000010018 001__ 10018
000010018 005__ 20240610120110.0
000010018 0247_ $$2DOI$$a10.1103/PhysRevE.82.041921
000010018 0247_ $$2WOS$$aWOS:000283491200003
000010018 0247_ $$2Handle$$a2128/9312
000010018 037__ $$aPreJuSER-10018
000010018 041__ $$aeng
000010018 082__ $$a530
000010018 084__ $$2WoS$$aPhysics, Fluids & Plasmas
000010018 084__ $$2WoS$$aPhysics, Mathematical
000010018 1001_ $$0P:(DE-Juel1)VDB71097$$aGötze, I.$$b0$$uFZJ
000010018 245__ $$aMesoscale Simulations of Hydrodynamic Squirmer Interactions
000010018 260__ $$aCollege Park, Md.$$bAPS$$c2010
000010018 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2010-10-26
000010018 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2010-10-01
000010018 300__ $$a041921
000010018 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010018 3367_ $$2DataCite$$aOutput Types/Journal article
000010018 3367_ $$00$$2EndNote$$aJournal Article
000010018 3367_ $$2BibTeX$$aARTICLE
000010018 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010018 3367_ $$2DRIVER$$aarticle
000010018 440_0 $$04924$$aPhysical Review E$$v82$$x1539-3755$$y4
000010018 500__ $$aRecord converted from VDB: 12.11.2012
000010018 520__ $$aThe swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simulations. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to pullers. For passive squirmers (colloids), we show that the velocity autocorrelation function agrees quantitatively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior, determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a function of the center-to-center distances d(cm) and is found to be consistent with a logarithmic distance dependence for d(cm) less than about two sphere diameters; here, the force is considerably stronger than expected from the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect the postcollision velocity directions of both squirmers.
000010018 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000010018 542__ $$2Crossref$$i2010-10-26$$uhttp://link.aps.org/licenses/aps-default-license
000010018 588__ $$aDataset connected to Web of Science
000010018 650_7 $$2WoSType$$aJ
000010018 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b1$$uFZJ
000010018 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.82.041921$$bAmerican Physical Society (APS)$$d2010-10-26$$n4$$p041921$$tPhysical Review E$$v82$$x1539-3755$$y2010
000010018 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.82.041921$$gVol. 82, p. 041921$$n4$$p041921$$q82<041921$$tPhysical review / E$$v82$$x1539-3755$$y2010
000010018 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevE.82.041921
000010018 8564_ $$uhttps://juser.fz-juelich.de/record/10018/files/PhysRevE.82.041921.pdf$$yOpenAccess
000010018 8564_ $$uhttps://juser.fz-juelich.de/record/10018/files/PhysRevE.82.041921.gif?subformat=icon$$xicon$$yOpenAccess
000010018 8564_ $$uhttps://juser.fz-juelich.de/record/10018/files/PhysRevE.82.041921.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000010018 8564_ $$uhttps://juser.fz-juelich.de/record/10018/files/PhysRevE.82.041921.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000010018 8564_ $$uhttps://juser.fz-juelich.de/record/10018/files/PhysRevE.82.041921.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000010018 909CO $$ooai:juser.fz-juelich.de:10018$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000010018 9131_ $$0G:(DE-Juel1)FUEK505$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000010018 9132_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft  Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000010018 9141_ $$y2010
000010018 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010018 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000010018 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000010018 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$gIAS$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1$$zIFF-2
000010018 9201_ $$0I:(DE-Juel1)VDB782$$d31.12.2010$$gIFF$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x0
000010018 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x2
000010018 970__ $$aVDB:(DE-Juel1)120185
000010018 9801_ $$aFullTexts
000010018 980__ $$aVDB
000010018 980__ $$aConvertedRecord
000010018 980__ $$ajournal
000010018 980__ $$aI:(DE-Juel1)IAS-2-20090406
000010018 980__ $$aI:(DE-Juel1)ICS-2-20110106
000010018 980__ $$aI:(DE-82)080012_20140620
000010018 980__ $$aUNRESTRICTED
000010018 981__ $$aI:(DE-Juel1)IBI-5-20200312
000010018 981__ $$aI:(DE-Juel1)IAS-2-20090406
000010018 981__ $$aI:(DE-Juel1)ICS-2-20110106
000010018 981__ $$aI:(DE-Juel1)VDB1346
000010018 999C5 $$1H. C. Berg$$2Crossref$$oH. C. Berg E. Coli in Motion 2004$$tE. Coli in Motion$$y2004
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1751-1097.1988.tb01668.x
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1023/A:1020505204959
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.83.7.2138
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1469-8137.1984.tb02736.x
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00171966
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1119/1.10903
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/72/9/096601
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.fl.24.010192.001525
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022112006002631
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/cpa.3160050201
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S002211207100048X
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.048102
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/20/40/404215
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.088103
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/21/20/204101
000010018 999C5 $$1M. J. Lighthill$$2Crossref$$9-- missing cx lookup --$$a10.1137/1.9781611970517$$y1975
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.78.061903
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-1910(96)00037-6
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.133.3466.1766
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.178103
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.168101
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.098103
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.158102
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1242/jeb.02537
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00348-007-0387-y
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1529/biophysj.107.110254
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/21/20/204108
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0006-3495(93)81129-9
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.478857
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/9780470371572.ch2
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-540-87706-6_1
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.63.020201
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/78/10005
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.76.046705
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.80.011901
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i2001-00522-9
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2850082
000010018 999C5 $$1J. K. G. Dhont$$2Crossref$$oJ. K. G. Dhont An Introduction to Dynamics of Colloids 1996$$tAn Introduction to Dynamics of Colloids$$y1996
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.74.031402
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0600566103
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.25.1254
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01030307
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022112075003102
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/17/45/027
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3308649
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/22/10/104106
000010018 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/85/38002
000010018 999C5 $$1M. Doi$$2Crossref$$oM. Doi The Theory of Polymer Dynamics 1986$$tThe Theory of Polymer Dynamics$$y1986