001002263 001__ 1002263
001002263 005__ 20231027114355.0
001002263 0247_ $$2doi$$a10.1103/PhysRevB.107.085129
001002263 0247_ $$2ISSN$$a2469-9950
001002263 0247_ $$2ISSN$$a2469-9977
001002263 0247_ $$2ISSN$$a0163-1829
001002263 0247_ $$2ISSN$$a0556-2805
001002263 0247_ $$2ISSN$$a1095-3795
001002263 0247_ $$2ISSN$$a1098-0121
001002263 0247_ $$2ISSN$$a1538-4489
001002263 0247_ $$2ISSN$$a1550-235X
001002263 0247_ $$2ISSN$$a2469-9969
001002263 0247_ $$2arXiv$$aarXiv:2212.05475
001002263 0247_ $$2Handle$$a2128/33957
001002263 0247_ $$2WOS$$aWOS:000944158700002
001002263 037__ $$aFZJ-2023-01245
001002263 082__ $$a530
001002263 1001_ $$0P:(DE-HGF)0$$aGhanem, Khaldoon$$b0
001002263 245__ $$aConnecting Tikhonov regularization to the maximum entropy method for the analytic continuation of quantum Monte Carlo data
001002263 260__ $$aWoodbury, NY$$bInst.$$c2023
001002263 3367_ $$2DRIVER$$aarticle
001002263 3367_ $$2DataCite$$aOutput Types/Journal article
001002263 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677156910_32537
001002263 3367_ $$2BibTeX$$aARTICLE
001002263 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001002263 3367_ $$00$$2EndNote$$aJournal Article
001002263 500__ $$a12 pages, 10 figures
001002263 520__ $$aAnalytic continuation is an essential step in extracting information about the dynamical properties of physical systems from quantum Monte Carlo (QMC) simulations. Different methods for analytic continuation have been proposed and are still being developed. This paper explores a regularization method based on the repeated application of Tikhonov regularization under the discrepancy principle. The method can be readily implemented in any linear algebra package and gives results surprisingly close to the maximum entropy method (MaxEnt). We analyze the method in detail and demonstrate its connection to MaxEnt. In addition, we provide a straightforward method for estimating the noise level of QMC data, which is helpful for practical applications of the discrepancy principle when the noise level is not known reliably.
001002263 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001002263 588__ $$aDataset connected to arXivarXiv, CrossRef, Journals: juser.fz-juelich.de
001002263 7001_ $$0P:(DE-Juel1)130763$$aKoch, Erik$$b1$$eCorresponding author
001002263 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.107.085129$$gVol. 107, no. 8, p. 085129$$n8$$p085129$$tPhysical review / B$$v107$$x2469-9950$$y2023
001002263 8564_ $$uhttps://juser.fz-juelich.de/record/1002263/files/2212.05475.pdf$$yOpenAccess
001002263 8564_ $$uhttps://juser.fz-juelich.de/record/1002263/files/PhysRevB.107.085129.pdf$$yOpenAccess
001002263 909CO $$ooai:juser.fz-juelich.de:1002263$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001002263 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130763$$aForschungszentrum Jülich$$b1$$kFZJ
001002263 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001002263 9141_ $$y2023
001002263 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
001002263 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-11
001002263 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001002263 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
001002263 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001002263 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001002263 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001002263 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-27
001002263 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-27
001002263 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2022$$d2023-10-27
001002263 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001002263 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001002263 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001002263 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001002263 920__ $$lyes
001002263 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001002263 980__ $$ajournal
001002263 980__ $$aVDB
001002263 980__ $$aUNRESTRICTED
001002263 980__ $$aI:(DE-Juel1)JSC-20090406
001002263 9801_ $$aFullTexts