Hauptseite > Publikationsdatenbank > Connecting Tikhonov regularization to the maximum entropy method for the analytic continuation of quantum Monte Carlo data > print |
001 | 1002263 | ||
005 | 20231027114355.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.107.085129 |2 doi |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9977 |2 ISSN |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a arXiv:2212.05475 |2 arXiv |
024 | 7 | _ | |a 2128/33957 |2 Handle |
024 | 7 | _ | |a WOS:000944158700002 |2 WOS |
037 | _ | _ | |a FZJ-2023-01245 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Ghanem, Khaldoon |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Connecting Tikhonov regularization to the maximum entropy method for the analytic continuation of quantum Monte Carlo data |
260 | _ | _ | |a Woodbury, NY |c 2023 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1677156910_32537 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 12 pages, 10 figures |
520 | _ | _ | |a Analytic continuation is an essential step in extracting information about the dynamical properties of physical systems from quantum Monte Carlo (QMC) simulations. Different methods for analytic continuation have been proposed and are still being developed. This paper explores a regularization method based on the repeated application of Tikhonov regularization under the discrepancy principle. The method can be readily implemented in any linear algebra package and gives results surprisingly close to the maximum entropy method (MaxEnt). We analyze the method in detail and demonstrate its connection to MaxEnt. In addition, we provide a straightforward method for estimating the noise level of QMC data, which is helpful for practical applications of the discrepancy principle when the noise level is not known reliably. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to arXivarXiv, CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Koch, Erik |0 P:(DE-Juel1)130763 |b 1 |e Corresponding author |
773 | _ | _ | |a 10.1103/PhysRevB.107.085129 |g Vol. 107, no. 8, p. 085129 |0 PERI:(DE-600)2844160-6 |n 8 |p 085129 |t Physical review / B |v 107 |y 2023 |x 2469-9950 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1002263/files/2212.05475.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1002263/files/PhysRevB.107.085129.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1002263 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130763 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2022-11-11 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-11 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|