkte mit den übrigen Sensorsignalen (z.B. \(a \cdot b_j^*\)), d.h. zusätzlich 10 Gleichungen bilden. Dies entspricht 15 Gleichungen für 15 unbekannte Größen.

Im allgemeinen stehen 4 Referenzsensoren aber nicht zur Verfügung. Dagegen ist es häufig erforderlich, mit nur einem Referenzsensor die Unterdrückung von Störsignalen vorzunehmen [Zha98]. Für diesen Fall sind Vorkenntnisse über das verwendete Meßsystem und das Nutzsignal notwendig. Das zugrundeliegende Gleichungssystem lautet hier:

\[
\begin{align*}
 a \cdot a^* &= a_m \cdot a_m^* + a_{st} \cdot a_{st}^* + a_r \cdot a_r^* \\
 b \cdot b^* &= b_m \cdot b_m^* + b_{st} \cdot b_{st}^* + b_r \cdot b_r^* \\
 a \cdot b^* &= a_m \cdot b_m^* + a_{st} \cdot b_{st}^*
\end{align*}
\]

4.6

Es stehen also 3 Gleichungen zur Verfügung, um insgesamt 6 unbekannte Größen zu bestimmen, nämlich jeweils Rauschen, Nutzsignal und Störsignal im Meß- und im Referenzsensor. Deshalb werden 3 zusätzliche Informationen bzw. Voraussetzungen benötigt:

1. Das Verhältnis der Rauschamplituden zwischen Meß- und Referenzsensor, \(a/b_r\), muß bekannt sein. Es kann auf einfache Weise über die Messung des magnetischen Feldrauschens der Einzelkanäle im Rahmen der Systemkalibrierung bestimmt werden.

2. Das Verhältnis der Nutzsignalanteile in Meß- und Referenzsensor, d.h. der Koeffizient \(k_m\), muß bekannt sein. Eine einfache Abschätzung läßt sich z.B. vornehmen, wenn die Entfernung der Sensoren von der Nutzsignalquelle bekannt ist. Wie später gezeigt wird (Kap.4.3), ist die genaue Kenntnis von \(k_m\) jedoch von untergeordneter Bedeutung.

3. Im Referenzsensor ist der Störsignalanteil wesentlich größer als der Nutzsignalanteil: \(b_m \ll b_{st}\). Diese Bedingung ist nahezu immer erfüllt, da i.a. bereits die Nutzsignalamplitude im Meßsensor wesentlich größer als die Amplitude der Störsignale ist.

Unter diesen Voraussetzungen läßt sich das Gleichungssystem (4.6) lösen [Rüd97], und der gesuchte Balancierungskoeffizient \(k_{st}\) zwischen Meß- und Referenzsensor kann für jede Frequenz mit Hilfe der berechneten Produkte, die von der absoluten Phase unabhängig sind, bestimmt werden:

\[
k_{st} = \frac{a_{st}}{b_{st}} = \frac{a_{st} \cdot b_{st}^*}{b_{st} \cdot b_{st}^*} = \frac{a_{st} \cdot b_{st}^*}{|b_{st}|^2}.
\]

4.7

4.2.3 Die freien Parameter des Verfahrens

Die Vor- und Nachteile der FDG-Methode hängen eng mit frei wählbaren Parametern des Verfahrens, dem Fehlerkriterium σ_K, der Adaptivität τ_A sowie der Grenzfrequenz f_L zusammen, die im folgenden beschrieben werden:

(i) Das Fehlerkriterium σ_K: Ein grundsätzlicher Vorteil des FDG-Verfahrens besteht in der Möglichkeit, das Signal des Meßsensors mittels (4.3) nicht auf der gesamten Frequenzbandbreite, sondern nur bei den Frequenzen zu korrigieren, bei denen tatsächlich Störsignale existieren. Dann wird das Rauschen des Referenzsensors nur bei diesen diskreten Frequenzen zum Rauschen des Meßsensors addiert. Für den Fall, daß die Rauschamplituden von Meß- und Referenzsensor gleich groß sind, ergibt sich nach (2.38) eine Rauschreduzierung um bis zu einem Faktor $\sqrt{2}$ gegenüber der herkömmlichen Gradiometrie, bei der die Verrechnung der Signale über der ganzen Frequenzbandbreite vorgenommen wird. Um nun festzustellen, bei welcher Frequenz eine Korrektur erforderlich ist, wird nach Mittelung über die Zeitfenster die Standardabweichung der Koeffizienten berechnet. Per Definition gilt ein Störsignal dann als detektiert, wenn die Standardabweichung des entsprechenden Koeffizienten unterhalb einer zuvor festgelegten, frei wählbaren Schranke, dem Fehlerkriterium σ_K, liegt, d.h. wenn der Koeffizient mit ausreichender Genauigkeit, also niedriger Standardabweichung, bestimmt werden konnte.\(^4\) Das Kriterium wird in Prozent der Amplitude des Koeffizienten angegeben. Faktoren mit einer größeren Standardabweichung werden gleich Null gesetzt. Das Referenzsignal wird bei diesen Frequenzen nicht vom Meßsignal subtrahiert, und es resultiert eine Reduzierung des Gesamtrauschens.

(ii) Die Adaptivität τ_A: Die Ermittlung der Koeffizienten wird anhand der Zeitreihen vorgenommen, die bei anliegendem Nutzsignal aufgezeichnet wurden. Somit wird der aktuellen Störungseigenschaft Rechnung getragen. Dies ist bereits ein Vorteil gegenüber herkömmlicher Gradiometrie, bei der die Balancierungs-koefizienten vor der eigentlichen Messung bei der Systemkalibrierung bestimmt werden müssen [Tav93, Vrb96, Bor97b, Lud00]. Da sich

\(^4\) Ist die Standardabweichung eines Koeffizienten für eine bestimmte Frequenz z.B. sehr groß, so existiert bei der entsprechenden Frequenz entweder gar kein diskretes Störsignal, sondern nur das weiße Rauschen der Meßsensoren, oder der Charakter des Störsignals variiert erheblich in der Zeit. In diesem Fall ist es sinnvoll, das Referenzsignal nicht (mittels eines stark fehlerbehaf teten Koeffizienten) vom Meßsignal zu subtrahieren. Die Folgen eines zu groß gewählten Fehlerkriteriums werden in Kap. 4.4.3 analysiert.
jedoch auch während der Messung der Charakter der Störsignale ändern kann, ist es vorteilhaft, innerhalb von kürzeren Zeitintervallen der Länge $\tau_A < T$ (T = gesamte Meßdauer) eine Neuermittlung der Koeffizienten vorzunehmen. Idealerweise kennt man die entsprechenden Faktoren zu jedem Zeitpunkt. Dies ist nicht möglich, da zu ihrer Berechnung die komplexen Amplitudenprodukte über mehrere Zeitfenster gemittelt werden müssen (Kap.4.2.2). Dabei führt eine große Anzahl von Mittelungen (τ_A groß) zwar zu einer hohen Genauigkeit der Koeffizienten, aber nur dann, wenn sich der Charakter der Störungen innerhalb dieses Zeitraums nicht ändert. Eine geringe Anzahl von Mittelungen (τ_A klein) hingegen führt zwar zu einer verbesserten Anpassung der Koeffizienten an die Störumgebung, jedoch ebenfalls zu einer größeren Standardabweichung. Es sollte demnach für den frei wählbaren Parameter τ_A in Abhängigkeit von der jeweiligen Störumgebung einen optimalen Wert geben, der zu einer bestmöglichen Unterdrückung der Störsignale führt. Dieser Sachverhalt wird detailliert in Kap.4.4.3 untersucht.

Wie in Kap.4.4.3 gezeigt wird, ist die geeignete Festlegung der hier beschriebenen freien Parameter des Verfahrens eine wichtige Voraussetzung für eine effiziente Unterdrückung der magnetischen Störsignale.

4.2.4 Die Vorgehensweise bei Anwendung des Verfahrens

Im folgenden seien die wesentlichen Schritte bei Anwendung des FDG-Verfahrens zusammengefaßt:

1. Einteilung der Zeitreihen von Meß- und Referenzsensoren in sich überlappende Zeitfenster und anschließende Fouriertransformation.

2. Produktbildung der komplexen Signalamplituden, Festlegung des Parameters τ_A und Mittelung über die einzelnen Zeitfenster.

4. Alle Koeffizienten, deren Standardabweichung ein vorher festgelegtes Fehlerkriterium, \(\sigma_K \), überschreitet, werden gleich Null gesetzt.

5. Korrektur der auszuwertenden Zeitreihe des Meßensors im Frequenzraum für jedes Zeitfenster mittels (4.3) mit Hilfe der berechneten Koeffizienten nach Festlegung der Grenzfrequenz \(f_L \).

6. Rücktransformation in den Zeitbereich; die ungemittelte, korrigierte Zeitreihe des Meßensors liegt vor.

Das Signal-zu-Rausch-Verhältnis wird durch Variation der freien Parameter optimiert.

4.2.5 Die erwarteten Vorteile des Verfahrens

Durch Einsatz des FDG-Verfahrens erwartet man gegenüber herkömmlicher Gradiometrie mit konstanten, frequenzunabhängigen Balancierungskoeffizienten zusammenfassend die folgenden Vorteile, die zu einem verbesserten Signal-zu-Rausch-Verhältnis bei der Aufzeichnung magnetischer Nutzsignale führen sollten:

1. Existieren bei verschiedenen Frequenzen unterschiedliche Verhältnisse von Störsignalen in Meß- und Referenzsensor – d.h. unterschiedlich große Gradientenfelder –, so können diese nur mit Hilfe frequenzabhängiger Koeffizienten eliminiert werden.

4.3 Charakterisierung des Verfahrens in störarmer Umgebung

Die Charakterisierung der FDG-Methode in störarmer Umgebung innerhalb einer magnetischen Abschirmkammer hat die drei folgenden Ziele:

4.3.1 Experimenteller Aufbau: Das Gradiometer 1. Ordnung in der magnetischen Abschirmkammer

Das System wurde in der Abschirmkammer des ISI installiert, welche aus 2 Lagen μ-Metall (Dicke 1,27 mm) und einer Lage Aluminium (Dicke 12.7 mm) besteht. Für vertikale Magnetfelder beträgt der Abschirrmfactor der Kammer oberhalb von 10 Hz etwa 10.000 und fällt auf etwa 160 bei 1 Hz ab [Dav00]. Die residuale spektrale Rauschdichte in der Kammer, gemessen mit dem Referenzmagnetometer des SQUID-Systems, ist in Abb.4.2b dargestellt. Im wesentlichen dominieren Störungen bei den Frequenzen 50, 100 und 150 Hz (Netzfrequenz und Harmonische), wobei der Beitrag bei 50 Hz etwa um den Faktor 100 höher liegt als das Rauschniveau des Sensors. Dies erfordert den Einsatz eines Gradiometers.

Zur Aufzeichnung der Magnetokardiogramme wird die Unterseite des Kryostaten berührungs- frei so über dem Brustkorb des Probanden positioniert, daß die gemessene Amplitude des
Herzsignals maximal wird. Die analogen Signale der beiden Magnetometerkanäle werden mittels 16 bit Analog-Digital-(AD)Wandlern digitalisiert und mit einem PC mit einer Abtastrate von 1 kHz unter Verwendung eines Bandpaßfilters von 0,016-400 Hz synchron aufgezeichnet. Die Subtraktion der Zeitreihen von Meß- und Referenzsensor wird zum einen mit einem konstanten Koeffizienten (herkömmliche Gradiometrie) so vorgenommen, daß eine bestmögliche Unterdrückung der 50 Hz-Störungen erzielt wird (adaptive Balancierung). Zum Vergleich wird die Balancierung mit frequenzabhängigen Koeffizienten nach der FDG-Methode durchgeführt. Dazu ist nach Kap.4.2.2 die Kenntnis des Verhältnisses der Nutzsignalamplituden in Meß- und Referenzsensor, \(k_m \), notwendig. Deshalb wurde das Herzsignal mehrerer Probanden mit beiden Sensoren gemessen, zur Reduzierung externer Störsignale zeitlich gemittelt und das Amplitudenverhältnis bestimmt. Es ergab sich ein Wert von \(k_m = a_m/b_m = 16,6 \pm 2,9 \). Dies bedeutet, daß, bezogen auf den Meßsensor, im Referenzsensor nur etwa 6 % Nutzsignalanteil enthalten ist.

![Diagram](image)

Abb. 4.2 (a) Meßaufbau innerhalb magnetischer Abschirmung, (b) spektrale Rauschdichte in der Abschirmkammer, gemessen mit dem Referenzmagnetometer.

4.3.2 Vergleich zwischen festen und frequenzabhängigen Balancierungskoeffizienten

Bei einer Aufzeichnungsdauer von \(T = 83 \) s wurden insgesamt 80 Herzschläge aufgezeichnet. In Abb.4.3a ist das ungemittelte MKG (ein Herzschlag) eines Probanden dargestellt, das mit dem Gradiometer 1. Ordnung mit festem Balancierungskoeffizienten (herkömmliche Gradiometrie) gemessen worden ist.
Wie am zugehörigen Spektrum in Abb.4.3b zu erkennen ist, werden die in der Kammer vorhandenen Störsignale bei 50, 100 und 150 Hz (vgl. Abb.4.2b) gut durch die adaptive Balancierung des FOG unterdrückt. Dies bedeutet, daß die entsprechenden Störquellen keine unterschiedlichen Gradientenfelder erzeugen, die frequenzabhängige Balancierungskoeffizienten notwendig machen. Es resultiert ein rauscharmles MKG, welches im folgenden als Maßstab für das unverfälschte Nutzsignal dient. Die residualen Rauschbeiträge weisen eine Amplitude von etwa 5 pT Spitze zu Spitze (peak-to-peak, im folgenden abgekürzt: p-p-Amplitude) auf.\(^5\)

Der spektrale Beitrag des Herzschnitts setzt für den hier betrachteten Probanden im wesentlichen erst unterhalb von 100 Hz ein. Oberhalb dieser Frequenz dominiert das weiße Rauschen des Gradimeters von etwa 40 fT/√Hz. Es liegt damit etwa um den Faktor √2 über den einzelnen Rauschbeiträgen von Meß- und Referenzsensor, \(S_a\) und \(S_b\), wie nach (2.38) erwartet: \(S_G = (S_a^2 + S_b^2)^{1/2} = \sqrt{2} \cdot S_a\) mit \(S_a = S_b = 25\) fT/√Hz.

Um die Effektivität des FDG-Verfahrens zu untersuchen, wurde numerisch eine Störung bei einer Frequenz von 80 Hz mit unterschiedlicher Amplitude in Meß- (20 pT) und Referenzsensor (16 pT) simuliert. Dies entspricht bei einer Basislänge von 10 cm einem Gradientenfeld mit einer Stärke von 0,4 pT/cm. Zusätzlich wurde ebenfalls numerisch das weiße Rauschen des Referenzsensors um den Faktor 3 auf 75 fT/√Hz (\(S_b = 3 \cdot S_a\)) erhöht. Für das weiße Gesamtrauschen des FOG mit festen Koeffizienten erwartet man damit einen Anstieg auf etwa 80 fT/√Hz entsprechend Gleichung (2.38): \(S_G = [S_a^2 + (3 \cdot S_a)^2]^{1/2} = \sqrt{10} \cdot S_a\).

Wie in Abb.4.3c und Abb.4.3d deutlich wird, lassen sich die simulierten Rauschbeiträge durch eine adaptive Balancierung mit festen, frequenzunabhängigen Koeffizienten nicht mehr eliminieren. Das Rauschen des Referenzsensors wird bei dieser herkömmlichen Gradimetrie bei allen Frequenzen zum Rauschen des Meßsensors addiert. Damit steigt das weiße Gesamtrauschen des Systems von 40 fT/√Hz (Abb.4.3b) auf 90 fT/√Hz (Abb.4.3d) an. Diese Erhöhung entspricht in etwa dem theoretisch erwarteten Wert. Das Gradientenfeld bei 80 Hz wird ebenfalls nicht vollständig unterdrückt (Abb.4.3d). Es resultiert eine p-p-Rauschamplitude von etwa 10 pT und damit eine Verschlechterung des Signal-zu-Rausch-Verhältnisses (signal-to-noise ratio, SNR)\(^6\) um mehr als einen Faktor 2 (Abb.4.3c).

Zum Vergleich wurden die künstlich verrauschten Zeitreihen mit Hilfe der FDG-Methode frequenzabhängig korrigiert. Die freien Parameter wurden hinsichtlich des Signal-zu-Rausch-Verhältnisses des MKG optimiert und wie folgt gewählt:

\(^5\) In allgemeinen werden zur Charakterisierung der Störsignalreduktion mittels SQUID-Gradimetern die residualen Rauschbeiträge als p-p-Amplitude angegeben. Dies ist sinnvoll, da diskrete, deterministische Störsignale, wie z.B. bei der 50 Hz Netzfrequenz, zumeist den größten residualen Rauschbeitrag liefern.

\(^6\) Hier und im folgenden sei das SNR definiert als das Verhältnis der p-p-Amplituden von Herzschnitt und Rauschbeiträgen.
Abb. 4.3 Ungemitteltes MKG eines Probanden, gemessen innerhalb der Abschirmkammer, und zugehöriges Fourierspektrum: Störsignalunterdrückung durch herkömmliche Gradiometrie mit festen Koeffizienten ohne simuliertes Rauschen (a) u. (b). Das zusätzlich simulierte Rauschen im weißen Frequenzbereich des Referenzsensors und bei 80 Hz läßt sich mit herkömmlicher Gradiometrie nicht mehr unterdrücken (c) u. (d). Hingegen führt die frequenzabhängige Gradiometrie zu einer Senkung des breitbandigen Rauschens auf das Rauschniveau eines einzelnen Sensors und zu einer Eliminierung des Störsignals bei 80 Hz (e) u. (f). Ein Vergleich mit dem ursprünglichen Signal des Gradiometers ohne simulierte Störungen (a) zeigt eine gute Nutzsignalerhaltung bei Anwendung des FDG-Algorithmus.
Adaptivität $\tau_A = T$, d.h. es findet während der Meßdauer T keine Neuermittlung der Koeffizienten statt, denn durch zeitlich adaptive Ermittlung der Koeffizienten konnte keine Verbesserung des Signal-zu-Rausch-Verhältnisses erzielt werden. Dies ist auf geringe Schwankungen der Amplituden der Störsignale innerhalb Schirmung zurückzuführen.\footnote{An dieser Stelle sei angemerkt, daß der Einfluß der Wahl der freien Parameter in Kap.\textit{4.4.3} am Beispiel von Messungen außerhalb magnetischer Schirmung beschrieben wird.}

Fehlerrkriterium $\sigma_K = 1\%$. Durch Festlegung dieser oberen Schranke gilt (per Definition) eine Störung dann als detektiert, wenn der entsprechende Koeffizient mit einer Genauigkeit von besser als 1\% bestimmt werden konnte (vgl. Kap.\textit{4.2.3}). Alle übrigen Koeffizienten werden gleich Null gesetzt.

Grenzfrequenz $f_L = 0$ Hz, d.h. im niederfrequenten Bereich wird keine Störsignalunterdrückung mit konstantem Balancierungskoeffizienten vorgenommen.

\begin{center}
\includegraphics[width=0.5\textwidth]{image.png}
\end{center}

\textbf{Abb.4.4} Ermittelte Balancierungskoeffizienten der frequenzabhängigen Gradiometrie für $\sigma_K = 1\%$, $\tau_A = T$ und $f_L = 0$ Hz.

Es wurden Balancierungsfaktoren bei 50, 100 und 150 Hz sowie bei 80 Hz ermittelt (Abb.4.4). Somit wurden die Störsignale bei der Netzfrequenz und Harmonischen sowie das simulierter Störsignal bei 80 Hz vom Algorithmus erfaßt, wobei die unterschiedlichen Größen der Koeffizienten die unterschiedlichen Amplituden der Gradientenfelder am Ort der Sensoren berücksichtigen. Die Zeitreihe des Meßsensors wird nur bei diesen diskreten Frequenzen korrigiert. Alle übrigen Koeffizienten werden gleich Null gesetzt.

Die resultierende Zeitreihe ist in Abb.4.3e dargestellt. Das MKG weist eine geringe p-p-Rauschamplitude von etwa 4 pT auf. Im entsprechenden Spektrum ist zu erkennen (Abb.4.3f), daß das Störsignal bei 80 Hz vollständig eliminiert werden konnte. Des Weiteren ergibt sich
ein wesentlich geringeres weißes Rauschen als beim herkömmlichen Gradiometer (vgl. Abb.4.3d). Es erreicht mit etwa 30 fT/√Hz nahezu das Rauschniveau eines einzelnen Sensors (Abb.4.3f). Dies entspricht den Erwartungen, da nur bei wenigen Frequenzen (vgl. Abb.4.4) das Rauschen des Referenzsensors zum Rauschen des Meßsensors addiert wird.

Das frequenzabhängig korrigierte MKG (Abb.4.3f) und das MKG, welches ohne zusätzlich simulierte Rauschbeiträge mit dem herkömmlichen Gradiometer aufgezeichnet wurde und damit als Normsignal dient (Abb.4.3a), lassen eine gute Übereinstimmung erkennen. Das Herzsignal wird durch den FDG-Algorithmus nicht verfälscht, sondern weist als einzigen Unterschied eine um etwa 6 % vergrößerte Amplitude auf. Dies ist darauf zurückzuführen, daß der Anteil des Nutzsignals im Referenzsensor nur bei einzelnen Frequenzen, bei der herkömmlichen Gradiometrie aber über der ganzen Bandbreite vom Meßsensor subtrahiert wird. Der FDG-Algorithmus erhält also im wesentlichen das Magnetometersignal. Nur bei einzelnen Frequenzen (Abb.4.4) wird das gradiometrische Signal gebildet.

Ist das Verhältnis der Nutzsignalamplituden \(k_m \) bekannt, so wird mittels (4.3) auch bei diesen Frequenzen das korrekte Magnetometersignal zurückgerechnet. Um zu überprüfen, welchen Einfluß ein nur ungenau bekanntes \(k_m \) besitzt, wurde der Faktor in den Grenzen 10 < \(k_m < \infty \) variiert (\(k_m = \infty \) bedeutet, daß ein möglicher Nutzsignalanteil im Referenzsensor nicht berücksichtigt wird, und damit das rein gradiometrische Signal gebildet wird; \(k_m = 16,6 \) war in Kap.4.3.1 für diesen Meßaufbau ermittelt worden). Es konnte keine meßbare Änderung der Nutzsignalamplitude festgestellt werden. Dies ist verständlich, da eine mögliche gradiometrische Filterung, die eine Nutschignalreduzierung beinhaltet, eben nur bei wenigen Frequenzen stattfindet. Die genaue Kenntnis des Koeffizienten \(k_m \) ist somit von untergeordneter Bedeutung.

Im Rahmen dieses Abschnitts konnten zwei wesentliche Vorteile des FDG-Verfahrens anhand der Analyse von Magnetokardiogrammen mit zusätzlich simulierten Rauschbeiträgen nachgewiesen werden:

- Die frequenzabhängige Ermittlung von Balancierungsfaktoren ermöglicht die Eliminierung des Einflusses von Störquellen unterschiedlicher Frequenz, die am Ort der Sensoren unterschiedliche große Gradientenfelder erzeugen. Dies ist mit herkömmlicher Gradiometrie nicht möglich.

- Das weiße Rauschen wird durch den Einsatz der FDG-Methode nahezu auf das Rauschniveau des Meßsensors reduziert.

Des Weiteren wurde gezeigt, daß das Nutzsignal durch den FDG-Algorithmus im Rahmen der Meßgenauigkeit nicht verfälscht und eine zufriedenstellende Nutzsignalerhaltung erreicht wird.
4.4 Charakterisierung des Verfahrens in magnetisch ungeschirmer Umgebung

4.4.1 Experimenteller Aufbau: Das Gradiometer 2. Ordnung

Das SOG besteht aus 3 HTS-rf-washer-SQUIDs, die mit koplanaren Resonatoren mit 8,5 mm Kantenlänge bei rf-Frequenzen von jeweils etwa 920 MHz betrieben werden (Konfiguration SR1 aus Tabelle 3.2). Die Sensoren sind im Abstand von jeweils 7,5 cm (Basislänge) axial angeordnet (Abb.4.5a). Aus den 3 Einzelsensoren werden zunächst elektronisch zwei axiale Gradiometer 1. Ordnung gebildet (FOG A und B in Abb.4.5), die im Feld einer Helmholzspule balanciert wurden. Es wurde eine Unterdrückung homogener Felder von mehr als 10^4 erreicht. Das magnetische Feldrauschen in ungeschirmer Laborumgebung beträgt im weißen Bereich für beide Gradiometer 100 fT/√Hz und ist für FOG A in Abb.4.5d dargestellt.

Für die Aufzeichnung von Magnetokardiogrammen mittels konventioneller Gradiometrie wurde elektronisch die Differenz der beiden FOGs und damit ein Gradiometer 2. Ordnung gebildet (Abb.4.5a). Die Abstimmung von FOG A und FOG B wurde dabei vor der Messung so vorgenommen, daß ein möglichst niedriges magnetisches Rauschspektrum für das SOG resultierte, d.h. Störsignale bestmöglich unterdrückt wurden (adaptive Balancierung) (Abb.4.5e). Das typische weiße Feldrauschen des SOG betrug etwa 150 fT/√Hz. Die MKG-Messungen mit diesem elektronischen Gradiometer wurden zum einen unter Verwendung eines Bandpasses von 0,05-130 Hz und Bandsperrenfiltern bei 100 und 150 Hz durchgeführt. Zum Vergleich wurde ebenfalls mit einer Bandbreite von 250 Hz ohne Verwendung von zusätzlichen Filtern gemessen.

Für die Anwendung des Verfahrens der frequenzabhängigen Gradiometrie wurde das obere Gradiometer 1. Ordnung (FOG B) als Referenzsensor eingesetzt. Die Signale des Meß-
(FOG A) und des Referenzsensors (FOG B) wurden mit Hilfe von 16 bit AD-Wandlern digitalisiert und synchron mit einer Bandbreite von 250 Hz und einer Abtastrate von 1 kHz mittels PC aufgezeichnet. Das Verhältnis der Rauschamplituden von Meß- und Referenzsensor betrug \(a_r/b_r = 1 \) (s.o.), der Koeffizient \(k_m \) wurde zu \(k_m = 10,3 \pm 1,8 \) ermittelt. Die freien Parameter des FDG-Verfahrens wurden wie auch bei den Messungen innerhalb der magnetischen Abschirrmkammer hinsichtlich des Signal-zu-Rausch-Verhältnisses des MKG optimiert. Die Vorgehensweise der Optimierung findet sich in Abschnitt 4.4.3, in dem der Einfluß der Wahl der freien Parameter beschrieben wird. Für den in der Störumgebung des Labors aufgezeichneten Datensatz wurden die folgenden optimalen Werte gefunden:

- Adaptivität \(\tau_A = 15 \text{ s} \), d.h. es findet alle 15 s eine Neuermittlung der Koeffizienten statt.
- Fehlerkriterium \(\sigma_K = 5 \% \).
- Grenzfrequenz \(f_L = 5 \text{ Hz} \): Im niederfrequenten Bereich zwischen 0 und 5 Hz wird der konstante Balancierungskoeffizient des elektronischen SOG verwendet.

Abb. 4.5 Meßaufbau außerhalb magnetischer Schirmung (links): (a) elektronisches Gradiometer 2. Ordnung mit festen Balancierungskoeffizienten einschließlich elektronischer Filter, (b) Anwendung der FDG-Methode durch Verrechnung der Zeitreihen im PC. Typisches Feldrauschen außerhalb magnetischer Schirmung in der Laborumgebung (rechts): (c) Magnetometer, (d) FOG A und (e) SOG.
4.4.2 Vergleich zwischen festen und frequenzabhängigen Balancierungskoeffizienten

![Diagramm](image)

Abb. 4.6 Ausschnitte von Zeitreihen, die in magnetisch ungeschirrter Umgebung bei anliegendem Herzsignal mit (a) dem unteren Magnetometer, (b) dem unteren Gradiometer 1. Ordnung, FOG A, und (c) dem Referenzgradiometer, FOG B, aufgezeichnet wurden.

Auch das elektronische Gradiometer 2. Ordnung mit festem Balancierungskoeffizienten weist bei einer Bandbreite von 250 Hz ohne den Einsatz von Bandsperrfiltern nur eine unzureichende Unterdrückung der Störsignale auf, wie in Abb. 4.7a zu erkennen ist.

Der Einsatz des FDG-Verfahrens führt hingegen bei gleicher Bandbreite zu einer erheblichen Verbesserung des Signal-zu-Rausch-Verhältnisses (Abb. 4.7b). Erst durch Einschränkung der Bandbreite auf 130 Hz und die Verwendung von Bandsperrfiltern bei 100 und 150 Hz wird mit Hilfe des elektronischen Gradiometers 2. Ordnung eine vergleichbare Unterdrückung der Störsignale erzielt (Abb. 4.7c).
Abb. 4.7 Ungemittelte MKG-Signale, aufgezeichnet außerhalb magnetischer Schirmung: (a) elektronisches SOG mit 250 Hz Bandbreite, (b) FDG mit 250 Hz Bandbreite und (c) elektronisches SOG mit 130 Hz Bandbreite und Bandsperrfiltern bei 100 und 150 Hz.

Die 100fach gemittelten Magnetokardiogramme sind in Abb. 4.8 dargestellt. Das innerhalb Abschirmung aufgezeichnete Normsignal läßt schwache Strukturen, also solche mit niedriger Amplitude (1 und 2) im zeitlichen Verlauf des Herzschlags erkennen (Abb. 4.8a), die im Signal des elektronischen Gradiometers mit 250 Hz Bandbreite nicht auflösbar sind (Abb. 4.8b). Erst nach dem Einsatz von Bandsperrfiltern bei 100 und 150 Hz sowie einer eingeschränkten Bandbreite von 130 Hz läßt sich Struktur 2 durch das elektronische Gradiometer gut auflösen und Struktur 1 ansatzweise erkennen (Abb. 4.8c). Ein vergleichbares Ergebnis liefert das FDG-Verfahren bei 250 Hz Bandbreite ohne zusätzliche Filter (Abb. 4.8d). Dies zeigt, daß der FDG-Algorithmus auch in Gegenwart großer magnetischer Störsignale nicht zu einer Verzerrung des Nutzsignals führt. Dabei ist die erhöhte Maximalamplitude, wie bereits in Kap. 4.3 nachgewiesen, darauf zurückzuführen, daß das Referenzsignal anders als beim elektronischen Gradiometer nur bei diskreten Frequenzen zur Reduzierung der Störsignale eingesetzt wird, und der Nutzsignalanteil im Meßsensor damit im wesentlichen erhalten bleibt.

Abb.4.8 MKG-Signale ein und desselben Probanden, alle 100fach gemittelt; (a) Normsignal, gemessen innerhalb Abschirmung mit 250 Hz Bandbreite im Vergleich zu den außerhalb Abschirmung aufgezeichneten Signalen: (b) SOG mit 250 Hz Bandbreite, (c) SOG mit 130 Hz Bandbreite und Bandsperren bei 100 und 150 Hz und (d) FDG mit 250 Hz Bandbreite. Beschreibung siehe Text.

4.4.3 Einfluß der Wahl der freien Parameter des FDG-Verfahrens auf das Signal-zu-Rausch-Verhältnis

Die Parameter wurden innerhalb der folgenden Wertebereiche gegeneinander variiert:

- $0,1\% \leq \sigma_K \leq 50\%$. Dabei gibt σ_K die maximale Standardabweichung an, die ein Koeffizient aufweisen darf. Koeffizienten mit größerer Standardabweichung werden gleich Null gesetzt (vgl.Kap.4.2.3).

- $4s \leq \tau_A \leq T$. Dabei bezeichnet $T = 110s$ die gesamte Aufzeichnungsdauer. Für $\tau_A = T$ werden die Koeffizienten nur einmal bestimmt. Für $\tau_A = 4s$ werden sie – zeitlich adaptiv – alle 4 s neu ermittelt.

- $0 \text{ Hz} \leq f_L \leq 15 \text{ Hz}$. Für alle Frequenzen, die kleiner als die gewählte Grenzfrequenz f_L sind, wird der konstante Koeffizient des elektronischen Gradimeters verwendet.

In Abb.4.9a ist die Abhängigkeit des Signal-zu-Rausch-Verhältnisses vom Fehlerkriterium σ_K beispielhaft für $\tau_A = T$ und $f_L = 0 \text{ Hz}$ dargestellt. Das SNR weist für $\sigma_K = 6\%$ ein deutliches Maximum auf. Für diesen Fall werden bei insgesamt 9 Frequenzen Balancierungskoeffizienten ermittelt (Abb.4.9b). Bei 75 Hz etwa wird das entsprechende Störsignal von einem Monitor erzeugt (vertikale Bildwiederholfrequenz), der in der Nähe des SQUID-Systems aufgestellt war. Dieses Störsignal weist einen ähnlichen Gradienten auf wie die Störungen bei 50 Hz. Dies wird aus den vergleichbaren Balancierungskoeffizienten ersichtlich. Hingegen erfordern die Störsignale bei 100 und 150 Hz unterschiedliche Koeffizienten. Dies ist ein Grund für die beim herkömmlichen, elektronischen Gradimeter notwendigen Bandsprechfilter bei diesen Frequenzen (vgl. vorheriges Kapitel).

Wie in Abb.4.9c zu erkennen ist, führt ein zu niedrig gewähltes Fehlerkriterium dazu, daß zu wenige Störungen vom FDG-Algorithmus erfaßt werden. Im dargestellten Fall ($\sigma_K = 0,5\%$) können nur für die dominantesten Störsignale bei Frequenzen von 50 und 150 Hz Koeffizienten mit einer Genauigkeit von mindestens 0,5% ermittelt werden. Störsignale bei anderen Frequenzen werden überhaupt nicht unterdrückt. Dies führt zu einer Verschlech-

9 Der Fehler bei der Bestimmung des Signal-zu-Rausch-Verhältnisses ergibt sich durch die Standardabweichung benachbarter p-p-Rauschamplituduen.
terung des SNR von 8 auf etwa 2,8 (Abb.4.9a). Eine weitere Senkung des Fehlerkriteriums führt sogar dazu, daß gar keine Koeffizienten mehr bestimmt werden. Dann entspricht das Signal-zu-Rausch-Verhältnis dem der MKG-Zeitreihe, die mit dem Meßsensor alleine (FOG A) aufgezeichnet wurde (vgl. dazu Abb.4.6b).

Wird das Fehlerkriterium hingegen zu groß gewählt, so werden zu viele fehlerbehaf tetete Koeffizienten ermittelt. Dies ist für den Fall $\sigma_K = 40\%$ in Abb.4.9d dargestellt. Bei nahezu allen Frequenzen wird das Signal des Referenzsensors vom Signal des Meßsensors mittels Koeffizienten subtrahiert, die mit zu großer Ungenauigkeit bestimmt wurden. Dies führt ebenfalls zu einer Reduzierung des SNRs (Abb.4.9a). Demnach ist die Wahl eines geeigneten Fehlerkriteriums (hier $\sigma_K \sim 6\%$) zur Erzielung eines optimalen Signal-zu-Rausch-Verhältnisses von entscheidender Bedeutung.

Abb.4.9 Variation des Fehlerkriteriums σ_K für $\tau_A = T$ und $f_L = 0$ Hz: Das Signal-zu-Rausch-Verhältnis weist für $\sigma_K \sim 6\%$ ein Maximum auf (a). Die ermittelten Balancierungsfaktoren sind für das optimale Kriterium von $\sigma_K = 6\%$ in (b), für ein zu niedriges Kriterium von $\sigma_K = 0,5\%$ in (c) und für ein zu großes Kriterium von $\sigma_K = 40\%$ in (d) abgebildet. Beschreibung siehe Text.
Der Einfluß der Wahl des Parameters τ_A auf das Signal-zu-Rausch-Verhältnis ist in Abb.4.10 für verschiedene gewählte Fehlerkriterien σ_K dargestellt. Das maximale SNR wird bei $\tau_A = 15 \text{ s}$ und für $\sigma_K = 5\%$ erzielt. Für ein höher oder niedriger gewähltes Fehlerkriterium resultiert ein jeweils geringeres SNR. Dies ist in Abb.4.10 beispielhaft für $\sigma_K = 3\%$ (Dreiecke) und $\sigma_K = 30\%$ (Quadrat) gezeigt.

Entscheidend ist hier die Aussage, daß das maximale SNR nicht für $\tau_A = T$ erreicht wird. Vielmehr ist das deutlich ausgeprägte Maximum im Bereich zwischen $\tau_A = 15 \text{ s}$ und 25 s (für $\sigma_K = 5\%$) ein Nachweis dafür, daß durch eine adaptive Neureihung der Koeffizienten (z.B. alle 15 s) eine verbesserte Anpassung an die Störmgebung und damit eine verbesserte Reduktion der Störsignale erzielt wird.

Dieser Sachverhalt soll kurz diskutiert werden: In einem kleinen Zeitintervall, z.B. $\tau_A = 15 \text{ s}$, wird im Vergleich zu $\tau_A = T$ eine geringere Anzahl von Mittlungen (Anzahl der Fourierfenster) zur Bestimmung der Koeffizienten verwendet. Dies schränkt zunächst die Genauigkeit ein, mit der die Koeffizienten ermittelt werden. Variiert jedoch der Charakter der Störsignale über die gesamte Aufzeichnungsduer T erheblich, so führt dies dazu, daß für verschiedene Zeitintervalle sehr unterschiedliche Koeffizienten erforderlich werden. Wird $\tau_A = T$ gewählt, so erhält man jedoch nur einen fehlerhaften Mittelwert der Koeffizienten für den gesamten Zeitraum. Dann ist ein kleineres Intervall (wie im vorliegenden Fall) von Vorteil. Wird τ_A allerdings zu klein gewählt (vgl. Kurvenverlauf für $\tau_A < 10 \text{ s}$ und $\sigma_K = 5\%$ in Abb.4.10), so können aufgrund einer zu geringen Anzahl von Mittelungen die Koeffizienten nicht mehr mit ausreichender Genauigkeit bestimmt werden, und das SNR wird kleiner.

Abb.4.10 Variation der Adaptivität τ_A für verschiedene Fehlerkriterien $\sigma_K (f_l = 0 \text{ Hz})$: Das maximale Signal-zu-Rausch-Verhältnis wird für $\tau_A = 15 \text{ s}$ bei $\sigma_K = 5\%$ erreicht.
Im Gegensatz zu den bisher analysierten Parametern beeinflußt die Wahl der Grenzfrequenz f_L – unabhängig von der Wahl der übrigen Parameter – das resultierende Signal-zu-Rausch-Verhältnis im Fall der betrachteten MKG-Zeitreihe nicht wesentlich. Dies ist in Abb.4.11 beispielhaft für $\sigma_K = 5\%$ und $\tau_A = 15s$ gezeigt. Bei $f_L \sim 5\ Hz$ ist ein nur schwach ausgeprägtes Maximum zu erkennen. Dies ist darauf zurückzuführen, daß der verwendete Meßsensor, das Gradiometer 1. Ordnung (FOG A), bereits eine zufriedenstellende Unterdrückung niederfrequenter Störungen erreicht (vgl. Abb.4.5d in Kap.4.4.1). Das elektronische Gradiometer 2. Ordnung, dessen Balancierungskoefizient hier für Frequenzen $f < f_L$ verwendet wird, führt zu keiner wesentlichen Verbesserung (vgl. Abb.4.5e). In urbaner Umgebung, in der häufig große niederfrequente Störsignale durch bewegte ferromagnetische Objekte (z.B. vorbeifahrende Fahrzeuge) erzeugt werden, sollte die Abhängigkeit von der Wahl der Grenzfrequenz wesentlich ausgeprägter sein.

\[\text{Abb.4.11 Variation der Grenzfrequenz } f_L \text{ für } \sigma_K = 5\% \text{ und } \tau_A = 15s. \]

Hier sei auf die Möglichkeit hingewiesen, die Reduzierung der niederfrequenten Störsignale durch eine Kombination der FDG-Methode mit anderen Verfahren zu verbessern. Vorteilhaft erscheint die Verwendung eines zusätzlichen Vektormagnetometers, dessen bandpaßgefiltertes Referenzsignal (typisch 0,01-1 Hz) zur Eliminierung von unperiodischen Störungen eingesetzt werden kann [Rob89, Bor99, Kou99].

Die Untersuchungen im Rahmen dieses Abschnitts haben gezeigt, daß eine geeignete Anpassung der freien Parameter der FDG-Methode an die Störumgebung wichtige Voraussetzung für eine optimale Störsignalreduktion ist. Es wurde insbesondere gezeigt, daß ein verbessertes Signal-zu-Rausch-Verhältnis erzielt werden kann, wenn die Balancierungskoeffizienten nicht nur einmal ($\tau_A = T$) sondern mehrfach, d.h. zeitlich adaptiv ($\tau_A < T$) während der Messung bestimmt werden. Damit konnte die Effektivität zeitlich adaptiver Koeffizienten nachgewiesen werden.
4.5 Fazit

<table>
<thead>
<tr>
<th>Methode</th>
<th>Bandbreite</th>
<th>SNR (unge- mitteltes MKG)</th>
<th>Zeitlich adaptiv</th>
<th>Bearbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOG</td>
<td>250 Hz</td>
<td>< 2</td>
<td>Nein</td>
<td>Echtzeit</td>
</tr>
<tr>
<td>SOG</td>
<td>130 Hz*</td>
<td>~ 11</td>
<td>Nein</td>
<td>Echtzeit</td>
</tr>
<tr>
<td>FDG</td>
<td>250 Hz</td>
<td>~ 11</td>
<td>Ja</td>
<td>$\Delta t^{**} \sim 1 $ min</td>
</tr>
</tbody>
</table>

*Tabelle 4.1 Vergleich der untersuchten Verfahren zur Störsignalreduktion (*Bandsperrfilter bei 100 und 150 Hz, **Rechenzeit für eine Zeitreihe mit 112640 Datenpunkten).*

Insbesondere in magnetisch ungeschirmter Umgebung wurde im Vergleich zum elektronischen Gradiometer (SOG) bei vergleichbarer Bandbreite ein deutlich verbessertes Signal-zu-Rausch-Verhältnis erzielt. Ein vergleichbares Ergebnis kann mittels elektronischer Gradiometrie nur mit eingeschränkter Bandbreite und zusätzlichen Bandsperrfiltern erreicht werden (siehe Tabelle 4.1).
Ein Nachteil des FDG-Verfahrens besteht darin, daß die Störsignalreduktion – im Gegensatz zur konventionellen Gradiometrie – nicht in Echtzeit, sondern erst nach Aufzeichnung der Daten vorgenommen werden kann. Die Rechenzeit für Zeitreihen mit einer Länge von 112640 Datenpunkten (~112 s bei 1 kHz Abtastrate) beträgt etwa 1 Minute.

Trotz der deutlichen Verbesserung des Signal-zu-Rausch-Verhältnisses durch das FDG-Verfahren muß zur Auflösung von Detailinformationen im MKG immer noch zeitlich über mehrere Herzschläge gemittelt werden (vgl. Kap. 4.4.2).

Kapitel 5

Zusammenfassung

Im Rahmen der vorliegenden Dissertation wurden zwei Themenkomplexe untersucht, die von großer Bedeutung sind für die Realisierung von hochempfindlichen SQUID-Meißsystemen zum Betrieb in einer magnetisch stark gestörten Umgebung, z.B. für den Einsatz in der Magnetokardiographie.

Der Einfluss externer Magnetfelder auf die Funktion von rf-SQUID-Sensoren aus dem Hochtemperatursupraleiter YBa$_2$Cu$_3$O$_{7-δ}$ wurde systematisch untersucht, und es wurden Möglichkeiten aufgezeigt, die Stabilität dieser Sensoren in magnetisch ungeschirmter Umgebung erheblich zu verbessern (Kap.3). Zudem wurde ein Verfahren zur Unterdrückung anthropogener magnetischer Störfelder mit Hilfe einer frequenzabhängigen Balancierung von HTSL-rf-SQUID-Sensoren vorgestellt und der Vorteil der neuen Methode durch Anwendung auf simulierte und reale Störfelder nachgewiesen (Kap.4).

Ein externes Magnetfeld moduliert den kritischen Strom im Josephson-Kontakt eines rf-SQUID mit der Periode $ΔB_0$ und beeinflusst damit den SQUID-Parameter $β_L$ sowie die Flußzu-Spannungs-Transferfunktion. Für eine stabile Funktion des rf-SQUID in Magnetfeldern ist eine möglichst große Magnetfeldperiode $ΔB_0$ erforderlich. Unter Berücksichtigung der flüsfsokussierenden Wirkung des SQUID-washers und der inhomogenen Flußdichteerteilung im SQUID-Loch wurde die Magnetfeldperiode in Abhängigkeit von den Sensorparametern, der SQUID-Induktivität L_s, der effektiven Sensorfläche A_{eff} und der Breite des Josephson-Kontakts w berechnet (Kap.3.2). Die Rechnungen zeigten, daß eine erhöhte Magnetfeldperiode ohne Verlust der Sensorempfindlichkeit durch eine Reduzierung der Kontaktbreite erreicht werden kann.
In der Folge wurden sowohl rf-washer-SQUIDs mit unterschiedlichen Kontaktbreiten zwischen 0,7 und 3 μm als auch washer-SQUIDs in flip-chip-Konfiguration mit koplanaren Resonatoren mit unterschiedlichen effektiven Flächen zwischen 0,21 und 1,11 mm² eingehend im Magnetfeld charakterisiert. Der Vergleich der Modellvorhersagen mit den experimentell bestimmten Magnetfeldabhängigkeiten der Transferfunktion (Kap.3.4) und des kritischen Stroms (Kap.3.5) ermöglichte folgende wesentliche Schlüssefolgerungen:

- Die Unterdrückung der Transferfunktion des rf-SQUID durch ein äußeres Magnetfeld ist eng mit der Unterdrückung des kritischen Stroms korreliert und verursacht in Abhängigkeit von der Magnetfeldperiode einen Anstieg des weißen Flußrauschens.

- Zur Vermeidung eines signifikanten Rauschanstiegs muß die Magnetfeldperiode um mehr als den Faktor 2 größer sein als das externe Magnetfeld, vgl. Kriterium (3.10).

- Die Magnetfeldperiode ist umgekehrt proportional zur effektiven Sensorfläche. Eine Reduzierung der Sensorfläche vergrößert damit zwar die Stabilität im Magnetfeld, vermindert aber gleichzeitig die Feldempfindlichkeit.

- Durch Reduzierung der Breite des Josephson-Kontakts wird die Magnetfeldperiode erhöht und damit die Stabilität im Magnetfeld verbessert, ohne daß die Feldempfindlichkeit eingeschränkt wird. Die erforderliche Kontaktbreite für den stabilen SQUID-Betrieb in einem gegebenen externen Magnetfeld kann in Abhängigkeit von der effektiven Fläche der Sensoren mittels Gleichung (3.9) für den Dünnschichtfall und einer experimentell ermittelten Feldüberhöhung von $B_{1K}/B_M \sim 2,2$ bestimmt werden.

Die nach (3.9) berechneten Kontaktbreiten für die gebräuchlichsten Sensortypen sind in Abb.3.37 in Kap.3.6 dargestellt. In Kap.3.6 findet sich ebenfalls eine detaillierte Zusammenfassung und Diskussion der im Rahmen dieser Untersuchungen gewonnenen Ergebnisse. Sie ermöglichen allgemeingültige Aussagen zur Festlegung geeigneter Sensorparameter von rf-washer-SQUIDs für den stabilen Betrieb in magnetisch ungeschirmter Umgebung. Dies ist eine wichtige Voraussetzung für den erfolgreichen Einsatz von SQUID-Systemen in der zerstörungsfreien Werkstoffprüfung, der geophysikalischen Exploration und der Magnetokardiographie.

Neben der Stabilität der SQUID-Sensoren im Magnetfeld spielt die Unterdrückung von unerwünschten magnetischen Störfeldern beim Betrieb von SQUID-Systemen in magnetisch ungeschirmter Umgebung eine wichtige Rolle. Dazu wurde im zweiten Teil der vorliegenden Arbeit das Verfahren der frequenzabhängigen Gradiometrie (FDG) vorgestellt (Kap.4.2) und charakterisiert (Kap.4.3 und 4.4). Anhand der Messung von Magnetokardiogrammen mit HTSL-rf-SQUID-Systemen konnten die folgenden wesentlichen Vorteile des FDG-Verfahrens gegenüber konventioneller Software- bzw. elektronischer Gradiometrie nachgewiesen werden:
4. STÖRSIGNALREDUKTION BEIM BETRIEB VON HTSL-SQUID-SYSTEMEN

- Frequenzabhängige Balancierungskoeffizienten führen zu einer verbesserten Unterdrückung magnetischer Störsignale unterschiedlicher Frequenz, die am Ort des Meßsensors unterschiedliche Gradienten aufweisen.

- Treten Störsignale nur bei diskreten Frequenzen auf, so wird das magnetische Feldrauschen des Meßsystems gesenkt.

- Adaptive Balancierungskoeffizienten berücksichtigen zeitliche Schwankungen externer Störungen während der Messung.

HTSL-rf-SQUID-Systeme, die mittels der vorgestellten Optimierung der Sensorparameter stabil in magnetisch ungeschirmter Umgebung betrieben werden, könnten in Verbindung mit den beschriebenen Verfahren zur Unterdrückung von Störsignalen einen wichtigen Beitrag zur Etablierung der Magnetokardiographie in der medizinischen Diagnostik liefern.
Literaturverzeichnis

[Far00a] Die REM-Aufnahmen wurden von M.Fardmanesh, Forschungszentrum Jülich, zur Verfügung gestellt, 2000

[Lom00] D.Lomparski, "SQUID-IV 1.0", Programm zur Meßdatenerfassung und Meßablaufsteuerung in LabView®, 2000

[Sch00b] J. Schubert, peröncliche Mitteilung, 2000

[Zha94] Y.Zhang, Magnetisches Feldrauschen eines HTSL-rf-washer-SQUID innerhalb magnetischer Abschirnung, unveröffentlicht, 1994

[Zha97c] Y.Zhang et al., unveroffentlicht, 1997

[Zha01b] Y.Zhang, personliche Mitteilung, 2001

Danksagung

Zum Gelingen dieser Arbeit haben sehr viele Personen mit ihrer Hilfsbereitschaft und tatkräftigen Unterstützung beigetragen, für die ich mich an dieser Stelle herzlich bedanken möchte.

Mein besonderer Dank gilt Herrn Prof. Dr. P. David für die Betreuung dieser Arbeit als Doktorvater, für sein immerwährendes Interesse und seine stete Diskussionsbereitschaft.

Herrn Prof. Dr. K. Maier bin ich für die Übernahme des Korreferats dankbar.

Herrn Dr. H.-J. Krause möchte ich für die Betreuung der Arbeit im Institut für Schicht- und Ionentechnik, für seine immer kompetenten und hilfreichen Anregungen und für das Korrekturlesen herzlich danken.

Herr Prof. Dr. A.I. Braginski hat durch seine hilfreichen Ratschläge sowohl in fachlicher als auch in menschlicher Hinsicht ganz erheblich dazu beigetragen, daß ich diese Arbeit fertigstellen konnte. Dafür danke ich ihm sehr.

Für die Unterstützung bei der Durchführung von Messungen sowohl im Labor als auch in der freien Natur, für die zahlreichen und stundenlangen fachlichen Diskussionen, für die rundherum hervorragende Zusammenarbeit und nicht zuletzt für die vielen menschlich wertvollen Ratschläge möchte ich mich sehr herzlich bei Herrn Dr. G. Panaitov bedanken.

Den Herren Dr. M. Maus, Dr. M. Schiek und Dr. P. Selders danke ich sehr für das Korrekturlesen von Teilen dieser Arbeit, für die vielen fruchtaren, auch interdisziplinären Diskussionen und für die immer gute Zusammenarbeit. Herrn K. Sternickel danke ich für viele anregende Diskussionen zur Zeitreihenanalyse und vor allem für die stets sehr angenehme Arbeitsatmosphäre im Institut für Strahlen- und Kernphysik. Nur selten fehlte die Milch zum Kaffee. Für die gute Zusammenarbeit auf dem Gebiet der Störsignalreduktion und für wichtige Anregungen in den Anfängen der Arbeit bin ich Herrn Dr. F. Rüders und Herrn Dr. H. Soltner dankbar.

Herrn Prof. Dr. Y. Zhang danke ich für seine hilfreichen Anregungen und für zahlreiche Erläuterungen zum Betrieb von rf-washer-SQUID-Magnetometern.

Sehr zum Dank verpflichtet bin ich den Herren M. Banzet, Dr. J. Schubert und W. Zander für die Herstellung hervorragender rf-washer-SQUIDs sowie Herrn Prof. Dr. M. Fardmanesh für die vielen hilfreichen Tips zur Realisierung der Meßplätze.

Danken möchte ich Herrn R. Otto und Herrn N. Wolters für die Unterstützung in allen elektronischen Sachfragen und für die zuverlässige rf-SQUID-Elektronik, Herrn H. M. Schwan stellvertretend für die Mitarbeiter der mechanischen Werkstatt für die Anfertigung mehrerer Halterungen für die Meßaufbauten, Herrn J. Müller für die Unterstützung im Reinraum und für Tips bei der Handhabung des Diamantschneiders, Herrn
H. P. Bochem für die Anfertigung von REM-Aufnahmen und den Damen N. Fuchs, M. Gruber, I. Krüger und I. Schumacher stellvertretend für die ISI-Verwaltung für viele organisatorische Hilfestellungen.

Allen Mitarbeitern im Institut für Schicht- und Ionentechnik danke ich für die täglichen kleinen und großen Hilfen und das angenehme Arbeitsklima.

Herrn Dr. H. Bousack bin ich für die Überwindung zahlreicher organisatorischer Hürden und der gesamten SQUID-Arbeitsgruppe für die nette Arbeitsatmosphäre dankbar. Besonderer Dank gilt Herrn D. Lomparski für seine hervorragende Unterstützung in allen Softwarefragen vor allem bei der Überwindung von Microsoftproblemen, für die Erstellung mehrerer Programme zur Meßdatenerfassung und für die fruchtbare musikalische Zusammenarbeit.

Diejenigen, die ich in meinen Danksagungen nicht namentlich bedacht habe, bitte ich um Nachsicht.
