001002037 001__ 1002037
001002037 005__ 20230228121557.0
001002037 0247_ $$2doi$$a10.1016/j.revip.2022.100078
001002037 0247_ $$2Handle$$a2128/33959
001002037 037__ $$aFZJ-2023-01235
001002037 082__ $$a530
001002037 1001_ $$0P:(DE-Juel1)130573$$aBuchenau, U.$$b0$$eCorresponding author
001002037 245__ $$aSound absorption in glasses
001002037 260__ $$aAmsterdam$$bElsevier$$c2022
001002037 3367_ $$2DRIVER$$aarticle
001002037 3367_ $$2DataCite$$aOutput Types/Journal article
001002037 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677159558_4399
001002037 3367_ $$2BibTeX$$aARTICLE
001002037 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001002037 3367_ $$00$$2EndNote$$aJournal Article
001002037 520__ $$aThe paper presents a description of the sound wave absorption in glasses, from the lowest temperatures up to the glass transition, in terms of three compatible phenomenological models. Resonant tunneling, the rise of the relaxational tunneling to the tunneling plateau and the crossover to classical relaxation are universal features of glasses and are well described by the tunneling model and its extension to include soft vibrations and low barrier relaxations, the soft potential model. Its further extension to non-universal features at higher temperatures is the very flexible Gilroy–Phillips model, which allows to determine the barrier density of the energy landscape of the specific glass from the frequency and temperature dependence of the sound wave absorption in the classical relaxation domain. To apply it properly at elevated temperatures, one needs its formulation in terms of the shear compliance. As one approaches the glass transition, universality sets in again with an exponential rise of the barrier density reflecting the frozen fast Kohlrausch -tail (in time , with close to 1/2) of the viscous flow at the glass temperature. The validity of the scheme is checked for literature data of several glasses and polymers with and without secondary relaxation peaks. The frozen Kohlrausch tail of the mechanical relaxation shows no indication of the strongly temperature-dependent barrier density observed in dielectric data of molecular glasses with hydrogen bonds. Instead, the mechanical relaxation data indicate an energy landscape describable with a frozen temperature-independent barrier density for any glass.
001002037 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
001002037 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001002037 7001_ $$0P:(DE-HGF)0$$aD’Angelo, G.$$b1
001002037 7001_ $$0P:(DE-HGF)0$$aCarini, G.$$b2
001002037 7001_ $$aLiu, X.$$b3
001002037 7001_ $$0P:(DE-HGF)0$$aRamos, M. A.$$b4
001002037 773__ $$0PERI:(DE-600)2858662-1$$a10.1016/j.revip.2022.100078$$gVol. 9, p. 100078 -$$p100078 -$$tReviews in physics$$v9$$x2405-4283$$y2022
001002037 8564_ $$uhttps://juser.fz-juelich.de/record/1002037/files/1-s2.0-S2405428322000090-main.pdf$$yOpenAccess
001002037 8767_ $$d2022-02-22$$eAPC$$jZahlung erfolgt$$zOABLE
001002037 909CO $$ooai:juser.fz-juelich.de:1002037$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001002037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130573$$aForschungszentrum Jülich$$b0$$kFZJ
001002037 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
001002037 9141_ $$y2022
001002037 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001002037 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001002037 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-29
001002037 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001002037 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26T13:09:24Z
001002037 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26T13:09:24Z
001002037 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001002037 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-26T13:09:24Z
001002037 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-29
001002037 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-29
001002037 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
001002037 980__ $$ajournal
001002037 980__ $$aVDB
001002037 980__ $$aUNRESTRICTED
001002037 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001002037 980__ $$aAPC
001002037 9801_ $$aAPC
001002037 9801_ $$aFullTexts