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The swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simula-
tions. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential
for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a
prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to
pullers. For passive squirmers �colloids�, we show that the velocity autocorrelation function agrees quantita-
tively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior,
determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical
predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers
and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a
function of the center-to-center distances dcm and is found to be consistent with a logarithmic distance depen-
dence for dcm less than about two sphere diameters; here, the force is considerably stronger than expected from
the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is
obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect
the postcollision velocity directions of both squirmers.
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I. INTRODUCTION

Self-propelled swimming enables microorganisms to ex-
plore their surroundings in order to find regions with higher
nutrient concentration �1�, to seek for or to avoid environ-
mental conditions such as light �2�, and to hunt or to escape
from predators �3,4�. The evolutionary benefits of motility
can thus outweigh the associated metabolic costs substan-
tially �5–7�. Microswimmers are ubiquitous in aqueous
environments—they have adapted to various habitats such as
ponds and oceans and soil or the fluid interiors of animals
�both hostile and symbiotic�, and a variety of different pro-
pulsion mechanisms has evolved �8–10�. Because of their
significance for many biological processes, a detailed under-
standing of their behavior is desirable. For example, swim-
ming bacteria are involved in the spreading of infectional
diseases, motile algae and protozoa play a vital role in the
ecological system, and spermatozoa are indispensable for re-
production. Moreover, insights gained from swimming mi-
croorganisms may be useful for the development of nanoro-
bots, e g., in medicine for targeted drug delivery or to
remove clots in blood vessels.

Swimming at small length scales is characterized by low
Reynolds numbers, where viscous forces dominate inertial
forces, and propulsion mechanisms are required that are fun-
damentally different from those known from the macro-
scopic world �7�. One class of microswimmers are almost
spherical organisms that are propelled by active hairlike or-
ganelles �cilia� covering the body. On a mesoscopic length
scale, the synchronized beating �metachronal waves� of the
cilia can be mapped onto a spherical envelope �11,12�, and

its time average corresponds to a sphere with a steady pre-
scribed tangential surface velocity. Moreover, these
objects—called “squirmers”—may also serve as a simple ge-
neric model for other types of microswimmers, for example,
diffusiophoretic particles �such as polystyrene or silica beads
with metallic caps �13,14��. To cope with the biodiversity of
real microswimmers, the characteristics of the model can be
varied from pullers to pushers, i.e., whether the thrust is gen-
erated mainly in the front or rear part of the body. This
model was employed in Refs. �15,16� to study monolayers of
squirmers without thermal fluctuations or a single squirmer
in the presence of thermal fluctuations, respectively.

While the understanding of the propulsion mechanisms of
single microswimmers has considerably advanced �1,7,8,17�,
much less is know about the hydrodynamic interactions that
govern their collective behavior. As the hydrodynamic inter-
actions are long ranged, the motion of microswimmers is
strongly coupled in concentrated solutions, leading to dy-
namical phenomena such as bundling of spermatozoa
�18,19�, bioconvection �9,20�, instabilities and pattern forma-
tion �21�, or the graceful “dance” of Volvox algae �22�. Al-
though other mechanisms such as chemotaxis can also be
involved, hydrodynamic interactions play a crucial role for
the collective behavior of swimming microorganisms
�23,24�. The hydrodynamic interactions of microswimmers
have been studied experimentally �25,26� and theoretically
�10,15,18,25–29�. However, most of these studies neglect the
influence of thermal fluctuations and often rely on far-field
approximations. In the present paper, we study the hydrody-
namic interactions of pairs of squirmers that are small
enough to be subject to thermal translational and rotational
diffusion. We demonstrate that the thermal motion has a
large effect on the effective interactions between two swim-
mers and their behavior after collisions.

Due to the inherent many-body character and the long-
ranged nature of hydrodynamic interactions, mesoscale hy-
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drodynamic simulation techniques are particularly well
suited to study the collective behavior of squirmer suspen-
sions in the presence of thermal fluctuations. Here, we model
the fluid by multiparticle collision dynamics �MPC� �30–32�,
which allows a quantitative description of the hydrodynamic
behavior of self-propelled particles. Since MPC is an off-
lattice particle-based hydrodynamics simulation technique,
the incorporation of moving boundaries is straightforward
and thermal fluctuations are naturally included �31,32�.
Moreover, a combination with a molecular-dynamics algo-
rithm for the squirmer motion is easily possible. Here, we
consider the interaction between pairs of squirmers; how-
ever, due to the high computational efficiency of MPC, the
model is also well suited for the investigation of larger sys-
tems involving many squirmers.

II. MODEL

A. Squirmer model

The squirmer is modeled as a hard sphere of radius R �and
diameter �� with a prescribed tangential surface velocity vsq,
causing a propulsion in the direction of squirmer’s instanta-
neous orientation ê. The relative velocity at a surface point rs
�with respect to squirmer’s center� is given by �12�

vsq�rs, ê� = �
n=1

2

Bn
2

n�n + 1�
� ê · rs

R

rs

R
− ê�Pn�� ê · rs

R
� , �1�

where Pn��cos �� is the derivative of the nth Legendre poly-
nomial and Bn is the amplitude of the nth mode of the sur-
face velocity. The absolute local surface velocity of the
squirmer is given by

vs�r − rc, ê� = vc + vsq�r − rc, ê� + � � �r − rc� , �2�

where rc, vc, and � are the sphere position, velocity, and
angular velocity, respectively. The constant B1 sets the aver-
age velocity of the squirmer, v= �ê ·vc	= 2

3B1 �10�. Changing
the ratio of the two squirming modes, �=B2 /B1, allows for
adjusting the characteristics of the model from pullers ��
�0� to pushers ���0�.

B. Fluid model

The fluid is modeled by MPC , a particle-based mesoscale
hydrodynamics simulation technique �30–32�. Here, the fluid
is represented by N point particles of mass m that undergo
alternating streaming and collision steps. In the streaming
step, the particles do not interact with each other and propa-
gate according to

ri�t + �t� = ri�t� + vi�t��t , �3�

where �t is the time interval between collisions. Subse-
quently, the particles are sorted into the cells of a simple
cubic lattice with lattice constant a; the origin of this lattice
is randomly shifted before each collision step to ensure Gal-
ilean invariance �33�. The collision step then mimics the si-
multaneous interaction of all particles within each cell. There
are several versions of the collision algorithm, which all
have in common that the linear momentum is conserved in

each collision cell. Here, we employ a variant that also con-
serves angular momentum locally, denoted as MPC-AT+a
�34�. The new velocities are then given by

vi� = vc
G + vi

ran − �
j�cell

v j
ran/Nc + m�−1 �

j�cell

r j,c � �v j − v j

ran��

� ri,c, �4�

where � is the moment-of-inertia tensor of the particles in
the cell and Nc is the number of particles in a cell. The
relative position is ri,c=ri−rc

G, where rc
G is the center of mass

of the particles in the cell and vran are random velocities
chosen from a Maxwell-Boltzmann distribution at tempera-
ture T. This collision method serves at the same time as a
thermostat. It has been shown that it is essential to guarantee
local angular momentum conservation within the fluid in
studies of rotating colloids �35� and of coexisting fluids with
different viscosities �35,36�.

C. Boundary conditions

The implementation of no-slip boundary conditions in the
streaming step can be achieved by the bounce-back rule �37�.
In contrast to fixed walls considered in Ref. �37�, the bound-
ary conditions on the surface of a moving sphere require a
small modification. The new velocities of fluid particles that
hit the sphere during the streaming are then given by

vi� = − vi + 2vs, �5�

where vs is the surface velocity at the point of impact accord-
ing to Eq. �2�. The change in the linear and angular momenta
is transferred to the squirmer.

The implementation of the coupling of the fluid to the
squirmer in the collision step needs more sophistication. To
minimize slip at surfaces of objects, virtual particles are re-
quired in cells that overlap with boundaries �37�, which are
of particular importance for small time steps �t �38�, where
the collisional contribution to the viscosity dominates. Due
to the occurrence of the inertia tensor in the collision algo-
rithm MPC-AT+a, the use of explicit virtual particles is nec-
essary here, as described in Ref. �35�. To this end, a layer of
thickness �3 underneath the squirmer surface is filled ran-
domly with virtual particles before each collision step, where
the total number of virtual particles is chosen such that their
average density in that layer equals the density of the fluid.
In order to preset the fluid velocity at the surface according
to Eq. �2�, we assign velocities vran+vs to the virtual particles
before the collision step, where vran are random velocities
selected from a Maxwell-Boltzmann distribution at the same
temperature T as the fluid’s and vs is the surface velocity of
the squirmer at the same azimuthal and polar angles. These
virtual particles then participate in the collision step. This
method has been shown to yield very good agreement with
the theoretical velocity field in Ref. �16�.

The change in linear momentum experienced by the vir-
tual particles is transferred to the squirmer. In addition, a
torque originating from the coupling of the fluid to the
squirmer via the virtual particles is exerted on the squirmer
during the collision step. Therefore, the change in the angu-
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lar momentum of the virtual particles �with respect to the
squirmer’s center� has to be transferred to the squirmer, too
�regardless of whether a locally angular-momentum-
conserving version of MPC is used or not�. Thus, in the
collision step, the rotational velocity of the colloid is updated
according to

�� = � + I−1 �
i=1

Nvirt

�ri − rc� � �vi� − vi� , �6�

where Nvirt is the number of virtual particles and I is the
moment of inertia of the squirmer. We would like to empha-
size the importance of the torque on the squirmer arising
from angular momentum conservation on the length scale of
the squirmer size during the collision step due to the cou-
pling via the virtual particles, since its negligence leads to
serious errors. We will return to this point in Sec. III B be-
low.

D. Parameters

We choose different sets of parameters for the simulations
of single-squirmer systems and of squirmer pairs. The
squirmer mass is chosen such that its mass density equals
that of the fluid.

For the systems with two squirmers, we choose a fluid
density 	= �Nc	a−3=10 and a time step 
t=0.01t0, where t0
=a�m /kBT. For our choice of parameters, the kinematic vis-
cosity of the fluid is �=3.589a�kBT /m. The squirmer has a
radius R=4a.

In order to obtain realistic hydrodynamic interactions be-
tween squirmers, their velocities must be much smaller than
the velocity of propagation of the hydrodynamic interactions.
The time it takes the momentum to diffuse a characteristic
distance d, e.g., the colloid separation, is the kinematic time
tkin=d2 /� �39,40�. For the squirmer pairs, we use an initial
surface-to-surface separation ds=8a. This sets limitations for
the squirmer velocity v�� /ds=0.45a / t0. However, if v is
too small, thermal fluctuations prevail over the hydrody-
namic interactions we are interested in. Here, we mainly
study squirmers with B1=0.08a / t0, which implies v=2 /3B1
=0.053a / t0, corresponding to a Reynolds number Re
=v� /�=0.12 and a Péclet number Pe=v� /D=1155, where
� is the sphere diameter and D is its translational diffusion
constant. In order to investigate the effect of thermal fluctua-
tions, we also investigate the interactions of slower squirm-
ers with B1=0.06a / t0, B1=0.04a / t0, and B1=0.02a / t0, which
correspond to Péclet numbers Pe=866, Pe=577, and Pe
=289, respectively. The typical values of the Péclet number
for biological and synthetic squirmers can range from O�10�
for diffusiophoretic particles �13� to O�102� for bacillus sub-
tilis, a flagellated rod-shaped bacterium �with a length of
4 
m, a swimming velocity of v
10 
m /s �23�, and a
diffusion constant estimated from Stokes friction of D

0.1 
m2 /s �41��, as well as ciliates or Volvox algae �42�.
As we will see later, the rotational diffusion plays a crucial
role for the behavior of the squirmers. Therefore, we define
also a rotational Péclet number Per=v / ��Dr�=385, where
Dr=kBT / ����3� is the rotational diffusion constant. In real

systems, the magnitude of the rotational Péclet number is
mainly determined by the sphere diameter �.

For the single-passive-sphere and single-squirmer sys-
tems, the fluid density is 	=5 and the time step is 
t
=0.05t0. This choice of parameters corresponds to a kine-
matic viscosity �=0.6375a�kBT /m. We use a smaller sphere
radius R=3a and a lower viscosity here �compared to the
two-squirmer systems� to obtain a high rotational diffusion in
order to facilitate the measurement of the orientation auto-
correlation functions. Here, we set B1=0.04a / t0; this corre-
sponds to a Reynolds number Re=0.5 and a rotational Péclet
number Per=19.

In the following, lengths are usually measured in units of
the squirmer diameter � and times are in units of � /v, i.e.,
the time needed for a squirmer to travel its own diameter. For
passive colloids, time is measured in units of the rotational
diffusion constant.

III. RESULTS

A. Single passive sphere

Since the squirmer model is based on spherical objects
impenetrable for fluid particles, we first investigate the dy-
namics of a single �passive� colloidal particle immersed in an
MPC fluid. This corresponds to the special case Bn=0 for all
n. We measure the velocity autocorrelation function �VACF�,

CV�t� = �V�t� · V�0�	 , �7�

and the angular velocity autocorrelation function �AVACF�,

C��t� = ���t� · ��0�	 . �8�

The values of the autocorrelation function for t=0 follow
directly from the equipartition theorem of equilibrium statis-
tical mechanics,

CV�0� = 3kBT/M, C��0� = 3kBT/I , �9�

where M is the mass and I is the moment of inertia of the
colloid. In the long-time limit, mode coupling theory predicts
an algebraic decay �43,44�,

lim
t→�

CV�t� =
kBT

4�	
���� + D�t�−3/2, �10�

lim
t→�

C��t� =
3�kBT

	
�4��� + D�t�−5/2. �11�

At smaller time scales, the VACF is expected to follow the
Boussinesq approximation �45� �based on the analysis of the
incompressible Navier-Stokes equation�

CV�t� =
3kBT

2�R3	�5 − 8	�/	�
�R2

�
�1/2

�a+ exp�a+
2t�erfc�a+

�t�

− a− exp�a−
2t�erfc�a−

�t�� , �12�
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where

a� =
3

2
� �

R2�1/2�3 � �5 − 8
	�

	
�1/2�/�1 + 2

	�

	
� , �13�

and 	� is the mass density of the sphere �in our simulations,
	�=	�.

In Fig. 1, the simulation results for CV�t� and C��t� are
shown together with the theoretical predictions of Eqs.
�10�–�12�. At t=0, the simulation data coincide with the eq-
uipartition theorem �with only about 1.5% and 0.25% devia-
tions, respectively�. There is excellent agreement of the
AVACF with the asymptotic power-law prediction for times
t /��0.02, with the characteristic time scale �=1 / �2Dr� of
rotational diffusion. Furthermore, the VACF is well de-
scribed by the Boussinesq approximation for times t /�
�0.002. In both cases, there are no adjustable parameters.

We want to briefly comment on the differences of our
approach with previous studies of rotational diffusion of pas-
sive colloids with no-slip boundary conditions �40,46–48�.
In most of these studies, thermal or bounce-back boundary
conditions are employed without virtual wall particles. It was
pointed out in Ref. �48� that thermal boundary conditions
generate considerable wall slip. Bounce-back boundary con-
ditions are suitable to generate a good approximation to no-
slip surfaces without virtual particles, but only for relatively
large time steps h�0.1 �37,48�. This comes at the cost of a
non-negligible Enskog contribution to the diffusion coeffi-
cient �46,47�, so that diffusion is not dominated by hydrody-
namics. Furthermore, when large forces are acting on a col-
loidal particle, a time step h�0.1 is often not sufficient to
produce a high enough viscosity and to guarantee low Rey-
nolds numbers. All these complications can be avoided by
the coupling of the fluid to the colloid via virtual particles, as
shown above. No noticeable Enskog contribution appears be-
cause of the small time step and the collisions with the vir-
tual particles.

B. Single squirmers

Next, we test the coupling to the fluid for a single active
squirmer. It has already been shown in Ref. �16� with the
stochastic-rotation dynamics version of MPC that the theo-
retically calculated fluid velocity field around the squirmer
�12� is reproduced quite well in MPC simulations, when vir-
tual particles that are used are given the velocity of the
squirmer surface at the same polar angle. This is in agree-
ment with our observations employing MPC-AT+a.

However, the rotational energy 1
2 I�� ·�	 of a single

squirmer was found in Ref. �16� to exceed the theoretical
value 3

2kBT by about a factor of 6 when virtual particles are
used. Moreover, in Ref. �16� the orientation autocorrelation
function �ê�0� · ê�t�	 displays an exponential decay with a
characteristic time scale �. This time scale is predicted theo-
retically to be �=1 / �2Dr�, where Dr is the rotational diffu-
sion constant, the same as for a passive colloid �39�. How-
ever, the value of � that can be read off from Fig. 5�b� of Ref.
�16�, where �ê�0� · ê�t�	 has decayed to 1 /e, is by orders of
magnitude smaller than its theoretical value �=1 / �2Dr�
=4��R3 /kBT computed for the parameters given in Ref.
�16�.

We are only able to reproduce these drastic discrepancies
if we inadmissibly neglect the torque on the squirmer that
arises in the collision step. During the collision step, the fluid
and the rotating colloid also exchange angular momentum
via the coupling with the virtual particles. Thus, the change
in the linear and angular momenta of the virtual particles has
to be transferred to the colloid, regardless of whether a lo-
cally angular-momentum-conserving version of MPC �which
concerns angular momentum conservation in the fluid on the
scale of the collision-box size� is employed or not. In order to
obtain quantitatively correct results, however, a version with
angular momentum conservation is required.

The orientational autocorrelation function measured for a
single squirmer in a box of size 5��5��5� with periodic
boundary conditions is plotted in Fig. 2 together with the
theoretical result �ê�0� · ê�t�	=exp�−2Drt�. Here, we observe
a deviation in � of about 20% from the theoretical value �
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FIG. 1. Velocity autocorrelation function ��� and angular veloc-
ity autocorrelation function ��� of a single passive colloid from
simulation, compared with the theoretical expectation at t=0 from
equipartition theorem �dashed lines� and the respective algebraic
long-time decays �dotted lines� as well as the Boussinesq approxi-
mation �full line�.
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FIG. 2. �Color online� Orientation autocorrelation function
�ê�0� · ê�t�	 for a single squirmer, with Péclet number Pe=1155. The
full line shows the simulation data, while the dashed line corre-
sponds to the theoretical result exp�−2Drt�. The inset shows the
angular velocity autocorrelation function C��t�= ���0� ·��t�	. The
dashed line represents the theoretical value at t=0.
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=4��R3 /kBT for a radius R=3a. We attribute this small de-
viation to discretization effects due to size of the collision
boxes, as the agreement improves with increasing squirmer
radius and thus decreasing a /R. With a correct implementa-
tion of angular momentum conservation, as described in Sec.
II C above, the rotational energy is in perfect agreement with
the expected value �see the inset of Fig. 2�.

C. Pairs of squirmers

First, we study the flow field around a pair of squirmers at
fixed positions with a surface-to-surface distance ds=� and a
fixed parallel orientation. The size of the simulation box is
10� in the direction of the connection of the squirmer centers
and 6.25� in both perpendicular directions. Periodic bound-
ary conditions are employed in all three dimensions. As
MPC naturally includes thermal fluctuations, the time aver-
age over many simulation steps has to be taken in order to
obtain the average flow field with good accuracy. Subse-
quently, the total average fluid velocity is subtracted to ob-
tain the flow field in the laboratory frame. The resulting ve-
locity fields in the plane that contains the squirmers’ centers
are shown in Fig. 3 for pusher and puller. In the region be-
tween the two squirmers, we observe a convergent flow for
the pullers ��=+3�; thus, fluid is pressed into the gap, in-
creasing the pressure there and leading to repulsion. On
the other hand, we find a divergent flow for the pushers ��
=−3�, i.e., a mutual suction of the squirmers toward each
other. To make this clearer, we also show some streamlines.
For the pullers, we observe convergence of the streamlines in
the region between the squirmers, some of them ending in
vortices. Since the flow field is three dimensional, fluid can
leave the plane under consideration in the perpendicular di-
rection.

Moreover, we measure the interaction force of fixed par-
allel oriented squirmers for various center-to-center distances
dcm �see Fig. 4�. The forces are normalized with the Stokes

force acting on a sphere moving with the same velocity v,
i.e., FS=6��Rv. In agreement with the above consider-
ations, we find repulsive forces F� for puller and an attrac-
tion for pusher. In both cases, the force for dcm /��1.7 is
well described by a logarithmic dependence separation dcm,

F�,near = A0���FS�ln�dcm

�
− 1� + C� . �14�

This functional dependence has been derived in Ref. �10� in
a near-field expansion. In the opposite limit of large dis-
tances, a far-field approximation predicts a power-law decay
of the fluid velocity �10,12�,

uz,far =
1

16
�B1� �

dcm
�2

, �15�

generated by one swimmer �moving in the x direction� at the
position of the other swimmer �displaced by dcm in the z
direction�. This implies a force

F�,far = 3��uz,far. �16�

The simulation results presented in Fig. 4 show that the data
approach the asymptotic behavior �16� for dcm�2�. It is
important to note that the hydrodynamic interactions on dis-
tances dcm�2� are considerably stronger than predicted by
the far-field result. The neutral ��=0� squirmers, on the other
hand, show only a very weak interaction with alternating
sign as a function of dcm.

The dependence of the interaction force on � for a fixed
separation dcm=1.5� is plotted in Fig. 5. We find a simple
linear dependence. This implies that in Eq. �14�, the ampli-
tude of the force is given by

A0��� = 0.10� + 0.02. �17�

It is interesting to note that the magnitude of the hydrody-
namic interaction at distance dcm /�=1.5 and �=5 has about
the same magnitude as the Stokes drag force FS.

FIG. 3. �Color online� Velocity fields for fixed parallel pairs of
squirmers, for �a� pusher �with �=−3� and �b� puller �with �=+3�,
with Péclet number Pe=1155. Swimmers move to the right. Stream-
lines serve as a guide to the eye. Only a fraction of the simulation
box is shown. �Due to the finite resolution of the measures velocity
field, some streamlines end on the squirmers’ surfaces.�

-0.5

0

0.5

1

1 1.5 2 2.5

F
⊥

/F
S

dcm/σ

FIG. 4. �Color online� Interaction force of two parallel squirm-
ers �in units of the corresponding Stokes force at the same swim-
ming velocity� as a function of the center-to-center distance dcm for
�=−3 �red circles�, �=0 �green squares�, and �=+3 �blue tri-
angles�, with Péclet number Pe=1155. Dashed-dotted lines indicate
the expected asymptotic �� /dcm�2 law for large distances, while full
gray lines indicate the logarithmic decay of Eq. �14� at distances
dcm /�−1�1 with C=0.2.
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Next, we allow the squirmers to swim freely, starting
with two squirmers at center-to-center distance dcm=2� and
parallel initial orientation. For �=−3,0 ,3, we use 200 inde-
pendent runs each to determine the time evolution of the
distance distribution shown in Fig. 6. The distribution is
characterized by a peak, which drifts and broadens due to the
translational diffusion, as well as the rotational diffusion and
thus reorientation of the swimming direction. Figure 6 dem-
onstrates again that pushers, pullers, and neutral swimmers
show a qualitatively different behavior. The peak shifts to
larger distances for pullers ��=+3�, i.e., they repel each
other, while the peak shifts to smaller distances for pushers
��=−3�, i.e., they attract each other. For �=0 the position of
the peak does not change.

From the distributions, we calculate the variance of the
center-to-center distances dcm=ds+� as a function of time
�see Fig. 7�. The contribution of the translational diffusion of

two squirmers is ��dcm− d̄cm�t��2	=4Dt, where d̄cm�t� is the
average distance at time t. The contribution due to the rota-
tional diffusion of the two squirmer can be calculated
straightforwardly from the orientational correlation function
�ê�0� · ê�t�	=exp�−2Drt�, as follows directly from the theory
of semiflexible polymers �13,50,51� �the trajectory of a
squirmer with only rotational diffusion is equivalent to the
conformation of a semiflexible polymer with “persistence
length” �=1 / �2Dr��. In the limit Drt�1, the leading contri-
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FIG. 5. �Color online� Interaction force of two parallel squirm-
ers �in units of the corresponding Stokes force at the same swim-
ming velocity� as a function of ratio � of surface velocity modes,
for center-to-center distance dcm=1.5� and Péclet number Pe
=1155. The dashed green line is a guide to the eye.
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FIG. 6. �Color online� Normalized histograms of surface-to-
surface distances ds /� of squirmer pairs at various times, deter-
mined from many independent runs. The initial configurations at t
=0 are identical to those in Fig. 3. Blue dashed lines represent the
simulation results for �=−3 �pusher�, black full lines for �=0 �neu-
tral squirmer�, and red dotted lines for �=+3 �puller�. In all cases,
the Péclet number is Pe=1155.
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FIG. 7. �Color online� Variance of the center-to-center distances,

Var�d /��=�−2��dcm− d̄cm�t��2	, as a function of time for �=−3
�dashed green line�, �=0 �dashed-dotted blue line�, and �=+3 �dot-
ted red line�. In all cases, the Péclet number is Pe=1155. The full
black line shows the theoretical prediction �18�.

FIG. 8. Sequences of snapshots for pairs of initially parallel
pushers at fixed time intervals �tv /�=1.67 for two different real-
izations of the thermal noise, with Péclet number Pe=1155. The
initial parallel offset is �x=0. The instantaneous squirmer orienta-
tions are indicated by the arrows. �a� Squirmers touch at time
tv /�
3.33, but later depart again. �b� Squirmers do not touch.
Movies of the motion of interacting squirmer pairs are provided in
Ref. �49�.
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bution to the variance is here 2
3v2Drt

3. Thus, the time evolu-
tion of the variance is expected to be

��dcm − d̄cm�t��2	 = 4Dt + v2 4
3Drt

3 + O„�Drt�4
… . �18�

This theoretical prediction is in excellent agreement with our
simulation results, as shown in Fig. 7—again without any
adjustable parameters. By equating the first and second terms
in Eq. �18�, it is easy to see that translational diffusion domi-
nates for tv /��1, while orientational diffusion is more im-
portant for tv /��1, i.e., after the squirmer has traveled a
distance of its own diameter.

Two typical trajectories of pushers which are initially ori-
ented in parallel, overlaid with stroboscopic snapshots, are
shown in Fig. 8. The time-dependent distances of several
representative trajectories are presented in Fig. 9�a�. First,
pushers move toward each other. After a time tv /�
3.33, it
is very likely to find a pair of pushers at contact �see Fig.
8�a��; however, although there is an attractive force between
parallel pushers, due to orientational fluctuations, their colli-
sion is not inevitable �see Fig. 8�b��. As a consequence of
thermal fluctuations, one squirmer lags behind the other in
this case, which weakens the attraction or even turns into a
repulsion. We observe that in most of the 200 independent
runs, the pairs of pushers stick together for a while after
contact. However, at later times, the squirmers reorient them-
selves and the trajectories subsequently diverge—despite the
attractive interaction between pushers swimming in parallel.

In order to study the effect of thermal fluctuations, we
vary the swimming velocity and thus the Péclet number. In
Fig. 9�b�, the time-dependent distance of squirmer pairs is
shown for six independent runs, where the swimming veloc-
ity has been reduced by a factor of 2 compared to Fig. 9�a�.
As expected, an increased spreading of the trajectories for
independent runs can be seen. Moreover, we observe shorter
contact times since the increased fluctuations facilitate the
reorientation of the squirmers.

In Fig. 10, the time evolution of the average interpair
distance is shown for four different swimming velocities,
obtained from 64 independent runs each. Without thermal
fluctuations, all pairs would have contact at the same time at
a minimum distance of dmin=�. It can be extrapolated from
Fig. 10 that the first-contact time in the absence of fluctua-
tions occurs approximately at tv /�=4. With thermal fluctua-
tions, independent trajectories show an increasing spreading
with decreasing Péclet numbers, which is reflected in an in-
creasing standard deviation of the distance distribution. At
short times �tv /��2� the average distance is dominated by
the mutual hydrodynamic interaction and depends only very
weakly on Pe �for the Péclet numbers Pe�290 studied here�.
It should be noticed that at constant �, the perpendicular
force F� increases linearly with the swimming velocity �see
Eqs. �14�–�16��; on the other hand, the time needed to
traverse a given distance is proportional to 1 /v. Therefore,
the pair separation as a function of the rescaled time should

FIG. 11. Same as Fig. 8, but with an initial offset �x=�, �z
=2�. The time interval is �tv /�=1.67 Movies of the motion of
interacting squirmer pairs are provided in Ref. �49�.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 1 2 3 4 5 6

d c
m

/σ

t v/σ

a)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 1 2 3 4 5 6

d c
m

/σ

t v/σ

b)

FIG. 9. �Color online� Time-dependent distance dcm of pairs of
initially parallel pushers ��=−3� with initial parallel offset �x=0,
for �a� Pe=1155 with swimming velocity v=0.053a / t0 and �b� Pe
=577 with swimming velocity v=0.027a / t0.
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FIG. 10. �Color online� Average distance of squirmer pairs �with
�=−3� as a function of scaled time for different swimming veloci-
ties. The corresponding Péclet numbers are Pe=289 �magenta
dashed-dotted line�, 577 �red dotted line�, 866 �green dashed line�,
and 1155 �blue full line�. The error bars represent the standard
deviation.
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be independent of v—in the absence of fluctuations. At
larger times �tv /��2�, fluctuations become relevant. As the
trajectories tend to fan out more for smaller Pe, the probabil-
ity of squirmer pairs to touch decreases. The minimal dis-
tance increases and is shifted to shorter times with decreas-
ing Péclet number, because first contact can occur earlier,
contact times are shorter, and contact probability decreases,
so that more trajectories diverge already at shorter times.

We would like to point out that if there is less than one
collision cell of fluid between two surfaces, hydrodynamic
interactions are inaccurately represented by MPC. However,
since in the case of touching spheres this condition is only
violated very locally close to the point of contact, we expect
the qualitative behavior to be predicted correctly in our simu-
lations.

To corroborate the observation that the squirmer orienta-
tion after collisions �or near collisions� for initial parallel
offset �x=0 is very sensitive to thermal fluctuations, we
modify the initial configuration such that the two parallel
oriented pushers start with an offset �x�0, �z=2� �see Fig.
11 for �x=� and Fig. 12 for �x=2��. For an initial configu-
ration with parallel offset �x=�, we observe a deflection of
both pushers in the positive z direction. For �x=2�, instead
of an attraction, a weak repulsion is observed.

To study this behavior more quantitatively, the average
angle � of the squirmers orientation with the x axis after a
time tv /�=6.67 is plotted in Fig. 13 as a function of the
initial parallel offset �x. For symmetry reasons, the average
angle for �x=0 must vanish. On the other hand, for very
large �x, the interaction vanishes, which again implies a zero
average angle. We observe a maximum of the deflection
angle at a small offset in the range 0��x�0.5�. In Ref.
�10�, a similar problem has been studied �but without thermal
fluctuations� for pullers, which are deflected in the opposite
sense, i.e., in the direction of the squirmer that lags behind.

The variance of the scattering angle � is not due to an
insufficient number of independent runs, but reflects the
width of the distribution of scattering angles. Figure 13 dem-
onstrates that the variance becomes very large for ��x�→0,
because when the two squirmers collide, small changes in
the relative orientation and position have a drastic effect on
the postcollisional angles. For example, in the case without
parallel offset, a squirmer pair may collide or not, as we have
seen in Fig. 9; in fact, for �x=0 the distribution of scattering
angles is bimodal, with peaks at �
 �45°. Also for a finite
parallel offset, the importance of thermal fluctuations is re-
flected in the large variance in Fig. 13.

IV. CONCLUSIONS

We have investigated the swimming behavior of single
squirmers and squirmer pairs by mesoscale hydrodynamics
simulations. The results show that multiparticle collision dy-
namics �MPC� is able to describe squirmer systems quanti-
tatively when the correct boundary conditions are used and
when angular momentum conservation is fully implemented.
The advantage of the MPC method is that it includes both
hydrodynamic interactions and thermal fluctuations consis-
tently and is computationally very efficient.

The motion of a single squirmer with thermal fluctuations
is determined by forward motion and translational diffusion
and by orientational fluctuations of the swimming direction
�13�. We find that on times scales t�� /v, when the squirmer
has traveled less than its diameter, forward motion with
translational diffusion dominates, while at later times, orien-
tational fluctuations lead to a persistent random-walk behav-
ior with persistence length �p=v / �2Dr�.

For two squirmers with initially parallel orientation, we
find that the interaction depends on the mode ratio � of sur-
face velocities, with a repulsion for pullers and an attraction
for pushers, in agreement with theoretical expectations. The
simulation results for the hydrodynamic force between two
squirmers with distances dcm /��2 follow a logarithmic dis-
tance dependence, as predicted theoretically �10�. The force
amplitude is obtained to be a linear function of the mode
ratio �.

As initially parallel pushers approach each other due to
hydrodynamic attractions, they can eventually collide. This
process strongly depends on thermal fluctuations. In same
cases, collisions may be completely avoided. In most other
cases, the exit angles after the collision show a wide distri-
bution. Furthermore, postinteraction angles are found to
strongly depend on the initial lateral offset.

We conclude that the interactions of squirmers are mainly
determined by the short-range hydrodynamic interactions.
For larger distances, hydrodynamic forces are weak and ther-
mal fluctuations of the swimming directions dominate. The
importance of thermal fluctuations of course increases with
decreasing Péclet number. Our results show that the MPC
approach is well suited for quantitative simulation studies of
multisquirmer systems.
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FIG. 13. �Color online� Average deflection angle � after a time
tv /�=6.67 for pairs of pushers ��=−3�, with Péclet number Pe
=1155 and initial vertical offset �z=2�, as a function of the paral-
lel offset �x. Error bars represent the standard deviations.

FIG. 12. Same as Fig. 8, but with an initial offset �x=2�, �z
=2�. The time interval is �tv /�=1.67.
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