000010018 001__ 10018 000010018 005__ 20240610120110.0 000010018 0247_ $$2DOI$$a10.1103/PhysRevE.82.041921 000010018 0247_ $$2WOS$$aWOS:000283491200003 000010018 0247_ $$2Handle$$a2128/9312 000010018 037__ $$aPreJuSER-10018 000010018 041__ $$aeng 000010018 082__ $$a530 000010018 084__ $$2WoS$$aPhysics, Fluids & Plasmas 000010018 084__ $$2WoS$$aPhysics, Mathematical 000010018 1001_ $$0P:(DE-Juel1)VDB71097$$aGötze, I.$$b0$$uFZJ 000010018 245__ $$aMesoscale Simulations of Hydrodynamic Squirmer Interactions 000010018 260__ $$aCollege Park, Md.$$bAPS$$c2010 000010018 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2010-10-26 000010018 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2010-10-01 000010018 300__ $$a041921 000010018 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000010018 3367_ $$2DataCite$$aOutput Types/Journal article 000010018 3367_ $$00$$2EndNote$$aJournal Article 000010018 3367_ $$2BibTeX$$aARTICLE 000010018 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000010018 3367_ $$2DRIVER$$aarticle 000010018 440_0 $$04924$$aPhysical Review E$$v82$$x1539-3755$$y4 000010018 500__ $$aRecord converted from VDB: 12.11.2012 000010018 520__ $$aThe swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simulations. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to pullers. For passive squirmers (colloids), we show that the velocity autocorrelation function agrees quantitatively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior, determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a function of the center-to-center distances d(cm) and is found to be consistent with a logarithmic distance dependence for d(cm) less than about two sphere diameters; here, the force is considerably stronger than expected from the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect the postcollision velocity directions of both squirmers. 000010018 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0 000010018 542__ $$2Crossref$$i2010-10-26$$uhttp://link.aps.org/licenses/aps-default-license 000010018 588__ $$aDataset connected to Web of Science 000010018 650_7 $$2WoSType$$aJ 000010018 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b1$$uFZJ 000010018 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.82.041921$$bAmerican Physical Society (APS)$$d2010-10-26$$n4$$p041921$$tPhysical Review E$$v82$$x1539-3755$$y2010 000010018 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.82.041921$$gVol. 82, p. 041921$$n4$$p041921$$q82<041921$$tPhysical review / E$$v82$$x1539-3755$$y2010 000010018 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevE.82.041921 000010018 8564_ $$uhttps://juser.fz-juelich.de/record/10018/files/PhysRevE.82.041921.pdf$$yOpenAccess 000010018 8564_ $$uhttps://juser.fz-juelich.de/record/10018/files/PhysRevE.82.041921.gif?subformat=icon$$xicon$$yOpenAccess 000010018 8564_ $$uhttps://juser.fz-juelich.de/record/10018/files/PhysRevE.82.041921.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000010018 8564_ $$uhttps://juser.fz-juelich.de/record/10018/files/PhysRevE.82.041921.jpg?subformat=icon-700$$xicon-700$$yOpenAccess 000010018 8564_ $$uhttps://juser.fz-juelich.de/record/10018/files/PhysRevE.82.041921.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000010018 909CO $$ooai:juser.fz-juelich.de:10018$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000010018 9131_ $$0G:(DE-Juel1)FUEK505$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0 000010018 9132_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0 000010018 9141_ $$y2010 000010018 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000010018 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000010018 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000010018 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$gIAS$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1$$zIFF-2 000010018 9201_ $$0I:(DE-Juel1)VDB782$$d31.12.2010$$gIFF$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x0 000010018 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x2 000010018 970__ $$aVDB:(DE-Juel1)120185 000010018 9801_ $$aFullTexts 000010018 980__ $$aVDB 000010018 980__ $$aConvertedRecord 000010018 980__ $$ajournal 000010018 980__ $$aI:(DE-Juel1)IAS-2-20090406 000010018 980__ $$aI:(DE-Juel1)ICS-2-20110106 000010018 980__ $$aI:(DE-82)080012_20140620 000010018 980__ $$aUNRESTRICTED 000010018 981__ $$aI:(DE-Juel1)IBI-5-20200312 000010018 981__ $$aI:(DE-Juel1)IAS-2-20090406 000010018 981__ $$aI:(DE-Juel1)ICS-2-20110106 000010018 981__ $$aI:(DE-Juel1)VDB1346 000010018 999C5 $$1H. C. Berg$$2Crossref$$oH. C. Berg E. Coli in Motion 2004$$tE. Coli in Motion$$y2004 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1751-1097.1988.tb01668.x 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1023/A:1020505204959 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.83.7.2138 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1469-8137.1984.tb02736.x 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00171966 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1119/1.10903 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/72/9/096601 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.fl.24.010192.001525 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022112006002631 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/cpa.3160050201 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S002211207100048X 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.048102 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/20/40/404215 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.088103 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/21/20/204101 000010018 999C5 $$1M. J. Lighthill$$2Crossref$$9-- missing cx lookup --$$a10.1137/1.9781611970517$$y1975 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.78.061903 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-1910(96)00037-6 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.133.3466.1766 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.178103 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.168101 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.098103 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.158102 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1242/jeb.02537 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00348-007-0387-y 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1529/biophysj.107.110254 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/21/20/204108 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0006-3495(93)81129-9 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.478857 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/9780470371572.ch2 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-540-87706-6_1 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.63.020201 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/78/10005 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.76.046705 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.80.011901 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i2001-00522-9 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2850082 000010018 999C5 $$1J. K. G. Dhont$$2Crossref$$oJ. K. G. Dhont An Introduction to Dynamics of Colloids 1996$$tAn Introduction to Dynamics of Colloids$$y1996 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.74.031402 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0600566103 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.25.1254 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01030307 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022112075003102 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/17/45/027 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3308649 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/22/10/104106 000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/85/38002 000010018 999C5 $$1M. Doi$$2Crossref$$oM. Doi The Theory of Polymer Dynamics 1986$$tThe Theory of Polymer Dynamics$$y1986