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Swarm Optimization

Courtesy of [1]
Multi-agent simulation in
NetLogo [2]
Ants (red, green) explore and
forage for food (green patches)
Drop pheromones (blue, white)
for communication
Steered by a Spiking Neural
Network (SNN) in NEST [3]

SNN controlling the agents
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Optimization Workflow
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Optimization of weights and delays with L2L [4]
32 individuals (colonies) optimized in parallel
Each colony is comprised of 15 ants

Performance Comparison
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Rule-driven model: Ants
follow predefined rules
SNN-model 1: Emergent
coordination via
pheromones
SNN-model 1: Same as
previous model but
pheromone sensing
deactivated
SNN-model 2: Colony
evolved without
pheromone usage

Mapping Sensing to Behaviour
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Correlating the network input and output spike trains
Pearson correlation coefficients of all ants from the
best individual

Results
Ants learn to collaborate by depositing pheromones close to the food
and nest
Pheromone usage not manually encoded into SNN; instead behaviour
is established through optimization by exploiting physiological
properties of the agents
Pheromone-based communication increases the performance of the
colony

Outlook

Modified from [5]

Transfer strategy from simulation to
actual robotics hardware
Application to real world problems
(e.g. by utilizing drones)
Deployment in changing
environments with harsh conditions↰single agents are more prone to
failure
Multiple types of pheromones to
achieve complex communication
within the colony
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