DIE GC/MS-ANALYSE VON ENERGIEALKOHOL-GEMISCHEN

von
Ulrich Hildebrand

Jül-Spez-432
Februar 1988
ISSN 0343-7639
Spezielle Berichte der Kernforschungsanlage Jülich - Nr. 432
Institut für Reaktorbauelemente Jül-Spez-432

Zu beziehen durch: ZENTRALBIBLIOTHEK der Kernforschungsanlage Jülich GmbH
Postfach 1913 · D-5170 Jülich (Bundesrepublik Deutschland)
Telefon: 024 61/610 · Telex: 833556-0 kl d
DIE GC/MS-ANALYSE VON ENERGIEALKOHOL-GEMISCHEN

von

Ulrich Hildebrand
DIE GC/MS-ANALYSE VON ENERGIEALKOHOL-GEMISCHEN

von

U. Hildebrand

Kurzzusammenfassung

Dieser Bericht vermittelt detaillierte Einblicke in die Zusammensetzung von komplexen Energiealkoholgemischen. Diese, in Zukunft möglicherweise sehr wichtigen Energieträger, können sich aus mehreren hundert Substanzen zusammensetzen, neben Alkoholen insbesondere aus Estern und Ketonen; in geringer Konzentration finden sich Aldehyde, Ketale, AcetaIe, Ether und Alkane.

Das Hauptziel dieser Ausarbeitung ist die Vermittlung eines detaillierten, aber zeitsparenden Arbeitsschemas zur qualitativen und quantitativen Analyse der Energiealkoholgemische. Die Grundlage bilden Gaschromatographie/Massenspektrometrie-Messungen, deren Auswertung sich auf relativ wenige, für die einzelnen Substanzen charakteristische massenspektrometrische Merkmale konzentriert. Durch die Auswertung von Massenspektrogrammen wird die zeitaufwendige und manchmal problematische Analyse von Einzelspektren vermieden.
THE GC/MS-ANALYSIS OF ENERGY ALCOHOL MIXTURES

from

U. Hildebrand

Abstract

This report provides detailed insight into the composition of complex energy alcohol mixtures. These energy carriers, which might prove highly important in the future, can contain several hundred substances, in particular, apart from alcohols, esters and ketones; minor concentrations, there are also aldehydes, ketales, acetals, ethers, and alkanes.

The main objective of the study is the development of a detailed, but timesaving working plan for the qualitative and quantitative analysis of energy alcohol mixtures on the basis of gas-chromatography in connection with mass-spectrometry. The evaluation of such analyses is concentrated on relatively few mass-spectrometric features characteristic of the various substances. The analysis of mass-chromatograms avoids the timeconsuming and sometimes problematic analysis of individual spectra.
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th></th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>A)</td>
<td>Einleitung</td>
</tr>
<tr>
<td>B)</td>
<td>Hauptteil</td>
</tr>
<tr>
<td></td>
<td>Arbeitsprinzip</td>
</tr>
<tr>
<td></td>
<td>Identifizierung der einzelnen Verbindungsklassen</td>
</tr>
<tr>
<td></td>
<td>1. Alkohole</td>
</tr>
<tr>
<td></td>
<td>2. Ester</td>
</tr>
<tr>
<td></td>
<td>3. Ketone und Aldehyde</td>
</tr>
<tr>
<td></td>
<td>4. Ketale und Acetale</td>
</tr>
<tr>
<td></td>
<td>5. Ether</td>
</tr>
<tr>
<td></td>
<td>6. Alkane</td>
</tr>
<tr>
<td></td>
<td>7. Zyklische Verbindungen, Aromaten und Alkene</td>
</tr>
<tr>
<td></td>
<td>Quantifizierung identifizierter Verbindungen</td>
</tr>
<tr>
<td>C)</td>
<td>Zusammenfassung des Arbeitsschemas</td>
</tr>
<tr>
<td>D)</td>
<td>Experimenteller Teil</td>
</tr>
<tr>
<td>E)</td>
<td>Literaturverzeichnis</td>
</tr>
<tr>
<td>F)</td>
<td>Anhang</td>
</tr>
<tr>
<td></td>
<td>Teil 1: Chromatogramme</td>
</tr>
<tr>
<td></td>
<td>1. Alkohole</td>
</tr>
<tr>
<td></td>
<td>2. Ester</td>
</tr>
<tr>
<td></td>
<td>3. Ketone und Aldehyde</td>
</tr>
<tr>
<td></td>
<td>Teil 2: Tabellarische Übersicht über Substanznachweis und Retentionszeiten</td>
</tr>
</tbody>
</table>
A) Einleitung

Im Rahmen der Suche nach flüssigen Energieträgern, die die herkömmlichen Produkte – insbesondere Erdöldestillate – bei einer Verknappung des Rohöls ergänzen können, werden unter anderem Energiealkohole in Betracht gezogen. Diese lassen sich über den Zwischenschritt der Synthesegaserzeugung aus diversen kohlenstoffhaltigen Rohstoffen durch katalytische Umsetzung in sehr sauberer und umweltverträglicher Form gewinnen.

Die Untersuchungen beschränken sich auf Produktgemische, die mittels modifizierter Cu/ZnO-Katalysatoren aus Synthesegas verschiedener Zusammensetzung gewonnen wurden. Bei Verwendung von Katalysatoren mit anderen elementarer Zusammensetzung werden andere Produktverhältnisse erzielt, doch läßt sich die Vorgehensweise bei den GC/MS-Untersuchungen leicht erweitern.
Abb. 1: Gaschromatogramm (rekonstruierter Totalionenstrom) einer komplexen Energialkohol-Probe
B) Hauptteil

Arbeitsprinzip

In systematischer Form werden die in den Energiealkoholgemischen nachgewiesenen Stoffklassen (Alkohole, Ester, Ketone, Aldehyde, Ketale, Acetale, Ether und Alkane) abgehandelt und die Möglichkeiten der Homologen- und Isomerunterscheidung aufgezeigt.

Grundlage für die massenspektrometrische Identifizierung und Quantifizierung einer Verbindung ist eine möglichst gute gaschromatographische Auftrennung der Einzelkomponenten einer Substanzmischung, die bei der vorliegenden Fragestellung am besten durch eine lange, schwach polare Kapillarsäule (auf Methylsiliconbasis mit 5 % Phenylgruppen) zu erreichen ist. Bei guter gaschromatographischer Trennung sind für die Analyse einer unbekannten Energiealkoholprobe zwei GC/MS-Messungen erforderlich, die sich in der Art der Ionisation unterscheiden: 1. Ionisation durch Elektronenstoß (EI) und 2. Chemische Ionisation mit Methan (CI Methan). In manchen Fällen kann die zusätzliche Messung mit i-Butan als Reaktandgas hilfreich für Isomerunterscheidungen sein, doch ist sie nicht zwingend notwendig; im allgemeinen sind die Unterschiede von CI-Messungen mit Methan und i-Butan nur geringfügig.

Sehr oft bilden bei EI und CI alle Glieder einer homologen Stanzreihe ein oder mehrere Bruchstücke gleicher Masse, so daß bei der Auswertung der Massenspektren alle Substanzen mit einem gleichartigen Strukturelement selektiv dargestellt werden können. So lassen sich z.B. alle Alkohole, die ihre Hydroxylgruppe an C-4 tragen, in einem Massenchromatogramm
der Masse 73 selektiv abbilden, siehe Abb. 2. Für fast alle in den Energiealkoholgemischen vorkommenden Substanzklassen finden sich solche charakteristischen Ionen.

Abb. 2: Massenspektrogramm des Ions m/z 73 im Vergleich zum Totalionenstrom (unter EI-Bedingungen)

Abb. 3: Massenspektrogramm des Ions m/z 131 im Vergleich mit dem Totalionenstrom; mit großer Selektivität werden bei CI (i-Butan) nur die Ester mit der Summenformel C₇H₁₄O₂ abgebildet
Die ausgeprägte Neigung zur Erhaltung der vollständigen Molekülstruktur bei CI mit Methan (und insbesondere mit i-Butan) läßt sich ebenfalls gewinnbringend dadurch ausnutzen, daß mit Hilfe eines einzigen Massenchromatograms alle Verbindungen einer Substanzklasse mit gleicher Summenformel (und gleichem Molekulargewicht) übersichtlich darstellbar sind. So sind beispielsweise alle Ester mit sieben Kohlenstoffatomen und der Summenformel \(C_7H_{14}O_2 \) an dem Ion mit der Masse 131 erkennbar, und sie werden nur in sehr geringem Maße durch Ionen gleicher Masse aus anderen Verbindungen überlagert, siehe Abb. 3.

Dieser Bericht beschränkt sich aber nicht auf die Auflistung von Massenzahlen, die zur Darstellung von charakteristischen Massenchromatogrammen wichtig sind, sondern macht auch Angaben zur systematischen Erweiterungsmöglichkeit des Arbeitsschemas für den Fall, daß in Proben bisher nicht identifizierte Substanzen gefunden werden. Dadurch, daß Kriterien für die Isomerenunterscheidung einzelner Verbindungsgruppen dargestellt werden, ist das Arbeitsschema nicht starr fixiert auf bislang bekannte Verbindungen, sondern bietet die Grundlage für eine weitere Vertiefung der Analytik.

Die angegebenen Kriterien zur Isomerenunterscheidung sind darüber hinaus wichtig für den Fall, daß mit Chromatographiesäulen abweichender Polarität gearbeitet werden muß, weil sich dadurch die relativen Retentionszeiten verschieben können.

Während im allgemeinen die Substanztrennung über eine schwach polare Kapillarsäule ausreicht, und die noch bestehenden Überlagerungen von Peaks auf massenspektrometrischem Wege aufzuschlüsseln sind, so wurden für die Erstellung des Berichtes die Substanzgemische mit zwei Trennsäulen unterschiedlicher Polarität aufgetrennt. Dadurch ergeben sich Retentionszeitunterschiede, die bei Peaküberlagerungen eine Substanzidentifizierung erleichtern und dadurch absichern. Für die Routineuntersuchungen ist das Arbeiten mit zwei Trennsäulen aber nicht nötig, und die Verwendung einer polaren Säule bietet keinen Vorteil gegenüber einer relativ unpolaren.
Identifizierung der einzelnen Verbindungsklassen

1. Alkohole

Für die Erstellung von aussagekräftigen Massenchromatogrammen von den Alkoholen werden drei typische Fragmentierungsreaktionen ausgenutzt:

1.) Während die niederen Homologen bis einschließlich Butanol intensive Quasimolekülionen, MH⁺, bei Cl (Methan und i-Butan) bilden, spalten die höheren Homologen leicht Wasser ab, so daß die Ionen [MH - H₂O]⁺ bevorzugt registriert werden [1]. Demzufolge lassen sich bei den Alkoholen die einzelnen Gruppen gleicher Summenformel an folgenden Ionen erkennen:

<table>
<thead>
<tr>
<th>Summenformel:</th>
<th>m/z</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃OH</td>
<td>33</td>
<td>(MH⁺),</td>
</tr>
<tr>
<td>C₂H₅OH</td>
<td>47</td>
<td>(MH⁺),</td>
</tr>
<tr>
<td>C₃H₇OH</td>
<td>61</td>
<td>(MH⁺),</td>
</tr>
<tr>
<td>C₄H₉OH</td>
<td>75</td>
<td>(MH⁺),</td>
</tr>
<tr>
<td>C₅H₁₁OH</td>
<td>71</td>
<td>([MH - H₂O]⁺),</td>
</tr>
<tr>
<td>C₆H₁₃OH</td>
<td>85</td>
<td>([MH - H₂O]⁺),</td>
</tr>
<tr>
<td>C₇H₁₅OH</td>
<td>99</td>
<td>([MH - H₂O]⁺),</td>
</tr>
<tr>
<td>C₈H₁₇OH</td>
<td>113</td>
<td>([MH - H₂O]⁺),</td>
</tr>
<tr>
<td>C₉H₁₉OH</td>
<td>127</td>
<td>([MH - H₂O]⁺),</td>
</tr>
<tr>
<td>C₁₀H₂₁OH</td>
<td>141</td>
<td>([MH - H₂O]⁺).</td>
</tr>
</tbody>
</table>

Abb. 4 zeigt als Beispiel das Massenchromatogramm des Ions m/z 85, im dem alle in der Probe vorhandenen isomeren Hexanole abgebildet werden. Die Massenchromatogramme der übrigen in der Tabelle aufgeführten Fragmente finden sich im Anhang dieses Berichtes.

Weil die Quasimolekülionen von Methanol und Ethanol im Massenbereich der sehr intensiven Reaktandgasplasmainonen liegen, wird zweckmäßigerweise auf ihre Detektion verzichtet. Meist bilden die niederen Alkohole wegen ihrer hohen Konzentration Cluster-Ionen, bestehend aus zwei oder drei Alkoholmolekülen und einem Proton. Entsprechend können bei Methanol die Ionen m/z 65 und 97, bei Ethanol m/z 93 und 139 sowie bei den Propanolen m/z 121 und 181 zur Substanzidentifizierung herangezogen werden. Die Quantifizierung der niedermolekularen Alkohole sollte demzufolge nicht massenspektrometrisch, sondern wie in der Gaschromatographie üblich - mittels Flammenionisationsdetektor oder Wärmeleitfähigkeitsdetektor erfolgen.
Abb. 4: Massenchromatogramm des Ions m/z 85 (CI Methan); alle in der Probe vorhandenen isomeren Hexanole werden abgebildet

Abb. 5: Massenchromatogramme der Fragmente m/z 31, 45, 59 und 73 (unter EI-Bedingungen) zur Differenzierung der isomeren Alkohole
2.) Die zweite - diagnostisch wertvolle - Fragmentierungsreaktion ist die Alpha-Spaltung, also der Bruch der zur Hydroxylgruppe benachbarten C-C-Bindung nach Elektronenstoß-Ionisation [2]. Je nach Position des OH-Substituenten am Kohlenstoffgerüst werden verschiedene Bruchstücke erhalten:

OH-Gruppe an C-1: \[\text{[CH}_2\text{-OH}]^+ \quad m/z 31, \]
OH-Gruppe an C-2: \[\text{[CHOH-CH}_3\text{]}^+ \quad m/z 45, \]
OH-Gruppe an C-3

oder an C-2 bei einer zusätzlichen Methylgruppe an C-2:

\[\text{[CHOH-CH}_2\text{-CH}_3\text{]}^+ \]
\[\text{[C(CH}_3\text{)OH-CH}_3\text{]}^+ \quad m/z 59, \]

OH-Gruppe an C-4

oder an C-3 bei einer zusätzlichen Methylgruppe an C-3 oder an C-2:

\[\text{[CHOH-CH}_2\text{-CH}_2\text{-CH}_3\text{]}^+ \]
\[\text{[C(CH}_3\text{)OH-CH}_2\text{-CH}_3\text{]}^+ \]
\[\text{[CHOH-CH(CH}_3\text{-CH}_3\text{]}^+ \quad m/z 73. \]

Alkohole mit der Hydroxylgruppe an C-5 wurden in den Proben nicht gefunden.

Die Massenchromatogramme dieser vier Fragmente sind in Abb. 5 dargestellt; sie veranschaulichen in der überlagernden Darstellung die problemlose Differenzierung der verschieden Isomeren.

3.) Weiterhin ist das Auftreten eines M-46-Bruchstücks charakteristisch für primäre unverzweigte Alkohole; im Zuge einer Synchronreaktion wird neben Wasser Ethylen eliminiert, so daß ein Olefin-Kation resultiert [2]. Aus 1-Hexanol bildet sich also das Fragment \(m/z 56, [\text{C}_2\text{H}_5\text{-CH}=\text{CH}_2]^+ \):

\[
\text{[H}_2\text{O]} - \text{C}_2\text{H}_4
\]

\[m/z 102 \quad m/z 56 \]

Ist der Alkohol an C-2 durch eine Methylgruppe verzweigt, wird nicht Ethylen, sondern Propylen eliminiert, und das resultierend Fragment ist ein Propylen-Kation mit \(m/z 42, [\text{CH}_3\text{-CH=CH}_2]^+ \). Dadurch läßt sich beispielsweise 2-Methyl-1-pentanol sehr leicht von 1-Hexanol bzw. 3-Methyl- oder 4-Methyl-1-pentanol unterscheiden, siehe Abb. 6. Bei den höheren Homologen verschieben sich die Massenzahlen jeweils um 14 Einheiten.
Abb. 6: Massenchromatogramme der Ionen m/z 42 und 56 zur Unterscheidung verzweigter Hexanole; während eine Methylgruppe an C-2 durch ein - gegenüber m/z 56 relativ intensives - Bruchstück der Masse 42 anzeigt, wird, ist für 1-Hexanol bzw. 3-Methyl- und 4-Methyl-1-pentanol das Fragment m/z 56 dominant.

2. Ester

1.) Bei der chemischen Ionisation von Carbonsäureestern ist die Anlagerung eines Protons an das Carbonylsauerstoffatom ein energetisch sehr günstiger Vorgang, da die positive Ladung über die gesamte Estergruppe mesomer stabilisiert wird [8]. Daraus resultiert – insbesondere bei der Verwendung von i-Butan als Reaktionsgas – ein intensives Quasimoleküll, und alle Isomeren gleicher Summenformel können sehr selektiv von praktisch allen Ionen anderer Substanzen separiert werden. Lediglich bei den niederer Homologen der Ester finden sich in den Massenchromatogrammen die Quasimolekülionen einiger Alkohole gleichen Molekular- gewichts, doch schon ab Pentanol sind diese wegen der bereits erwähnten Neigung zur Dehydratisierung nicht mehr von Bedeutung. An folgenden Ionen lassen sich die Gruppen isomerer Ester erkennen:
Summenformel: \[\text{C}_2\text{H}_4\text{O}_2^\cdot \quad \text{m/z 61 (MH}^+), \]
\[\text{C}_3\text{H}_6\text{O}_2^\cdot \quad \text{m/z 75 (MH}^+), \]
\[\text{C}_4\text{H}_8\text{O}_2^\cdot \quad \text{m/z 89 (MH}^+), \]
\[\text{C}_5\text{H}_{10}\text{O}_2^\cdot \quad \text{m/z 103 (MH}^+), \]
\[\text{C}_6\text{H}_{12}\text{O}_2^\cdot \quad \text{m/z 117 (MH}^+), \]
\[\text{C}_7\text{H}_{14}\text{O}_2^\cdot \quad \text{m/z 131 (MH}^+), \]
\[\text{C}_8\text{H}_{16}\text{O}_2^\cdot \quad \text{m/z 145 (MH}^+), \]
\[\text{C}_9\text{H}_{18}\text{O}_2^\cdot \quad \text{m/z 159 (MH}^+), \]
\[\text{C}_{10}\text{H}_{20}\text{O}_2^\cdot \quad \text{m/z 173 (MH}^+), \]
\[\text{C}_{11}\text{H}_{22}\text{O}_2^\cdot \quad \text{m/z 187 (MH}^+), \]
\[\text{C}_{12}\text{H}_{24}\text{O}_2^\cdot \quad \text{m/z 201 (MH}^+), \]
\[\text{C}_{13}\text{H}_{26}\text{O}_2^\cdot \quad \text{m/z 215 (MH}^+). \]

Für die Ester mit sieben Kohlenstoffatomen ist das Massenchromatogramm von MH\(^+\) (m/z 131) in Abb. 3 dargestellt.

2.) In einigen Fällen erfolgt, bei Verwendung von Methan als Reaktandgas stärker als bei i-Butan, ein Zerfall der ionisierten Moleküle in wenige, für das Carbonsäuregerüst charakteristische Fragmente. Durch Eliminierung der Esterseitenkette als Alken – Methylester zeigen diese Reaktion also nicht - bleibt ein Carbonsäure-Kation, \([\text{R-C(OH)}_2]^+\), zurück, das wie das Quasimolekülion mesomeriestabilisiert ist \([4]\). Folgende Ionen deuten auf die aufgeführten Carbonsäurekomponenten hin:

- **Methansäureester**: m/z 47*, \([\text{H-C(OH)}_2]^+\),
- **Ethansäureester**: m/z 61, \([\text{CH}_3\text{-C(OH)}_2]^+\),
- **Propansäureester**: m/z 75, \([\text{C}_3\text{H}_5\text{-C(OH)}_2]^+\),
- **Butansäureester**: m/z 89, \([\text{C}_3\text{H}_7\text{-C(OH)}_2]^+\),
- **Pentansäureester**: m/z 103, \([\text{C}_4\text{H}_9\text{-C(OH)}_2]^+\).

Damit steht, wie Abb. 7 und 9 veranschaulichen, ein wertvolles Kriterium für die Isomereneinscheidung zur Verfügung. Auf eine mögliche Verzweigung des Carbonsäuregerüstes kann hierdurch allerdings nicht geschlossen werden.

* Auf die Aufzeichnung des Ions m/z 47 wurde in diesem Bericht wegen der Anwesenheit intensiver Reaktandgasplosma-Ionen im unteren Massenbereich verzichtet.
Abb. 7: Das Massenchromatogramm von m/s 75 zeigt mit relativ hoher Selektivität alle Propansäureester in dem Energiealkohol-Gemisch an (Cl-Messung mit Methan); im vorderen Teil des Massen chromatogramms finden sich zusätzlich die Quasimoleküllonen der Butanole

Abb. 8: Massenchromatogramm des Ions m/s 74 (Cl Methan); homologe Methylester werden dargestellt
Abb. 9: Massenspektrographie von m/z 61, 75, 89 und 103 zur Differenzierung isomerer Carbonsäureester der Summenformel C₇H₁₄O₂ (CI-Methan)

Abb. 10: Massenspektrogramme der Ionen m/z 74, 88 und 102; durch sie lassen sich die Alkoholkomponenten der Ester und mögliche Verzweigungen an C-2 erkennen (EI-Bedingungen)
3.) Auf Verzweigungen im Carbonsäuregerüst sowie auf die Alkoholkomponente des Esters läßt sich in gewissen Grenzen aus den Bruchstücken der Spaltung der Bindung zwischen C-2 und C-3 (bei CI-Messungen) bzw. einer McLafferty-Umlagerung (bei EI-Messungen) schließen [5]. In beiden Fällen entstehen die Ionen

\[
\begin{align*}
&m/z 74, & [\text{CH}_2=\text{C(OH)}-\text{OCH}_3]^+ & \text{aus Methylestern, die Ionen} \\
&m/z 88, & [\text{CH(CH}_3)=\text{C(OH)}-\text{OCH}_3]^+ & \text{aus 2-Methylcarbonsäuremethylestern bzw.} \\
&m/z 102, & [\text{CH}_2=\text{C(OH)}-\text{OC}_2\text{H}_5]^+ & \text{aus Ethylestern und} \\
&m/z 102, & [\text{CH}_2=\text{C(OH)}-\text{OC}_3\text{H}_7]^+ & \text{aus 2-Ethylcarbonsäureethylestern oder} \\
&m/z 102, & [\text{CH}_2=\text{C(OH)}-\text{OC}_2\text{H}_5]^+ & \text{aus Propylestern.}
\end{align*}
\]

Mit diesen Informationen läßt sich die Isomerenzuordnung ergänzen, s. Abb. 8 und 10.

Steht für die Auswertung, insbesondere für eine quantitative Abschätzung der Isomerenverteilung bei den Estern, keine CI-Messung mit i-Butan zur Verfügung, so können aus der Messung mit Methan als Reaktantgas die Quasimolekülionen und die wichtigsten Fragmente (Carbonsäure-Kationen) zu einem gemeinsamen Massenchromatogramm zusammengefaßt werden. Abbildung 11 zeigt als Beispiel im oberen Teil das Massenchromatogramm m/z 131 der Ester mit sieben Kohlenstoffatomen und im unteren Teil ein rekonstruiertes Massenchromatogramm der Ionen m/z 131, 103, 89, 75 und 61. Dieses rekonstruierte Massenchromatogramm zeigt bezüglich der Flächenverhältnisse der einzelnen Isomeren große Übereinstimmung mit dem Massenchromatogramm von m/z 131 aus CI-Messungen mit i-Butan, siehe Abb. 3. Für die Rekonstruktion von Massenchromatogrammen höherer und niederer Homologen ist ein analoges Vorgehen möglich, ohne daß Ionen fremder Substanzen stören.
Abb. 11: Massenchromatogramm des Ions m/z 131 (CI Methan) (oben) im Vergleich zu dem rekonstruierten Massenchromatogramm aus den Ionen m/z 131, 103, 89, 75 und 61 (unten). Das rekonstruierte Massenchromatogramm gibt die reale Konzentrationsverteilung der Isomeren besser wieder als das Massenchromatogramm des Quasimoleküllions m/z 131.
3. Ketone und Aldehyde

1.) Ebenso wie Ester lassen sich Ketone und Aldehyde durch Chemische Ionisation leicht protonieren, so daß die Massenchromatogramme der Quasimolekülen ein gutes Kriterium für das Auffinden dieser Carbonylverbindungen sind. Am ausgeprägtesten sind die MH\(^+\)-Ionen wiederum bei CI-i-Butan, aber auch CI mit Methan liefert noch gute Ergebnisse, obwohl hierbei die Abspaltung von Wasser aus den Quasimolekülen einiger Ketone und besonders der Aldehyde schon deutlich messbar wird [6]. Wenn auf die Messung mit i-Butan verzichtet werden muß, so lassen sich ähnlich wie bei den Estern die Massenchromatogramme der Ionen MH\(^+\) und [MH-H\(_2\)O]\(^+\) aus der Messung mit Methan zusammenfassen, um alle Isomen zu erkennen und um eine grobe Abschätzung der Konzentrationsverhältnisse durchführen zu können, siehe Abb. 12. Folgende Ionen weisen auf Ketone und Aldehyde hin:

<table>
<thead>
<tr>
<th>m/z</th>
<th>Formel</th>
<th>Summenformel</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
<td>C(_2)H(_4)O</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>C(_3)H(_6)O</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>C(_4)H(_8)O</td>
</tr>
<tr>
<td>73</td>
<td>m/z 55 *</td>
<td>C(_5)H(_10)O</td>
</tr>
<tr>
<td>87</td>
<td>m/z 69</td>
<td>C(_6)H(_12)O</td>
</tr>
<tr>
<td>101</td>
<td>m/z 83</td>
<td>C(_7)H(_14)O</td>
</tr>
<tr>
<td>115</td>
<td>m/z 97</td>
<td>C(_8)H(_16)O</td>
</tr>
<tr>
<td>129</td>
<td>m/z 111</td>
<td>C(_9)H(_18)O</td>
</tr>
<tr>
<td>143</td>
<td>m/z 125</td>
<td>C(_10)H(_20)O</td>
</tr>
<tr>
<td>157</td>
<td>m/z 139</td>
<td></td>
</tr>
</tbody>
</table>

2.) Die Elektronenstoß-Ionisation liefert bei den Ketonen ebenfalls recht gute Molekülionenausbeuten, nicht dagegen bei den Aldehyden. Dadurch ist eine Unterscheidung zwischen Ketonen und Aldehyden möglich, doch Vorsicht ist geboten, weil auch manche Ketone durch leicht zerfallende Molekülen gekennzeichnet sind. Die Massenchromatogramme der Molekülen bei EI und der Quasimolekülen bei CI (Methan) sind somit sehr ähnlich.

Anders als bei der Chemischen Ionisation ist bei EI die Wasserabspaltung aus dem Molekül-

* Auf die Aufzeichnung der mit dem Stern markierten Ionen wurde wegen der Anwesenheit intensiver Plasmainonen im unteren Massenbereich verzichtet.
ion in diesem Zusammenhang nicht relevant. Dagegen treten bei EI zwei andere Fragmentierungswege zutage, die für die Isomenunterscheidung nützlich sind: die Alpha-Spaltung und (bei Molekülen ausreichender Kettenlänge) die McLafferty-Umlagerung.

3.) Durch Alpha-Spaltung wird bei den Aldehyden ein Ion der Masse m/z 29 gebildet, das allerdings nur für die niederen Homologen signifikant ist [7].

Günstiger sind die Verhältnisse bei den Ketonen, bei denen jeweils zwei Fragmente auftreten, die Rückschlüsse auf die Lage der Carbonylgruppe im Molekül erlauben: \([R-CO-R']^+\) zerfällt in R-CO⁺ und R'-CO⁺. Folgende Ionen werden registriert [8]:

\[
\begin{align*}
\text{m/z 43,} & \quad \text{CH}_2\text{CO}^+ \quad \text{bei Methylketonen,} \\
\text{m/z 57,} & \quad \text{CH}_3\text{CH}_2\text{CO}^+ \quad \text{bei Ethylketonen,} \\
\text{m/z 71,} & \quad \text{CH}_3\text{CH}_2\text{CH}_2\text{CO}^+ \quad \text{bei Propylketonen bzw.} \\
& \quad \text{(CH}_3\text{)CHCO}^+ \quad \text{bei 2-Methylethylketonen und} \\
\text{m/z 85,} & \quad \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CO}^+ \quad \text{bei Butylketonen bzw.} \\
& \quad \text{CH}_3\text{CH}_2\text{CH(CH}_3\text{)CO}^+ \quad \text{bei 3-Methylpropylketonen sowie} \\
& \quad \text{(CH}_3\text{)CHCH}_2\text{CO}^+ \quad \text{bei 2-Methylpropylketonen.}
\end{align*}
\]
Diese Ionen werden in den Massenchromatogrammen durch eine beträchtliche Anzahl von Molekülfragmenten anderer Verbindungsklassen überlagert, doch mit Hilfe des zweiten Alpha-Spaltproduktes und des Molekülions lassen sich fast immer eindeutige Zuordnungen treffen. So finden sich beispielsweise die Ionen m/z 43 und 99 beim 2-Heptanon, die Ionen m/z 57 und 85 bei 3-Heptanon und das Ion m/z 71 bei 4-Heptanon (das symmetrische Molekül zerfällt in zwei gleiche Bruchstücke), siehe Abb. 13.

4.) Die McLafferty-Umlagerung läßt Rückschlüsse auf eine mögliche Substitution in der Alpha-Position zur Carbonylgruppe zu. Ist ein Aldehyd in Position 2 unverzweigt, wird ein Ion der Masse m/z 44 gebildet (das trotz relativ großer Intensität hier von geringer Bedeutung ist); bei anderen Substituenten an dieser Stelle verschiebt sich die Masse dieses Fragments entsprechend [8].

Besser erkennbar als das Fragment m/z 44 aus Aldehyden sind in Massenchromatogrammen die Bruchstücke der McLafferty-Umlagerung einiger Ketone [10]. Sie sind durch die nachfolgend aufgeführten Ionen charakterisiert:

\[
\begin{align*}
\text{m/z 58,} & \quad CH_2=CH(CH_3)OH^+ & \text{aus Methylketonen,} \\
\text{m/z 72,} & \quad CH_2=CH(C_2H_5)OH^+ & \text{aus Ethylketonen bzw.} \\
& \quad CH(CH_3)=CH(C_2H_5)OH^+ & \text{aus 3-Methyl-propylketonen,} \\
\text{m/z 86,} & \quad CH_2=CH(C_3H_7)OH^+ & \text{aus Propylketonen usw.}
\end{align*}
\]

Abbildung 14 zeigt die Massenchromatogramme der Molekülionen aller isomeren Heptanone und deren McLafferty-Fragmente; gut erkennbar sind z.B. die Ionen m/z 58 aus 2-Heptanon und m/z 72 aus 3-Methyl-2-heptanon oder auch m/z 72 aus 3-Heptanon.

Zusammen mit den Informationen aus den Fragmenten der Alpha-Spaltung liefert also die McLafferty-Umlagerung gute Hinweise auf die Grundstruktur der Ketone.
Abb. 13: Massenchromatogramme der Fragmente aus der Alpha-Spaltung von isomeren Heptanonen; Messung nach EI
4. Ketale und Acetale

In den Energiealkoholgemischen finden sich regelmäßig Ketale und Acetale, die aber wahrscheinlich nicht genuine Syntheseprodukte sind, sondern Umsetzungsprodukte der Ketone und Aldehyde in alkoholischer Lösung in Gegenwart von Säurespuren (z.B. Ameisensäure). Da in den untersuchten Alkoholgemischen wesentlich mehr Methanol als Ethanol bzw. höhere Homologen vorliegt, werden nur die Methylketale und -acetale beobachtet.

Diese zeigen als Ether folgende charakteristischen Fragmentierungsreaktionen:

1.) Die Alpha-Spaltung nach Elektronenstoß-Ionisation führt bei den Dimethylacetalen zu dem recht signifikanten Ion m/z 75, [H-C(OCH₃)₂]⁺, das in geringem Maße formal durch den Verlust zweier CH₂-Gruppen zu m/z 47, [H-C(OH)₂]⁺, abgebaut wird [11]. Beide Ionen
sind sehr gut mesomeriestabilisiert, so daß alle Dimethylacetale gut an diesen beiden Fragmenten erkannt werden können, siehe Abb. 15.

Abb. 15: Massenchromatogramme der Ionen m/z 47 und 59, die bei EI-Messungen zwei wesentliche Fragmente von Dimethylacetalen sind

Abb. 16: Massenchromatogramme der Bruchstücke, die durch den Verlust von OCH₃-Radikalen aus verschiedenen Dimethylacetalen gebildet werden (EI-Bedingungen)
Abb. 17: Massenchromatogramme der Fragmente m/z 89, 103 und 117 aus der Alpha-Spaltung von den Dimethylketalen 2,2-Dimethoxypentan, 3,3-Dimethoxypentan und 2,2-Dimethoxy-3-methylbutan sowie das Massenchromatogramm des Moleküllons m/z 86 der den Ketalen zugrunde liegenden Ketone (EI-Messung)

Abb. 18: Massenchromatogramme der Fragmente aus der Alpha-Spaltung (m/z 75, 89, 103 und 117) und der Abspaltung eines OCH₃-Radikals (m/z 101) aus den Acetalen und Ketalen der verschiedenen Pentanale und Pentanone unter EI-Bedingungen
Die Ketale liefern bei der Alpha-Spaltung zwei Bruchstücke, die regelmäßig nachgewiesen werden. Folgende Ionen kennzeichnen die Dimethylketale der

Methylketone: m/z 89, \[\text{CH}_3\text{-C(OCH}_3\text{)}_2]^+\, \\
Ethylketone: m/z 103, \[\text{C}_2\text{H}_5\text{-C(OCH}_3\text{)}_2]^+\, \\
Propylketone und m/z 117, \[\text{C}_3\text{H}_7\text{-C(OCH}_3\text{)}_2]^+\, \\
Isopropylketone: m/z 131, \[\text{C}_4\text{H}_9\text{-C(OCH}_3\text{)}_2]^+\text{ usw.}

unverzweigte und
verzweigte Butylketone: m/z 131, \[\text{C}_4\text{H}_9\text{-C(OCH}_3\text{)}_2]^+\text{ usw.}

Dementsprechend werden z.B. aus 2,2-Dimethoxypentan (Methylpropylketon-dimethylketal) und aus 3-Methyl-2,2-dimethoxybutan die Fragmente m/z 89 und 117, aus 3,3-Dimethoxypentan m/z 103 (zwei Bruchstücke gleicher Masse) gebildet, siehe Abb. 17. Durch diese Fragmentpaare sind Rückschlüsse auf das Molekulargewicht zu ziehen, was sehr hilfreich ist, da der Nachweis von Molekülionen (bei EI) oder Quasimolekülionen (bei CI) nicht möglich ist.

2.) Wie die Abbildungen 16 und 18 zeigen ist der Verlust eines Methoxy-Radikals aus dem Molekülion der Acetale und Ketale ebenfalls nachweisbar; in Abb. 16 sind die bei dieser Fragmentierung gebildeten Ionen (z.B. m/z 59 aus 1,1-Dimethoxyethan) gekennzeichnet, in Abb. 18 die entsprechenden Fragmente der Pentanoyl-dimethylketalen und Pentanal-dimethylacetale (m/z 101). Die folgende Tabelle führt die charakteristischen Ionen der OCH\textsubscript{3}-Abspaltung auf:

<table>
<thead>
<tr>
<th>m/z</th>
<th>aus</th>
<th>Methanal-dimethylacetal,</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>aus</td>
<td>Ethanal-dimethylacetal,</td>
</tr>
<tr>
<td>59</td>
<td>aus</td>
<td>Propanal-dimethylacetalen und Propanon-dimethylketal,</td>
</tr>
<tr>
<td>73</td>
<td>aus</td>
<td>Butanal-dimethylacetalen und Butanon-dimethylketalen,</td>
</tr>
<tr>
<td>87</td>
<td>aus</td>
<td>Pentanal-dimethylacetalen und Pentanon-dimethylketalen,</td>
</tr>
<tr>
<td>101</td>
<td>aus</td>
<td>Hexanal-dimethylacetalen und Hexanon-dimethylketalen usw.</td>
</tr>
</tbody>
</table>

3.) Entsprechende Fragmente werden auch bei CI-Messungen beobachtet: aus dem Quasimolekülion MH+ wird Methanol eliminiert. Abb. 19 zeigt ein Beispiel dafür. Dort sind das Massen chromatogramm von m/z 101 für die Bruchstücke nach der Methanolabspaltung
aus Pentanon-dimethylketalen und Pentanal-dimethylacetalen sowie das Massenchromatogramm m/z 87 für die den Ketalen und Acetalen zugrunde liegenden Ketone und Aldehyde dargestellt.

Abb. 19: Massenchromatogramme der Ionen m/z 101 und 87, die auf Pentanon-dimethylketale und Pentanal-dimethylacetale sowie auf die ihnen zugrundeliegenden Ketone und Aldehyde hinweisen (CI-Bedingungen)

Ebenso schwierig ist die Isomerenunterscheidung, da sich aus den Massenchromatogrammen lediglich die Position der Methoxygruppen in den Ketalen ableiten läßt; ist eine Differenzierung der Isomeren erforderlich, so müssen entweder ihre Retentionszeiten bekannt sein, oder es müssen die vollständigen Massenspektren analysiert werden.
5. Ether

Charakteristische Ionen, die selektiv nur auf Ether hinweisen, gibt es nicht. Die von den Ethern gebildeten Fragmente finden sich ebenfalls bei Alkoholen und Estern, so daß bei der Peakzuordnung im Chromatogramm Retentionszeiten sorgfältig beachtet werden müssen. Dies ist aber bei den bisher beobachteten Alkylethern problemlos möglich.

Zur Identifizierung dienen bei den niedereren Homologen sowohl die Molekülionen als auch die Quasimolekülionen, bei den höheren Homologen, die keine Molekülionen mehr aufweisen, die Fragmente der Alpha-Spaltung.

3.) Zur Isomerendifferenzierung eigenen sich im begrenzten Rahmen die Fragmente der Alpha-Spaltung nach Elektronenstoßionisation [16]. So zeigen sich beispielsweise die unterschiedlichen Verzweigungen in t-Butilmethylether und i-Butilmethylether an dem Fragment m/z 73 im ersten Fall und m/z 45 im zweiten, siehe Abb. 21.

Die systematische Erkennung und die Isomerenunterscheidung der Ether weiter zu vertiefen ist an dieser Stelle nicht sinnvoll, weil nur sehr wenige Ether in den Energiealkoholgemischen
vorkommen. Einige zusätzliche Angaben finden sich im Tabellenteil des Anhangs.

Abb. 20: Die Massenspektrogramme der Ionen m/z 61, 75, 89 und 93 aus der chemischen Ionisation mit Methan weisen auf die Quasimoleküllionen und Fragmente verschiedener Ether hin. Beim Dimethyl ether finden sich die Ionen [M+CH₅-H₂]+ (m/z 61), [M+CH₃H₂]+ (m/z 75) und [2M+H]+ (m/z 93).

Abb. 21: Mit Hilfe der Bruchstücke aus der Alpha-Spaltung nach Elektronenstoß-Ionisation (m/z 73 und 45) lassen sich i-Butylmethylether und t-Butylmethylether voneinander unterscheiden.
6. Alkane

Wie schon bei den Ethern kann auch der Abschnitt über die Alkane kurz gefaßt werden, weil der Anteil dieser Verbindungsklasse in den Energiealkoholgemischen ebenfalls sehr klein ist und zusammen weniger als 1000 ppm ausmacht.

Die Spanne der Molekülgröße ist dagegen bei den Alkanen größer als bei allen anderen Substanzklassen; sie erstreckt sich vom niedermolekularen Bereich bis etwa zu Triacontan, C\textsubscript{30}H\textsubscript{62}. Meist werden aber lediglich die Homologen bis zum Cosan, C\textsubscript{26}H\textsubscript{42}, gefunden. Die Paraffine mit einem Schmelzpunkt oberhalb der Raumtemperatur und geringer Löslichkeit in Alkoholen fallen manchmal in geringen Mengen als flockiger Niederschlag aus der Lösung aus.

Aus den Proben, in denen ein Paraffinniederschlag zu beobachten war, ließ sich dieser leicht abfiltrieren, mit Pentan aus dem Filterpapier auswaschen und mittels GC/MS über eine kurze Kapillarsäule analysieren, siehe Abb. 22.

Abb. 22: Massen chromatogramme der Molekülionen (EI) von homologen Paraffinen und von dem, allen Homologen gemeinsamen, Basisison m/z 57
Bei der Isomerendifferenzierung wurden sowohl verzweigte, als auch unverzweigte Alkane gefunden, wobei die unverzweigten deutlich dominierten. Deshalb beschränkt sich der Nachweis fast ausschließlich auf die homologen n-Alkane, welche an einem ausreichend intensiven Molekülion mit der Summenformel \(\text{C}_n \text{H}_{2n+2} \) bei Elektronenstoßionisation meist gut erkannt werden \(^{[18]} \).

Erschwerend kann sich allerdings der Umstand auswirken, daß die GC-Peaks der Alkane bei der Chromatographie über eine schwach polare Trennsäule von denen der Ketone gleicher Masse überlagert werden. Durch Verwendung einer polaren Säule (z.B. Carbowax 20M) lassen sich allerdings diese Überlagerungen reduzieren und insbesondere unter Berücksichtigung der regelmäßigen Retentionszeitdifferenzen die einzelnen Homologen zuordnen.

Bei CI-Messungen zeichnen sich die Alkane durch die Bildung von \([M-\text{H}]^+\)-Ionen aus \(^{[17]} \), so daß sich eine zusätzliche Möglichkeit zur Unterscheidung von Ketonen bietet, die die um zwei Masseneinheiten schwereren \(\text{MH}^+ \)-Ionen bilden.

7. Zyklische Verbindungen, Aromaten und Alkene

Die Suche nach Aromaten und Alkenen verlief ebenfalls negativ.
Quantifizierung identifizierter Verbindungen

Die exakte Quantifizierung einzelner Komponenten ist mit Hilfe der allgemein gängigen Methoden über Eichmessungen mit Referenzsubstanzen möglich. Allerdings sind nur etwa achtzig der identifizierten Substanzen im Handel erhältlich, so daß oft mit abgeschätzten Resonanzfaktoren gearbeitet werden muß. Dies ist in der Massenspektrometrie problematischer als z.B. bei der gaschromatographischen Quantifizierung mittels Flammenionisationsdektor (FID), weil die Ionisationsquerschnitte für verschiedene Moleküle im Massenspektrometer wesentlich unterschiedlicher sind als die Ionenbildung organischer Verbindungen im FID.

Eine ausreichend genaue Abschätzung der Konzentrationen ist allerdings innerhalb einer Gruppe von Isomeren mit gleicher funktioneller Gruppe und gleicher Summenformel möglich. Unter milden Ionisationsbedingungen (insbesondere CI-i-Butan) werden hauptsächlich Quasimolekülionen oder nur sehr wenige, für die einzelnen Isomeren meist gleichartige Fragmente gebildet, und die Flächenverhältnisse der auf die entsprechenden Massenchromatogramme reduzierten GC-Peaks geben die Konzentrationsverhältnisse an. Ist aus einer solchen Gruppe von Isomeren die Konzentration eines einzigen Isomeren aus massenspektrometrischen oder gaschromatographischen Eichmessungen bekannt, so lassen sich die absoluten Konzentrationen aller übrigen Isomeren hinreichend genau ableiten.

C) Zusammenfassung des Arbeitsschemas

Zur vollständigen qualitativen und quantitativen Analyse einer Energiealkoholprobe können die GC/MS-Messungen (EI und CI mit Methan oder i-Butan) unter Berücksichtigung von Retentionszeiten wie folgt ausgewertet werden:

Die Alkohole werden in CI-Methan-Messungen an den Quasimolekülionen m/z 33, 47, 61, 75 bzw. die höheren Homologen an den Fragmenten \([\text{MH} - \text{H}_2\text{O}]^+\), nämlich m/z 71, 85, 99 usw., erkannt und quantitativ abgeschätzt. Ab C\(_7\)H\(_{16}\)O liefert die Verwendung von i-Butan als Reaktandgas bessere Ergebnisse als Methan. - Bei den Hauptkomponenten Methanol, Ethanol und 1-Propanol finden sich, da sie immer in großer Konzentration vorliegen, zusätzlich Ionen von Molekül-Cluster aus jeweils zwei beziehungsweise drei Alkoholmolekülen und einem Proton, für Methanol also m/z 65 und 97, für Ethanol m/z 93 und 139 sowie für 1-Propanol m/z 121 und 181. Diese Cluster-Ionen sind im Falle der ersten beiden Homologen leichter als die Quasimolekülionen auszuwerten, da die MH\(^+\)-Ionen im Bereich störender Reaktandgasplasmaionen liegen.

Die Ester lassen sich sehr gut an den Quasimolekülionen m/z 61, 75, 89 usw. bei CI-i-Butan-Messungen identifizieren. Auch die Quantifizierung gelingt gut, doch führt bei einigen höheren Homologen (ab C\(_8\)H\(_{16}\)O\(_2\)) die begrenzte gaschromatographische Auftrennung zu Isomerenüberlagerungen. In solchen Fällen ist die quantitative Abschätzung auf der Grundlage von Fragmenten, die sich aber bevorzugt bei Verwendung von Methan als Reaktandgas bilden, vorteilhafter. Steht für die Auswertung ausschließlich nur die CI-Messung mit Methan zu Verfügung, sind die Massenchromatogramme der MH\(^+\)-Ionen und die der wichtigsten Fragmente (Carbonsäurekomponenten der höheren Ester, m/z 61, 75, 89 usw.) zu addieren.

Ähnlich wie bei den Estern lassen sich die Ketone gut, die Aldehyde dagegen nur begrenzt an den Quasimolekülionen m/z 31, 45, 59, 73 usw. mit i-Butan-Messungen nachweisen. Für Aceton und die niederen Homologen der Aldehyde (bis C\(_3\)H\(_8\)O) wird wegen intensiver Plasmaionen im CI-Mode zweckmäßigigerweise auf EI-Messungen zurückgegriffen; allerdings ist auf einer unpolaren Säule die Abbrennung des Formaldehyds und des Acetaldehyds vom Methanol sehr problematisch. Dies gelingt - sofern die Aldehydkonzentrationen gering sind - gut auf der Carbowaקסäule, von der die Aldehyde (bis Propanal) und das Aceton vor der Methanol eluieren. - Für die exakte Quantifizierung der niederen Aldehyde ist wegen ihrer relativ schlechten chromatographischen Eigenschaften und der starken Fragmentierung im EI-Mode eine HPLC-Bestimmung angebracht. Die CI-Messung der höheren Homologen

Der Nachweis der Ketale und Acetale stützt sich ganz auf EI-Messungen; dadurch wird die Quantifizierung ohne Zuhilfenahme von Referenzverbindungen problematisch, denn es findet sich kein für alle Isomeren beziehungsweise Homologen spezifisches Ion. Akzeptable Konzentrationswerte werden bei den Acetalen erhalten, wenn die beiden Fragmente m/z 47 und 75 integriert werden. Die Ketale dagegen bilden kein gemeinsames, massegleiches Fragment; in Abhängigkeit von der Position der Methoxygruppen in den Dimethylketalen entstehen verschiedene Ionenpaare, die für Quantifizierungszwecke zusammengefaßt werden können: alle 2,2-Dimethylketale bilden das Ion m/z 89 und ein, der Länge der Kohlenstoffkette entsprechendes, Fragment der Masse m/z 89, 103, 117 usw. Alle 3,3-Dimethylketale weisen das Ion m/z 103 auf, und in Richtung der höheren Homologen setzt sich die Reihe sinngemäß fort.

Für die Identifizierung und Quantifizierung der wenigen Alkylether eignen sich die Massenchromatogramme der Quasimoleküllonen m/z 61, 75, 89 usw. aus CI-Methan- und i-Butan-Messungen. Überlagerungen mit massegleichen Alkoholen und Estern sind auf Grund der guten gaschromatographischen Auftrennung dieser drei unterschiedlich polaren Stoffklassen nicht zu beobachten.

Die (bislang identifizierten, bei Raumtemperatur flüssigen) Alkane bilden alle ausreichend intensive Moleküllonen (m/z 72, 86, 100 usw.) nach Elektronenstoßionisation, so daß die Identifizierung und Abgrenzung von Ionen anderer Stoffklassen (z.B. von Ketonen) gut gelingt. In gewissen Grenzen kann - besonders bei den langkettigen Homologen - das gemeinsame Basison m/z 57 zur Konzentrationsabschätzung herangezogen werden.

Schließlich ist darauf hinzuweisen, daß die sehr polare Carbowax-Säule der Methylphenylsiloxan-Säule bezüglich der Trennleistung im allgemeinen unterlegen ist. Lediglich bei den niedermolekularen Aldehyden und bei einigen Estern ist ihre Trennfähigkeit gegenüber der unpolaren Säule besser. Ergänzende Chromatographieversuche, die in diesem Bericht nicht weiter erwähnt wurden, haben außerdem gezeigt, daß reine Methylsiliconphasen ebenfalls
sehr gute Trennungen gewährleisten, vor allem bei gut desaktivierten Kapillarsäulen mit geringem Innendurchmesser (0,2 mm).
D) Experimenteller Teil

Geräte:
1) GC/MS-System "5100 SP" der Firma Finnigan MAT, ausgerüstet mit den Kapillarsäulen DB 5 und DB Wax (jeweils 60 m)
2) Gaschromatograph "Sichromat 2" der Firma Siemens (für gaschromatographische Quantifizierungen mittels FID oder WLD), ausgerüstet mit 60 m DB 5 als Vorsäule und 30 m DB Wax als Hauptsäule

Chromatographiesäulen:
Fused-Silica-Kapillarsäulen der Handelsgesellschaft ICT,
a) 60 m DB 5, 95 % Dimethyl-(5 %)-diphenylpolysiloxan, 0,25 mm innerer Durchmesser, 1 Mikrometer Filmdicke,
b) 60 m DB Wax, Polyethylen glycol, 0,25 mm ID, 0,25 Mikrometer Filmdicke,
c) 30 m DB Wax, 0,25 mm ID, 0,5 Mikrometer Filmdicke
d) 12 m HP pona (für Paraffinfraktion), 0,2 mm ID, 0,33 Mikrometer Filmdicke

Chromatographie- und Betriebsbedingungen:
Ad 1) Injektortemperatur: 260 °C, Splitverhältnis ca. 10 : 1,
injiziertes Probenvolumen: 0,6 Mikroliter,
Interfacetemperatur GC – MS: 270 °C,
Temperatur der Ionenquelle: bis 120 °C,
Ofentemperaturprogramm: 40 – 100 °C mit 3 °C/min, 100 – 260 °C (bei DB Wax bis 240 °C) mit 4,5 °C/min, 30 min isotherm bei 260 (240) °C;
Trägergas : Helium (10 psi);
Trägergas geschwindigkeit (bei Chromatographiebeginn): 18 cm/s.
Die Scan-Geschwindigkeit wurde bei verschiedenen Messungen etwas variiert; meist lag sie bei 1 Scan pro Sekunde (von u = 29 bis 320 bei EI und von 60 bis 320 bei CI).
Die Ionisierung erfolgte unter 70 eV Beschleunigungsspannung
Ad 2) Injektortemperatur: 260 °C, Splitverhältnis ca. 10 : 1,
injiziertes Probenvolumen: 0,7 Mikroliter,
Temperaturprogramm von Ofen 1: s. ad 1),
Temperaturprogramm von Ofen 2: 5 min isotherm bei 40 °C, 40 – 100 °C mit 4,5 °C/min, 60 min isotherm bei 100 °C,
Detektor 1 (FID, hinter der Vorsäule, Ofen 1), Temperatur: 280 °C,
Detektor 2 (WLD, hinter der Hauptsäule, Ofen 2), Temperatur: 220 °C.
Trägergas: Helium, Säule 1: 1,67 bar, Säule 2: 0,7 bar.

Die so ermittelten Konzentrationswerte von einzelnen Isomeren wurden der quantitativen Abschätzung der übrigen Isomeren zu Grunde gelegt.
E) Literaturverzeichnis

F) **Anhang**

Teil 1: Chromatogramme

Im ersten Teil des Anhangs wurden die Massenchromatogramme, in denen alle Isomeren der einzelnen Homologen für die wichtigsten Substanzklassen (Alkohole, Ester, Ketone und Aldehyde) abgebildet sind, in übersichtlicher Form zusammengestellt.

Die Chromatogramme sind, wenn nicht anders erwähnt, unter Verwendung der schwach polaren Kapillarsäule DB 5 aufgenommen worden; nur in Ausnahmefällen werden die Abbildungen durch Messungen über die polare Carbowax-Säule ergänzt.

Den einzelnen Abbildungen liegen verschiedene Messungen der gleichen Probe zugrunde, bei denen teilweise die Scan-Geschwindigkeit variiert wurde. Dadurch können die Zahlenangaben in den Chromatogrammen, die den Scan-Nummern entsprechen, Sprünge aufweisen. Dies hat aber keinen Einfluß auf die Retentionszeiten, die im zweiten Teil des Anhangs zusammengestellt sind, weil die Temperaturprogramme für alle Messungen gleich waren.
Abb. 23: Massenchromatogramm des Methanol-Clustereins [2 M + H]^+ m/z 65 und rekonstruierter Totalionenstrom (RIC), in der oberen Bildhälfte beides vom Gesamtchromatogramm, in der unteren vom Ausschnitt im Bereich des Methanols; Aufnahmebedingungen: CI (Methan)
Abb. 24: Massenspektrum des Ethanol-Clusterions \[2 \text{M} + \text{H}\]^+ \text{m/z} 93 und rekonstruierter Totalonstrom, in der oberen Bildhälfte beides vom Gesamtspektrum, in der unteren vom Ausschnitt im Bereich des Ethanol's; Aufnahmebedingungen: CI (Methan)
Abb. 25: Massenchromatogramm des Ions m/z 61 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtspektrum, in der unteren vom Ausschnitt im Bereich der Propanole; CI (Methan)
Abb. 26: Massenchromatogramm des Ions m/z 75 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtchromatogramm, in der unteren vom Ausschnitt im Bereich der Butanoide; CI (Methan)
Abb. 27: Massenchromatogramm des Ions m/z 71, ([MH - H₂O]⁺), und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtcromatogramm, in der unteren vom Ausschnitt der Pentanole; CI (Methan)
Abb. 28: Massenchromatogramm des Ions m/z 85 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtchromatogramm, in der unteren vom Ausschnitt im Bereich der Hexanoile; CI (Methan)
Abb. 39: Massenchromatogramm des Ions m/z 99 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtchromatogramm, in der unteren vom Ausschnitt im Bereich der Heptanole; CI (i-Butan)
Abb. 30: Massenchromatogramm des Ions m/z 113 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtchromatogramm, in der unteren vom Ausschnitt im Bereich der Octanole; CI (i-Butan)
Abb. 31: Massenchromatogramm des Ions m/z 127 und rekonstruierter Totalionenstrom, in der oberen Bildhälfe beides vom Gesamtspektrogramm, in der unteren vom Ausschnitt im Bereich der Nonanole; CI (i-Butan)
Abb. 32: Massenspectrogramm des Ions m/z 141 und rekonstruierter Totalionenstrom, in der oberen Bildhälfe beides vom Gesamtchromatogramm, in der unteren vom Ausschnitt im Bereich der Decanole; CI (i-Butan)
Abb. 33: Massenspektrogramm des Ions m/z 61 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtspektrum, in der unteren vom Ausschnitt im Bereich des Methylformats; CI (Methan)
Abb. 34: Massenchromatogramm des Ions m/z 75 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtchromatogramm, in der unteren vom Ausschnitt im Bereich der C₃-Ester; CI (Methan)
Abb. 36: Massenchromatogramm des Ions m/z 89 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtchromatogramm, in der unteren vom Ausschnitt im Bereich der C_4-Ester; CI (Methan)
Abb. 36: Massenchromatogramm des Ions m/z 103 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtchromatogramm, in der unteren vom Ausschnitt im Bereich der C₅-Ester; CI (i-Butan)
Abb. 37: Massen-Chromatogramm des Ions m/z 117 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtcromatogramm, in der unteren vom Ausschnitt im Bereich der C₆-Ester; CI (i-Butan)
Abb. 38: Massenchromatogramm des Ions m/z 117 und RIC im Bereich der C₆-Ester nach Chromatographie über die Carbowax-Säule; durch Verschiebung von den Retentionszeiten der einzelnen Isomeren im Vergleich zu der Trennung über die unpolare Methylphenylosiloxan-Säule werden Peak-Überlagerungen erkannt; CI (Methan)
Abb. 39: Massenchromatogramm des Ions m/z 131 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtspektrogramm, in der unteren vom Ausschnitt im Bereich der C7-Ester; CI (i-Butan)
Abb. 40: Massenschromatogramm des Ions m/z 145 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamts chromatogramm, in der unteren vom Ausschnitt im Bereich der C₈-Ester; CI (i-Butan)
Abb. 41: Massenchromatogramm des Ions m/z 159 und rekonstruierter Totalionenstrom, in der oberen Bildhälfe beides vom Gesamtabchromatogramm, in der unteren vom Ausschnitt im Bereich der C₉-Ester, Cl (i-Butan)
Abb. 42: Massenchromatogramm des Ions m/z 173 und rekonstruierten Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtcromatogramm, in der unteren vom Ausschnitt im Bereich der C₁₀-Ester; Cl (i-Butan)
Abb. 43: Massenspektrum des Ions m/z 187 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamtchromatogramm, in der unteren vom Ausschnitt im Bereich der C_{11}-Ester; CI (i-Butan)
Abb. 44: Massen chromatogramm des Ions m/z 201 und rekonstruierter Totalionenstrom, in der oberen Bildhälfte beides vom Gesamt chromatogramm, in der unteren vom Ausschnitt im Bereich der C_{12}-Ester; CI (i-Butan)
Abb. 45: Übersicht über die Massenchromatogramme der Ketone bis zu den Decanonen und rekonstruierter Totalionenstrom; CI (i-Butan). Die Zahl der störenden Ionen anderer Verbindungsklassen ist sehr gering.
Abb. 46: Zum Vergleich die Übersicht über die Massenchromatogramme der Ketone bis zu den Decanonen und des rekonstruierter Totalionenstroms unter Verwendung von Methan als Reaktionsgas.
Abb. 47: Zum Vergleich die Übersicht über die Massenchromatogramme der Ketone bis zu den Decanonen und des rekonstruierter Totalionenstroms unter EI-Bedingungen; die Zahl der störenden Ionen ist beträchtlich.
Abb. 48: Massenchromatogramme der Ionen m/z 30 und 44 (obere Bildhälfte) sowie des Ions m/z 29 und des RICs (untere Bildhälfte) im Bereich des Formaldehyds und des Acetaldehyds (auf Carbowax; EI-Bedingungen)
Abb. 49: Massenspektrum der Ionen m/z 58 und 72 (obere Bildhälfte) sowie des Ions m/z 29 und des RICs (untere Bildhälfte) im Bereich des Acetons und der C₃- bzw. C₄-Aldehyde (auf Carbowax; EI-Bedingungen)
Abb. 50: Zum Vergleich die Massenchromatogramme der Ionen m/z 29 und 58 (obere Bildhälfte) sowie des RICs (untere Bildhälfte) im Bereich des Acetons und des Propionaldehyds auf der unpolaren Säule; EI-Bedingungen
Abb. 51: Massenspektrogramm des Ions m/z 73 und RIC (CI-i-Butan-Bedingungen; oben) sowie Massenspektrogramme der Ionen m/z 29 und 72 (EI-Bedingungen; unten) im Bereich der Butane und Butanole.
Abb. 52: Massenchromatogramme der Ionen m/z 87 und 69, [MH-H₂O]⁺, (Cl-i-Butan; oben) sowie Massenchromatogramme der Ionen m/z 29 und 86 (EI-Bedingungen; unten) im Bereich der Pentanone und Pentanale
Abb. 53: Massenchromatogramme der Ionen m/z 101 und 83, [MH-H\textsubscript{2}O]+, (Cl-i-Butan; oben) sowie Massenchromatogramme der Ionen m/z 29 und 100 (EI-Bedingungen; unten) im Bereich der Hexanone und Hexanale
Abb. 54: Massenchromatogramme der Ionen m/z 115 und 97, \([\text{MH} - \text{H}_2\text{O}]^+\), (Cl-i-Butan; oben) sowie Massenchromatogramm des Ions m/z 114 und RIC (EI-Bedingungen; unten) im Bereich der Heptanone und Heptane.
Abb. 65: Massenchromatogramme der Ionen m/z 129 und 111, [MH-H₂O]+, (CI-i-Butan; oben) sowie Massenchromatogramm des Ions m/z 128 und RIC (EI-Bedingungen; unten) im Bereich der Octanone
Abb. 56: Massenchromatogramme der Ionen m/z 143 und 125, [MH-H₂O]⁺, (CI-i-Butan; oben) sowie Massenchromatogramm des Ions m/z 142 und RIC (EI-Bedingungen; unten) im Bereich der Nonanone
Abb. 57: Massenchromatogramme der Ionen m/z 157 und 139, [MH-H$_2$O]$^+$, (CI-i-Butan; oben) sowie Massenchromatogramm des Ions m/z 156 und RIC (EI-Bedingungen; unten) im Bereich der Decanone.
Abb. 58: Massenchromatogramme der Ionen m/z 171 und 153, [MH-H2O]⁺, (Cl-i-Butan; oben) sowie Massenchromatogramm des Ions m/z 170 und RIC (EI-Bedingungen; unten) im Bereich der Undecanone
Teil 2: Tabellarische Übersicht über Substanznachweis und Retentionszeiten

Die Konzentrationen der einzelnen Substanzen können in verschiedenen Proben variieren, weil sowohl Unterschiede bei den Synthesebedingungen als auch in der Synthesegaszusammensetzung das Produktspektrum beeinflussen. Aus diesem Grunde werden im Tabellenanhang keine konkreten Konzentrationswerte angegeben, sondern lediglich Hinweise auf den positiven oder negativen Substanznachweis.

Die aufgeführten Substanzen sind nach Substanzklassen geordnet; innerhalb der Klassen wird nach Molekulargewicht (beziehungsweise nach Summenformel) gegliedert, wobei darüber hinaus unverzweigte, einfach verzweigte und mehrfach verzweigte Isomere in Gruppen zusammengefaßt werden. Innerhalb dieser Gruppen sind die Substanzen alphabetisch geordnet.

Alkohole

<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>DB Wax</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summenformel: CH₃OH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>6:36 9:34</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₂H₅OH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>7:39 10:30</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₃H₇OH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Propanol</td>
<td>10:21 13:51</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Propanol</td>
<td>8:28 10:19</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₄H₉OH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Butanol</td>
<td>14:53 18:16</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Butanol</td>
<td>11:52 13:16</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-1-propanol</td>
<td>13:10 15:58</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-2-propanol</td>
<td>9:15 **</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₅H₁₁OH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Pentanol</td>
<td>20:51 23:08</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Pentanol</td>
<td>16:43 17:04</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3-Pentanol</td>
<td>16:50 16:31</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-1-butanol</td>
<td>19:11 21:11</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-2-butanol</td>
<td>13:23 12:53</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-1-butanol</td>
<td>18:52 21:11</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-2-butanol</td>
<td>15:50 15:58</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2,2-Dimethyl-1-propanol</td>
<td>15:15</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₆H₁₃OH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Hexanol</td>
<td>26:50 27:34</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Hexanol</td>
<td>22:46 21:43</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3-Hexanol</td>
<td>22:35 20:39</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Ethyl-1-butanol</td>
<td>25:18 25:41</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-1-pentanol</td>
<td>21:15 18:44</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-2-pentanol</td>
<td>25:30 26:28</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-1-pentanol</td>
<td>22:06 20:40</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-2-pentanol</td>
<td>22:18 21:13</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-3-pentanol</td>
<td>19:56 16:50</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4-Methyl-1-pentanol</td>
<td>25:00 25:55</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4-Methyl-2-pentanol</td>
<td>20:18 19:09</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

* Zwei Diastereomere
** Vom Methanol-Peak überlagert
<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Retentionszeit [min:sec] auf DB Wax</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>6</sub>H<sub>12</sub>OH (Fortsetzung)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-Dimethyl-1-butanol</td>
<td>24:27</td>
<td>25:13</td>
<td>x</td>
</tr>
<tr>
<td>2,3-Dimethyl-1-butanol</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2,3-Dimethyl-2-butanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,3-Dimethyl-1-butanol</td>
<td>22:21</td>
<td>23:05</td>
<td>x</td>
</tr>
<tr>
<td>3,3-Dimethyl-2-butanol</td>
<td>19:01</td>
<td>17:11</td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C<sub>7</sub>H<sub>15</sub>OH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Heptanol</td>
<td>32:16</td>
<td>31:32</td>
<td>x</td>
</tr>
<tr>
<td>2-Heptanol</td>
<td>28:36</td>
<td>26:06</td>
<td>x</td>
</tr>
<tr>
<td>3-Heptanol</td>
<td>28:26</td>
<td>25:07</td>
<td>x</td>
</tr>
<tr>
<td>4-Heptanol</td>
<td>28:07</td>
<td>24:33</td>
<td>x</td>
</tr>
<tr>
<td>2-Ethyl-1-pentanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-(Hydroxymethyl)hexan</td>
<td>29:14</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3-Ethyl-1-pentanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Ethyl-2-pentanol</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3-Ethyl-3-pentanol</td>
<td>26:21</td>
<td>21:00</td>
<td>x</td>
</tr>
<tr>
<td>2-Methyl-1-hexanol</td>
<td>30:25</td>
<td>29:21</td>
<td>x</td>
</tr>
<tr>
<td>2-Methyl-2-hexanol</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-Methyl-3-hexanol</td>
<td>26:48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Methyl-1-hexanol</td>
<td>30:36</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3-Methyl-2-hexanol **</td>
<td>27:34</td>
<td>24:20</td>
<td>x</td>
</tr>
<tr>
<td>4-Methyl-1-hexanol</td>
<td>27:45</td>
<td>24:39</td>
<td>x</td>
</tr>
<tr>
<td>4-Methyl-3-hexanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Methyl-2-hexanol **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Methyl-3-hexanol **</td>
<td>27:22</td>
<td>23:24</td>
<td>x</td>
</tr>
<tr>
<td>5-Methyl-1-hexanol</td>
<td>27:33</td>
<td>23:46</td>
<td>x</td>
</tr>
<tr>
<td>5-Methyl-2-hexanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Methyl-3-hexanol</td>
<td>26:00</td>
<td>22:24</td>
<td>x</td>
</tr>
<tr>
<td>2-Ethyl-3-methyl-1-butanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-(Hydroxymethyl)-2-methylpentan</td>
<td>28:13</td>
<td>27:21</td>
<td>x</td>
</tr>
<tr>
<td>2,3-Dimethyl-1-pentanol **</td>
<td>28:14</td>
<td>27:22</td>
<td>x</td>
</tr>
<tr>
<td>2,3-Dimethyl-2-pentanol</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2,3-Dimethyl-3-pentanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethyl-1-pentanol</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2,4-Dimethyl-2-pentanol</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2,4-Dimethyl-3-pentanol</td>
<td>25:06</td>
<td>20:13</td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C<sub>8</sub>H<sub>17</sub>OH (in Auswahl)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Octanol</td>
<td>37:04</td>
<td>35:06</td>
<td>x</td>
</tr>
<tr>
<td>2-Octanol</td>
<td>33:48</td>
<td>30:07</td>
<td>x</td>
</tr>
<tr>
<td>3-Octanol</td>
<td>33:39</td>
<td>29:10</td>
<td>x</td>
</tr>
</tbody>
</table>

* Ohne Verbindungen mit quarternären Kohlenstoffatomen, außer bei tertiären Alkoholen
** Zwei Diastereomere
<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Retentionszeit [min:sec] auf DB Wax</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₉H₁₇OH (Fortsetzung)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Octanol</td>
<td>33:19</td>
<td>28:39</td>
<td>x</td>
</tr>
<tr>
<td>2-Methyl-1-heptanol</td>
<td>35:20</td>
<td>33:00</td>
<td>x</td>
</tr>
<tr>
<td>2-Methyl-4-heptanol</td>
<td>32:07</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-2-heptanol *</td>
<td>32:47</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32:55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Methyl-4-heptanol *</td>
<td>32:20</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32:28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Methyl-3-heptanol *</td>
<td>32:19</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32:26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethyl-3-hexanol *</td>
<td>30:43</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30:53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-Dimethyl-3-hexanol</td>
<td>29:50</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Summenformel: C₉H₁₇OH (in Auswahl)

<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Retentionszeit [min:sec] auf DB Wax</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Nonanol</td>
<td>41:19</td>
<td>38:20</td>
<td>x</td>
</tr>
<tr>
<td>2-Nonanol</td>
<td>38:25</td>
<td>34:47</td>
<td>x</td>
</tr>
<tr>
<td>3-Nonanol</td>
<td>38:16</td>
<td>34:40</td>
<td>x</td>
</tr>
<tr>
<td>4-Nonanol</td>
<td>37:57</td>
<td>34:24</td>
<td>x</td>
</tr>
<tr>
<td>5-Nonanol</td>
<td>37:56</td>
<td>34:24</td>
<td>x</td>
</tr>
<tr>
<td>2-Methyl-1-octanol</td>
<td>39:45</td>
<td>36:22</td>
<td>x</td>
</tr>
</tbody>
</table>

Summenformel: C₁₀H₂₄OH (in Auswahl)

<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Retentionszeit [min:sec] auf DB Wax</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Decanol</td>
<td>45:13</td>
<td>41:19</td>
<td>x</td>
</tr>
<tr>
<td>2-Methyl-1-nonanol</td>
<td>43:44</td>
<td>39:26</td>
<td>x</td>
</tr>
</tbody>
</table>

Summenformel: C₁₁H₂₈OH (in Auswahl)

<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Retentionszeit [min:sec] auf DB Wax</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Undecanol</td>
<td>48:43</td>
<td>44:05</td>
<td>x</td>
</tr>
<tr>
<td>2-Methyl-1-decanol</td>
<td>47:22</td>
<td>42:18</td>
<td>x</td>
</tr>
</tbody>
</table>

Summenformel: C₁₂H₂₈OH (in Auswahl)

<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Retentionszeit [min:sec] auf DB Wax</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Dodecanol</td>
<td>51:58</td>
<td>46:42</td>
<td>x</td>
</tr>
<tr>
<td>2-Methyl-1-undecanol</td>
<td>50:43</td>
<td>45:00</td>
<td>x</td>
</tr>
</tbody>
</table>

* Zwei Diastereomere
<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Retentionszeit [min:sec] auf DB Wax</th>
<th>Nachweis</th>
</tr>
</thead>
</table>
| **Summenformel: C₂H₄O₂**
Methansäure methylester | 7:06 | 7:06 | x |
| **Summenformel: C₄H₈O₂**
Ethansäure methylester | 9:19 | 8:01 | x |
| Methansäure ethylester | 8:58 | 7:57 | x |
| **Summenformel: C₄H₈O₂**
Propansäure methylester | 13:10 | 9:32 | x |
| Ethansäure ethylester | 12:23 | 9:07 | x |
| **Propylester**
Methansäure propylester | 12:47 | | x |
| Methansäure-2-propylester
[Methansäure-i-propylester] | | | x |
| **Summenformel: C₅H₁₀O₂**
Methylester | | | |
| Butansäure methylester | 18:05 | 11:55 | x |
| 2-Methylpropansäure methylester
[i-Buttersäure methylester] | 16:01 | 10:04 | x |
| **Ethylester**
Propansäure ethylester | 17:23 | 11:03 | x |
| **Propylester**
Ethansäure propylester | 17:32 | 11:33 | x |
| Ethansäure-2-propylester
[Ethansäure-i-propylester] | 14:34 | | x |
| **Butylester**
Methansäure butylester | 18:06 | 13:01 | x |
| Methansäure-2-butylester
[Methansäure-sec-butylester] | | | x |
| Methansäure-2-methylpropylester
[Methansäure-i-butylester] | | | x |
| Methansäure-2-(2-methylpropylester
[Methansäure-t-butylester] | 13:11 | | x |
| **Summenformel: C₆H₁₂O₂**
Methylester | | | x |
<p>| 2,2-Dimethylpropansäure methylester | 21:32 | 12:46 | x |
| 2-Methylbutansäure methylester | 21:28 | 13:04 | x |
| 3-Methylbutansäure methylester | 24:15 | 15:46 | x |</p>
<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Retentionszeit [min:sec] auf DB Wax</th>
<th>Nachweis</th>
<th>positiv</th>
<th>negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₆H₁₂O₂ (Fortsetzung)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butansäure ethylester</td>
<td>22:47</td>
<td>13:43</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylpropan säure ethylester</td>
<td>20:18</td>
<td>11:19</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[i-Buttersäure ethylester]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propansäure propylester</td>
<td>23:18</td>
<td>14:05</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propansäure-2-propylester</td>
<td></td>
<td></td>
<td>[Propansäure-i-propylester]</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Butylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethansäure butylester</td>
<td>23:34</td>
<td>15:10</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethansäure-2-butylester</td>
<td></td>
<td></td>
<td>[Ethansäure-sec-butylester]</td>
<td>20:18</td>
<td>11:55</td>
</tr>
<tr>
<td>Ethansäure-2-methylpropylester</td>
<td></td>
<td></td>
<td>[Ethansäure-i-butylester]</td>
<td>21:12</td>
<td>12:52</td>
</tr>
<tr>
<td>Ethansäure-2-(2-methylpropylester)</td>
<td></td>
<td></td>
<td>[Ethansäure-t-butylester]</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Pentylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2,2-dimethylpropylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2-methylbutylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-3-methylbutylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2-(2-methylbutylester)</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2-(3-methylbutylester)</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure pentylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2-pentylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-3-pentylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₇H₁₄O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-Dimethylbutansäure methylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3-Dimethylbutansäure methylester</td>
<td></td>
<td></td>
<td>25:53</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3,3-Dimethylbutansäure methylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Ethylbutansäure methylester</td>
<td></td>
<td></td>
<td>26:27</td>
<td>15:40</td>
<td>x</td>
</tr>
<tr>
<td>Hexansäure methylester</td>
<td></td>
<td></td>
<td>29:54</td>
<td>20:18</td>
<td>x</td>
</tr>
<tr>
<td>2-Methylpentansäure methylester</td>
<td></td>
<td></td>
<td>26:57</td>
<td>16:22</td>
<td>x</td>
</tr>
<tr>
<td>3-Methylpentansäure methylester</td>
<td></td>
<td></td>
<td>27:47</td>
<td>17:42</td>
<td>x</td>
</tr>
<tr>
<td>4-Methylpentansäure methylester</td>
<td></td>
<td></td>
<td>28:07</td>
<td>18:18</td>
<td>x</td>
</tr>
<tr>
<td>Ethylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylbutansäure ethylester</td>
<td></td>
<td></td>
<td>25:49</td>
<td>14:25</td>
<td>x</td>
</tr>
<tr>
<td>3-Methylbutansäure ethylester</td>
<td></td>
<td></td>
<td>15:02</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Pentansäure ethylester</td>
<td></td>
<td></td>
<td>28:33</td>
<td>17:53</td>
<td>x</td>
</tr>
<tr>
<td>Propylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butansäure propylester</td>
<td></td>
<td></td>
<td>28:27</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Butansäure-2-propylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylpropan säure propylester</td>
<td></td>
<td></td>
<td>26:06</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Methylpropan säure-2-propylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substanzname</td>
<td>Retentionszeit [min:sec] auf DB 5</td>
<td>Retentionszeit [min:sec] auf DB Wax</td>
<td>Nachweis positiv</td>
<td>Nachweis negativ</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>C<sub>7</sub>H<sub>14</sub>O<sub>2</sub> (Fortsetzung)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propansäure butylester</td>
<td>28:58</td>
<td>18:10</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propansäure-2-butylester</td>
<td>26:47</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propansäure-2-methylpropylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propansäure-2-(2-methylpropylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethansäure-2,2-dimethylbutylester</td>
<td>17:14</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethansäure-2-methylbutylester</td>
<td></td>
<td>17:17</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethansäure-3-methylbutylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethansäure-2-(2-methylbutyl)ester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethansäure-2-(3-methylbutyl)ester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethansäure pentyler</td>
<td>29:16</td>
<td>15:12</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethansäure-2-pentyler</td>
<td>27:25</td>
<td>15:05</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethansäure-3-pentyler</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2,2-dimethylbutylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2,3-dimethylbutylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-3,3-dimethylbutylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2-(2,3-dimethylbutyl)ester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2-(3,3-dimethylbutyl)ester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2-ethylbutylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure hexylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2-hexylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-3-hexylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2-methylpentylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-3-methylpentylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-4-methylpentylester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2-(2-methylpentyl)ester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2-(3-methylpentyl)ester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-2-(4-methylpentyl)ester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methansäure-3-(2-methylpentyl)ester</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summenformel: C<sub>9</sub>H<sub>16</sub>O<sub>2</sub> (in Auswahl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptansäure methylester</td>
<td>34:55</td>
<td>24:53</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnexansäure methylester</td>
<td>32:06</td>
<td>20:35</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Methylnexansäure methylester</td>
<td>32:31</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Methylnexansäure methylester</td>
<td>33:43</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Methylnexansäure methylester</td>
<td>33:14</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3-Dimethylpentansäure methylester</td>
<td>29:50</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexansäure ethylester</td>
<td>33:39</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentansäure propylester</td>
<td>33:34</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butylester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butansäure butylester</td>
<td>33:30</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substanzname</td>
<td>Retentionszeit [min:sec] auf DB 5 DB Wax</td>
<td>Nachweis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₁₆O₂ (Fortsetzung)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propansäure pentyester</td>
<td>34:01</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethansäure hexyester</td>
<td>34:18</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₈H₁₈O₂ (in Auswahl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylheptansäure methylester</td>
<td>36:43 24:59</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octansäure methylester</td>
<td>39:21 29:09</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptansäure ethylester</td>
<td>38:10</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexansäure propylester</td>
<td>37:56</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentansäure butyester</td>
<td>38:00</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butansäure pentyester</td>
<td>38:01</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propansäure hexyester</td>
<td>38:30</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethansäureheptyester</td>
<td>38:46</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₁₀H₂₀O₂ (in Auswahl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methyloctansäure methylester</td>
<td>40:54 29:10</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonansäure methylester</td>
<td>43:19 33:00</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₁₁H₂₂O₂ (in Auswahl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decansäure methylester</td>
<td>46:56 36:28</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnonansäure methylester</td>
<td>44:40 32:55</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₁₂H₂₄O₂ (in Auswahl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methyldecansäure methylester</td>
<td>48:09 36:20</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undecansäure methylester</td>
<td>50:17 39:38</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ketone und Aldehyde

<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>DB Wax</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summenformel: C₂H₄O</td>
<td></td>
<td></td>
<td>positiv negativ</td>
</tr>
<tr>
<td>Methanal [Formaldehyd]</td>
<td>* 6:02</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C₃H₆O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanal [Acetaldehyd]</td>
<td>* 6:30</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C₃H₆O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propanal</td>
<td>8:23 7:23</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-Propanon [Aceton]</td>
<td>8:21 7:44</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C₄H₈O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butanal</td>
<td>11:31 8:54</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-Butanon</td>
<td>11:40 9:27</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-Methylpropanal</td>
<td>10:16 7:47</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C₅H₁₀O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentanal</td>
<td>16:49</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-Pentanon</td>
<td>16:07 11:41</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3-Pentanon</td>
<td>16:39 11:42</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-Methylbutanal</td>
<td>14:58</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3-Methylbutanal</td>
<td>14:27</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3-Methyl-2-butanon</td>
<td>14:42 10:20</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C₆H₁₂O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexanal</td>
<td>22:35</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-Hexanon</td>
<td>22:15 15:32</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3-Hexanon</td>
<td>22:00 14:25</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-Ethylbutanal</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-Methylpentanal</td>
<td>20:36</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-Methyl-3-pentanon</td>
<td>19:59 12:20</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3-Methylpentanal</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3-Methyl-2-pentanon</td>
<td>20:10 13:04</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>4-Methylpentanal</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>4-Methyl-2-pentanon</td>
<td>19:16 12:39</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2,2-Dimethylbutanal</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2,3-Dimethylbutanal</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3,3-Dimethylbutanal</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3,3-Dimethyl-2-butanol</td>
<td>17:23 10:52</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C₇H₁₄O (Aldehyde in Auswahl)</td>
<td>Heptanal</td>
<td>28:36</td>
<td>x</td>
</tr>
</tbody>
</table>

* Vom Methanol-Peak überlagert
<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>DB Wax</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₇H₁₄O (Fortsetzung)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Heptanon</td>
<td>28:13</td>
<td>20:06</td>
<td>x</td>
</tr>
<tr>
<td>3-Heptanon</td>
<td>27:58</td>
<td>18:50</td>
<td>x</td>
</tr>
<tr>
<td>4-Heptanon</td>
<td>27:13</td>
<td>17:31</td>
<td>x</td>
</tr>
<tr>
<td>3-Ethyl-2-pentanon</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylhexanal</td>
<td>26:39</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-3-hexanon</td>
<td>25:14</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-2-hexanon</td>
<td>25:47</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4-Methyl-2-hexanon</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Methyl-3-hexanon</td>
<td>25:04</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5-Methyl-2-hexanon</td>
<td>26:20</td>
<td>18:11</td>
<td>x</td>
</tr>
<tr>
<td>5-Methyl-3-hexanox</td>
<td>25:30</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2,2-Dimethyl-3-pentanon</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethyl-3-pentanon</td>
<td>22:39</td>
<td>12:27</td>
<td>x</td>
</tr>
<tr>
<td>3,3-Dimethyl-2-pentanon</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3,4-Dimethyl-2-pentanon</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4,4-Dimethyl-2-pentanon</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₇H₁₄O (in Auswahl)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octanal</td>
<td>33:54</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Octan</td>
<td>33:27</td>
<td>24:49</td>
<td>x</td>
</tr>
<tr>
<td>3-Octan</td>
<td>33:15</td>
<td>23:30</td>
<td>x</td>
</tr>
<tr>
<td>4-Octan</td>
<td>32:36</td>
<td>22:11</td>
<td>x</td>
</tr>
<tr>
<td>4-Ethyl-3-hexanon</td>
<td>30:11</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-3-heptanacet</td>
<td>30:48</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-4-heptanacet</td>
<td>29:59</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-2-heptanacet</td>
<td>31:13</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-4-heptanacet</td>
<td>30:23</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4-Methyl-3-heptanacet</td>
<td>30:36</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5-Methyl-3-heptanacet</td>
<td>31:04</td>
<td>20:24</td>
<td>x</td>
</tr>
<tr>
<td>6-Methyl-2-heptanacet</td>
<td>31:38</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>6-Methyl-3-heptanacet</td>
<td>31:34</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethyl-3-hexanox</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2,5-Dimethyl-3-hexanox</td>
<td>28:03</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3,4-Dimethyl-2-hexanox</td>
<td>28:56</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4,5-Dimethyl-3-hexanox</td>
<td>29:32</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₈H₁₈O (in Auswahl)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Nonan</td>
<td>38:08</td>
<td>29:11</td>
<td>x</td>
</tr>
<tr>
<td>3-Nonan</td>
<td>37:56</td>
<td>27:55</td>
<td>x</td>
</tr>
<tr>
<td>4-Nonan</td>
<td>37:20</td>
<td>26:38</td>
<td>x</td>
</tr>
<tr>
<td>5-Nonan</td>
<td>37:23</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-Methyl-3-octanacet</td>
<td>35:42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summenformel: C₁₀H₂₀O (in Auswahl)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Decan</td>
<td>42:18</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3-Decan</td>
<td>42:06</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Substanzname</td>
<td>Retentionszeit [min:sec] auf DB 5</td>
<td>Retentionszeit [min:sec] auf DB Wax</td>
<td>Nachweis</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>(\text{C}{10}\text{H}{20}\text{O}) (Fortsetzung)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Decanon</td>
<td>41:28</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>5-Decanon</td>
<td>41:32</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2-Methyl-3-nonanon</td>
<td>40:04</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>(\text{C}{11}\text{H}{22}\text{O}) (in Auswahl)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Undecanon</td>
<td>46:04</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3-Undecanon</td>
<td>45:53</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>4-Undecanon</td>
<td>45:21</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>5-Undecanon</td>
<td>45:19</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Dimethylketale und Dimethylectale

<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Retentionszeit [min:sec] auf DB Wax</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summenformel: CH<sub>2</sub> (OCH<sub>3</sub>)<sub>2</sub></td>
<td></td>
<td></td>
<td>positiv negativ</td>
</tr>
<tr>
<td>1,1-Dimethoxymethan</td>
<td>* 6:52</td>
<td>7:35</td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C<sub>4</sub>H<sub>4</sub> (OCH<sub>3</sub>)<sub>2</sub></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxyethan</td>
<td>11:38</td>
<td>7:35</td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C<sub>6</sub>H<sub>6</sub> (OCH<sub>3</sub>)<sub>2</sub></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxypropan</td>
<td>16:06</td>
<td>8:52</td>
<td>x</td>
</tr>
<tr>
<td>2,2-Dimethoxypropan</td>
<td>14:27</td>
<td>7:56</td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C<sub>4</sub>H<sub>8</sub> (OCH<sub>3</sub>)<sub>2</sub></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxybutan</td>
<td>21:42</td>
<td>11:29</td>
<td>x</td>
</tr>
<tr>
<td>2,2-Dimethoxybutan</td>
<td>20:31</td>
<td>10:13</td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxy-2-methylpropan</td>
<td>19:23</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C<sub>6</sub>H<sub>10</sub> (OCH<sub>3</sub>)<sub>2</sub></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxypentan</td>
<td>27:30</td>
<td>15:00</td>
<td>x</td>
</tr>
<tr>
<td>2,2-Dimethoxypentan</td>
<td>25:47</td>
<td>12:43</td>
<td>x</td>
</tr>
<tr>
<td>3,3-Dimethoxypentan</td>
<td>26:15</td>
<td>12:57</td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxy-2-methylbutan</td>
<td>25:32</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxy-3-methylbutan</td>
<td>25:08</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2,2-Dimethoxy-3-methylbutan</td>
<td>24:40</td>
<td>11:37</td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C<sub>8</sub>H<sub>12</sub> (OCH<sub>3</sub>)<sub>2</sub> (in Auswahl)</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxyhexan</td>
<td>33:02</td>
<td>19:19</td>
<td>x</td>
</tr>
<tr>
<td>2,2-Dimethoxyhexan</td>
<td>31:08</td>
<td>16:41</td>
<td>x</td>
</tr>
<tr>
<td>3,3-Dimethoxyhexan</td>
<td>30:43</td>
<td>16:36</td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxy-2-methylpentan</td>
<td>30:25</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2,2-Dimethoxy-3-methylpentan</td>
<td>29:57</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2,2-Dimethoxy-4-methylpentan</td>
<td>29:02</td>
<td>14:13</td>
<td>x</td>
</tr>
<tr>
<td>3,3-Dimethoxy-2-methylpentan</td>
<td>28:45</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Summenformel: C<sub>9</sub>H<sub>14</sub> (OCH<sub>3</sub>)<sub>2</sub> (in Auswahl)</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxyheptan</td>
<td>37:36</td>
<td>23:57</td>
<td>x</td>
</tr>
<tr>
<td>2,2-Dimethoxyheptan</td>
<td>35:52</td>
<td>21:15</td>
<td>x</td>
</tr>
<tr>
<td>3,3-Dimethoxyheptan</td>
<td>35:27</td>
<td>20:08</td>
<td>x</td>
</tr>
<tr>
<td>4,4-Dimethoxyheptan</td>
<td>34:34</td>
<td>18:55</td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxy-2-methylhexan</td>
<td>35:05</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2,2-Dimethoxy-3-methylhexan</td>
<td>34:08</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2,2-Dimethoxy-4-methylhexan</td>
<td>33:30</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

* Vom Methanol-Peak überlagert
<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₇H₁₄(OCH₃)₂ (Fortsetzung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2-Dimethoxy-5-methylhexan</td>
<td>34:22</td>
<td>x</td>
</tr>
</tbody>
</table>

Summenformel: C₅H₁₆(OCH₃)₂ (in Auswahl)

<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-Dimethoxyoctan</td>
<td>41:25</td>
<td>x</td>
</tr>
<tr>
<td>2,2-Dimethoxyoctan</td>
<td>40:11</td>
<td>x</td>
</tr>
<tr>
<td>3,3-Dimethoxyoctan</td>
<td>39:40</td>
<td>x</td>
</tr>
<tr>
<td>4,4-Dimethoxyoctan</td>
<td>38:44</td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxy-2-methylheptan</td>
<td>39:18</td>
<td>x</td>
</tr>
</tbody>
</table>

Summenformel: C₉H₁₈(OCH₃)₂ (in Auswahl)

<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,2-Dimethoxynonan</td>
<td>44:03</td>
<td>x</td>
</tr>
<tr>
<td>3,3-Dimethoxynonan</td>
<td>43:33</td>
<td>x</td>
</tr>
<tr>
<td>4,4-Dimethoxynonan</td>
<td>42:32</td>
<td>x</td>
</tr>
<tr>
<td>1,1-Dimethoxy-2-methyloctan</td>
<td>43:11</td>
<td>x</td>
</tr>
</tbody>
</table>
Ether

<table>
<thead>
<tr>
<th>Substanzenname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Nachweis</th>
<th>Retentionszeit [min:sec] auf DB Wax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethylether</td>
<td>6:09</td>
<td>x</td>
<td>positiv negativ</td>
</tr>
<tr>
<td>Ethylmethylether</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Diethylether</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Methylpropylether</td>
<td>9:05</td>
<td>[x]</td>
<td></td>
</tr>
<tr>
<td>[Methyl-i-propylether]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Butylmethylether</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Ethylpropylether</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2-Butylmethylether</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>[sec-Butylmethylether]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Ethyl-2-propylether</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>[Ethyl-i-propylether]</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Methyl-2-methylpropylether</td>
<td></td>
<td>11:05</td>
<td>[x]</td>
</tr>
<tr>
<td>[i-Butylmethylether]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(2-Methylpropyl)-methylether</td>
<td></td>
<td>10:37</td>
<td>[x]</td>
</tr>
<tr>
<td>[t-Butylmethylether]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alkane (in Auswahl)

<table>
<thead>
<tr>
<th>Summenformel, Substanzname</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>HP PONA</th>
<th>DB Wax</th>
<th>Nachweis positiv</th>
<th>negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄.</td>
<td>Methan</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>C₂H₆.</td>
<td>Ethan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₃H₈.</td>
<td>Propan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₄H₁₀.</td>
<td>n-Butan</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₅H₁₂.</td>
<td>n-Pentan</td>
<td>8:21</td>
<td>5:47</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₆H₁₄.</td>
<td>n-Hexan</td>
<td>11:42</td>
<td>6:01</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2-Methylpentan</td>
<td>10:25</td>
<td>5:55</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>3-Methylpentan</td>
<td>11:00</td>
<td>5:58</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2,2-Dimethylbutan</td>
<td>9:22</td>
<td>5:50</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2,3-Dimethylbutan</td>
<td>10:22</td>
<td>5:55</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₇H₁₆.</td>
<td>n-Heptan</td>
<td>16:45</td>
<td>6:29</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>3-Methylhexan</td>
<td>15:25</td>
<td>6:20</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2,3-Dimethylpentan</td>
<td>15:09</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2,4-Dimethylpentan</td>
<td>13:00</td>
<td>6:04</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₈H₁₈.</td>
<td>n-Octan</td>
<td>22:49</td>
<td>7:27</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>3-Methylheptan</td>
<td>21:14</td>
<td>7:06</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2,5-Dimethyloctan</td>
<td>18:35</td>
<td>6:36</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2,2,4-Trimethylpentan</td>
<td>16:13</td>
<td>6:19</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2,3,4-Trimethylpentan</td>
<td>19:59</td>
<td>6:58</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₉H₂₀.</td>
<td>n-Nonan</td>
<td>28:38</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2,2,5-Trimethyloctan</td>
<td>21:50</td>
<td>6:58</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₁₀H₂₂.</td>
<td>n-Decan</td>
<td>33:48</td>
<td>12:27</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₁₁H₂₄.</td>
<td>n-Undecan</td>
<td>38:19</td>
<td>16:18</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₁₂H₂₆.</td>
<td>n-Dodecan</td>
<td>42:22</td>
<td>20:44</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₁₃H₂₈.</td>
<td>n-Tridecan</td>
<td>46:03</td>
<td>25:16</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₁₄H₃₀.</td>
<td>n-Tetradecan</td>
<td>49:25</td>
<td>29:23</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₁₅H₃₂.</td>
<td>n-Pentadecan</td>
<td>52:38</td>
<td>33:06</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₁₆H₃₄.</td>
<td>n-Hexadecan</td>
<td>55:31</td>
<td>36:28</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₁₇H₃₆.</td>
<td>n-Heptadecan</td>
<td>58:29</td>
<td>39:31</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₁₈H₅₈.</td>
<td>n-Octadecan</td>
<td>61:39</td>
<td>42:21</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₁₉H₄₀.</td>
<td>n-Nonadecan</td>
<td>65:15</td>
<td>38:28</td>
<td>45:00</td>
<td>x</td>
</tr>
<tr>
<td>C₂₀H₄₂.</td>
<td>n-Eicosan</td>
<td>40:43</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₂₁H₄₄.</td>
<td>n-Heneicosan</td>
<td>42:53</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₂₂H₄₆.</td>
<td>n-Docosan</td>
<td>44:57</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₂₃H₄₈.</td>
<td>n-Tricosan</td>
<td>46:56</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₂₄H₅₀.</td>
<td>n-Tetracosan</td>
<td>48:51</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₂₅H₅₂.</td>
<td>n-Pentacosan</td>
<td>50:42</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₂₆H₅₄.</td>
<td>n-Hexacosan</td>
<td>52:30</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₂₇H₅₆.</td>
<td>n-Heptacosan</td>
<td>54:13</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₂₈H₅₈.</td>
<td>n-Octacosan</td>
<td>55:55</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₂₉H₆₀.</td>
<td>n-Nonacosan</td>
<td>57:37</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C₃₀H₆₂.</td>
<td>n-Triacontan</td>
<td>59:26</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Zyklische Verbindungen (in Auswahl)

<table>
<thead>
<tr>
<th>Summenformel</th>
<th>Retentionszeit [min:sec] auf DB 5</th>
<th>Retentionszeit [min:sec] auf DB Wax</th>
<th>Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkohole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyclo-Pentanol</td>
<td>21:52</td>
<td>25:26</td>
<td>x</td>
</tr>
<tr>
<td>cyclo-Hexanol</td>
<td>28:02</td>
<td>29:42</td>
<td>x</td>
</tr>
<tr>
<td>cyclo-Heptanol</td>
<td>35:17</td>
<td>35:28</td>
<td>x</td>
</tr>
<tr>
<td>Ester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gamma-Butyrolacton</td>
<td>29:31</td>
<td>37:56</td>
<td>x</td>
</tr>
<tr>
<td>gamma-Valerolacton</td>
<td>31:42</td>
<td>37:19</td>
<td>x</td>
</tr>
<tr>
<td>delta-Valerolacton</td>
<td>36:44</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Ketone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyclo-Pentanon</td>
<td>22:30</td>
<td>20:14</td>
<td>x</td>
</tr>
<tr>
<td>cyclo-Hexanon</td>
<td>28:52</td>
<td>25:17</td>
<td>x</td>
</tr>
<tr>
<td>cyclo-Heptanon</td>
<td>35:13</td>
<td>30:55</td>
<td>x</td>
</tr>
<tr>
<td>Alkane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyclo-Pentan</td>
<td>10:31</td>
<td>6:09</td>
<td>x</td>
</tr>
<tr>
<td>cyclo-Hexan</td>
<td>15:03</td>
<td>6:44</td>
<td>x</td>
</tr>
<tr>
<td>Methyl-cyclo-Hexan</td>
<td>18:35</td>
<td>7:12</td>
<td>x</td>
</tr>
<tr>
<td>Aromaten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzol</td>
<td></td>
<td>10:23</td>
<td>x</td>
</tr>
<tr>
<td>Toluol</td>
<td></td>
<td>13:59</td>
<td>x</td>
</tr>
</tbody>
</table>