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Analytic continuation is an essential step in extracting information about the dynamical properties of physical
systems from quantum Monte Carlo (QMC) simulations. Different methods for analytic continuation have been
proposed and are still being developed. This paper explores a regularization method based on the repeated
application of Tikhonov regularization under the discrepancy principle. The method can be readily implemented
in any linear algebra package and gives results surprisingly close to the maximum entropy method (MaxEnt). We
analyze the method in detail and demonstrate its connection to MaxEnt. In addition, we provide a straightforward
method for estimating the noise level of QMC data, which is helpful for practical applications of the discrepancy

principle when the noise level is not known reliably.

DOLI: 10.1103/PhysRevB.107.085129

I. ANALYTIC CONTINUATION: AN ILL-POSED PROBLEM

From a mathematical perspective, the analytic continuation
problem corresponds to solving a Fredholm integral equa-
tion of the first kind,

gy = f dxK(y, x)f (x), ey

where f(x) is the unknown spectrum, a non-negative in-
tegrable function. K(y,x) is the kernel of the integral
equation and is known analytically, while g(y) is noisy data,
typically obtained from QMC simulation at a finite number of
points y;.

To solve the analytic continuation numerically, the integral
is discretized using a grid of n points x;, giving a linear system
of equations

g = Kf, 2)

where the elements of the matrix K are the kernel values
K(yj, x;), g contains m measured data values g(y;), and f;
is the spectrum integral over the ith grid interval. The most
naive and straightforward way of solving Eq. (2) is, as with
any other linear system of equations, using the weighted least-
squares method,

f s = argmin Xz(f), 3)
£

which finds the spectrum minimizing the fit to the data:
X =g -KNH'Cg-Kn. “)

The fit is weighted by the inverse of C, the covariance matrix
of the noise on the data. By factorizing the covariance matrix
into C~' = T'T, one can always replace the kernel matrix and
data vector by the weighted ones TK and Tg, respectively.
Then the covariance matrix of the weighted data becomes the
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identity matrix, and one can use the ordinary least-squares
method instead. In the following, we will always assume that
such transformation has been applied to the kernel and the
data despite using the same notations K and g to denote the
weighted ones.

Using the least-squares solution for solving the analytic
continuation problem gives generally bad results plagued by
noise, as exemplified in Fig. 1. The reason is that the matrices
in analytic continuation problems are highly ill-conditioned
such that the inevitable small noise on the data leads to dis-
astrous noise on the least-squares solution [1,2]. This can be
seen more explicitly using the singular value decomposition
(SVD) of the kernel matrix

K =USV', (5)

where S is a diagonal matrix of size m x n, and U and V are
unitary matrices of sizes m x m and n x n, respectively. The
columns of the matrix U form an orthonormal basis of the
data space and are called the data modes, while the columns
of matrix V, which span the space of spectra, are called the
spectral modes. The diagonal elements of S are the singular
values and they are sorted in descending order. Using the
SVD, the least-squares solution can be written as

min(m,n) T

u; g
fis = Z il (©)
For matrices arising from analytic continuation problems, the
singular values decay exponentially to zero (see Fig. 2). Di-
viding by these vanishing singular values hugely amplifies any
small noise present in the data. This is the main problem with
the least-squares solution.

The other source of ill-posedness is the incompleteness of
the data, i.e., we only know the data at a finite number of
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FIG. 1. Least-squares solution (bottom panel) for the analytic
continuation of optical conductivity o (w) using noisy data of its
correlation function. The exact correlation function is computed
analytically from the exact optical conductivity (top panel) on the
first m = 60 bosonic Matsubara frequencies with inverse tempera-
ture B = 15. The input data includes relative Gaussian noise with
standard deviation 1072, This test case is an adaptation of the ones
proposed by Ref. [29] and studied further in Refs. [12-14]. In the
notation of the latter reference, the optical conductivity used here
differs in the values of the following parameters: I', = 20, ¢; = 15.
We denote this data set as fest case 1.

points m < n, where n is typically chosen large enough to
resolve the desired features of the spectrum. Therefore, even
for numerically exact data, if no regularization/additional
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FIG. 2. Singular values of the (weighted) kernel of test case 1.
The singular values decay exponentially until leveling off at a value
determined by the machine epsilon. In the inset, we show some of the
spectral modes. The leading spectral modes are smooth and slowly
varying functions. As the mode index increases, the number of nodes
increases and the modes become more oscillatory. Once the singular
values reach numerical accuracy, the corresponding modes become
numerically degenerate so the SVD routine returns arbitrary linear
combinations of the exact modes.

information is provided, one can only ever hope to recover
at most the first m modes of the spectrum.

Various methods have been developed and used to ad-
dress the ill-posedness of analytic continuation, including
the maximum entropy method (MaxEnt) [3-6], the aver-
age spectrum method [7-15], Padé approximation [16-19],
stochastic optimization methods [20,21], machine learning
methods [22-25], and genetic algorithms [26—28].

II. NOISE ESTIMATION

The SVD of the kernel matrix allows an accurate estima-
tion of the overall scale of noise on QMC data. This can
be valuable in practical situations where such an estimate is
unavailable or as an important cross-check of the validity of
the noise level estimate.

As a start, let us assume, as usual, that an estimate of the
covariance matrix C already exists and that the data and kernel
have been weighted by T, the square root of its inverse. Conse-
quently, the noise on the different components of the weighted
data vector g is uncorrelated and has a unit variance. Since
the matrix U is unitary, the noise ¢; present in the expansion
coefficients of the data u!g is also uncorrelated and has a unit
variance. These noisy data coefficients are then related to the
exact spectrum via the relation

llng =S V;'rfexact + €. (7)

Given that the exact spectrum has a finite norm and that the
singular values in analytic continuation decay exponentially,
there is some index k, after which the exact data coefficients
become negligible compared to the noise. For these indices,
the measured data coefficients are practically plain noise,

uiTg%ei tk<i<m, 8)

and can be used to estimate the variance of the noise ¢; as

m

(u'g)’, ©)
i=k+1

where the formula for estimating population variance with a
known mean of value zero has been employed. The expected
value of this estimator is mostly independent of the index k
as long as it is large enough that the corresponding exact data
coefficients are well below the actual noise level. Estimating
the earliest such index can be done by inspecting the noisy
data coefficients and checking when they start to plateau at a
certain level. That would be around i = 10 in Fig. 3. Using
a larger value of k gives a similar estimate but with less
accuracy. In practice, the index k can be automatically chosen
as the numerical rank of K, i.e., the index at which the singular
values hit numerical accuracy. Since the number of data points
is typically much larger than the numerical rank, this choice
avoids checking for the plateau while it does not sacrifice
much accuracy in estimating the noise.

When the covariance matrix C is properly scaled, we ex-
pect this value to be close to one. This is illustrated in Fig. 3
for test case 1, where the data coefficients decay exponentially
till they reach the noise level o (¢) = 1 and fluctuate around it.
However, when a covariance matrix with the wrong scaling is
used, the aforementioned plateau of data coefficients will be
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FIG. 3. Absolute values of the exact and noisy data coefficients
of test case 1. While the exact coefficients decay to the machine
epsilon, the noisy ones decay until they hit the noise level and then
fluctuate around it. Here the noise level equals one because the data
is weighted by the proper covariance matrix. Notice that large noisy
coefficients are close to their exact values and that the deviation
becomes significant only when their values drop to near the noise
level.

scaled accordingly, and o (¢) will deviate from the expected
value of one. Values much larger than one indicate that the
noise level has been underestimated, while values much lower
than one indicate an overestimation of the noise level.

An important practical use case of the above formula is
estimating the noise level of uncorrelated relative Gaussian
noise. In this case, as an initial ansatz, one can use a diagonal
covariance matrix whose diagonal elements are the squares
of the data values. Equation (9) then provides an estimate of
o2, which can be multiplied by the ansatz to obtain a properly
scaled covariance matrix.

III. TIKHONOV REGULARIZATION

The expansion of the least-squares solution using SVD
modes [cf. Eq. (6)] already suggests a direct remedy to the
ill-posedness; namely, truncating the later modes, which are
dominated by noise, while keeping the leading ones that are
more stable. This is known as the truncated SVD solution.
Tikhonov regularization [30,31] is a more refined method,
where the noisy modes are turned off continuously, with each
term in the least-squares solution multiplied by a filtering
function ¢(s;a) := s%/(s> + ) that depends on its singular
value s and an adjustable parameter «:

min(m,n) T
1

Prionn @) = 3 dlsi0) 2y (10)

S

Terms corresponding to very small singular values s? < o
are practically removed, while ones corresponding to large
singular values s? > o are hardly modified [32].

It can be shown that the above Tikhonov solution is the
least-squares solution of an alternative problem with extended

data and an extended kernel
K F_ g :

. (D

fTikhonov (@) = arg min
£

where I is the unit matrix in the n-dimensional space of
spectra. This formulation has a computational advantage for
large-scale problems because it allows getting the Tikhonov
solution using any linear solver without explicit computation
of the SVD. Moreover, this least-squares problem can be
written as the following minimization problem:

frikhonov (@) = argmin x*(f) + || 1%, (12)
f

that aims to balance the fit to the data with the L,-norm of
the spectrum vector. The balance is controlled by the regu-
larization parameter . When « is very small, we approach
the least-squares solution, which fits the data very well but
has a very large L,-norm. As « increases, more modes get
filtered and the norm gets smaller while the fit gets worse.
The smoothness typically associated with Tikhonov solutions
comes from the fact that the leading modes are smoother than
later ones for analytic continuation kernels (see, for example,
the insets of Fig. 2).

While the aforementioned form of Tikhonov regularization
is the most basic and widely used one in the inverse problem
literature [33], it has two drawbacks for analytic continuation
problems. The first is that the discretized L,-norm is grid
dependent because the spectral values f; := w; f(x;) include
the full weight of the grid interval at point x;. Using a grid with
n points and a grid density p(x), these weights are defined as
w; = 1/[Np(x;)] and the L,- norm of the spectrum reads

2 _ 2 _ 2 A L f )
Il —Xi:f,- _X,-:[w'f(x’)] ~N/dx e (13)

This shows that the basic form of Tikhonov has an implicit
dependence on the grid density [34]. We suggest replacing this
implicit dependence with an explicit one on a default model
d(x). Let d; := w;d(x;) be the integral of the default model
over the ith grid interval, then we replace the usual L,-norm
>, f? with the weighted L,-norm )", f?/d;. It can be easily
verified that the weighted norm is indeed grid independent.

The second drawback is that the solution approaches zero
in the limit of large regularization parameter «. In analytic
continuation, however, we know that the spectrum must have
a finite L;-norm, so it would be desirable if the solution would
approach some properly normalized spectrum in the limit of
large o. We choose to center our regularization term at the
default model d instead of zero.

In summary, we propose using the following form of
Tikhonov regularization in analytic continuation problems:

Frichonov (@, d) = argmax — 3 x*(f) + T (f|d),  (14)
f
where the Tikhonov penalty term is defined as

Il (fi—d)
Tf|d)=—= _— 15
(fld) = —> Z 7 (15)
It is worth noting that, like the original form, this formulation
can be solved as an extended least-squares problem,

(o) (i)

2

)

(16)

fTikhonov (e, d) = arg min
f
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with D = diag(d) and e := (1,1, ..., D)T. Its solution can be
similarly expressed in terms of the SVD of the rescaled kernel
K+/D as shown in Appendix A.

IV. DISCREPANCY PRINCIPLE

Choosing the value of the regularization parameter « is
an essential ingredient of any regularization method. Apart
from the obvious criterion that « should be smaller for more
accurate data, there is no unique procedure for actually deter-
mining its value. Any such procedure should strike a balance
between fitting the noise and biasing the solution. A common
method in the inverse problem literature is the discrepancy
principle [35,36].

According to the discrepancy principle, a good spectrum
would produce data such that the residual vector r := g — Kf
is dominated by noise. Therefore, we should choose o such
that the norm of the residual ||r|> = x2(f) equals the expected
norm of the noise vector. Assuming, as usual, that data and
kernel have been reweighed with the square root of the noise
covariance, the expected norm-squared of the noise vector
follows the well-known chi-squared distribution. The mean
value of this distribution equals the number of data points m,
and its variance equals 2m. To avoid accidental overfitting of
noise, one may apply the discrepancy principle using a value
(in terms of the standard deviation) somewhat larger than the
mean. In this paper, however, we always use the mean value.

Interestingly, the Tikhonov solution using the discrepancy
principle can be written in a form independent of any reg-
ularization parameter o as a maximization of the Tikhonov
penalty,

fTikhonov (d) = arg max T'(f|d), (17)
feC

over the manifold C defined by the discrepancy principle:
C:={f eR": x*(f) = m}. (18)

Starting from some spectrum on the manifold C, the Tikhonov
solution can then be found by following the gradient of
T (f|d), projected on C:

.
al = |:I - ﬂ:|a, (19)

7'z

where a := VT is the gradient of the Tikhonov penalty with

i (20)
a=———,
d;
and z .= —%V X2 is the gradient of the fit function, i.e., the
surface normal of C with
z = k] [g — Kf], 1)

where Kk; is the ith column of the kernel matrix K. At the
optimal point, the projection vanishes and the gradient of T
must be antiparallel to the fit gradient

xa=—1z, (22)

which is nothing but the stationarity condition for Eq. (14).
The optimal regularization parameter « thus reemerges as the
ratio of the two gradients at the optimal point.

0.30 — Exact
0.95 —— Default Model
—— Tikhonov
0.20 —— Non-negative Tikhonov

0.00

FIG. 4. Tikhonov solutions for test case 1 using a Gaussian
default model centered at 0 with width 10. The values used for
the regularization parameter o are determined by the discrepancy
principle.

In practice, this constrained optimization problem is con-
verted, using the method of Lagrange multiplier, into an
unconstrained optimization of the objective function

fTikhonov(d) = arg max T(f|d) — g[xz(f) —m],  (23)
B

where the Lagrange multiplier 8 corresponds to the inverse of
the regularization parameter «.

V. SELF-CONSISTENT TIKHONOV

Tikhonov regularization provides a simple and fast method
to obtain a decent first impression of the analytic continuation
solution. Its obvious disadvantage, however, is ignoring the
non-negativity of the spectrum (see Fig. 4). One can enforce
the non-negativity by explicitly restricting the optimization
problem to non-negative spectra. This can be done straight-
forwardly by using the non-negative least squares method [37]
with the extended kernel and data of Eq. (16). Nevertheless,
enforcing the non-negativity in this artificial way does not
improve the results as desired. As shown in Fig. 4, the non-
negative Tikhonov solution looks like a clamped version of the
original Tikhonov solution where the negative parts are set to
zero, while the positive part stays roughly the same with minor
adjustments to account for the truncated negative values.

Instead of enforcing the non-negativity constraint directly,
one can reduce violations by increasing the regularization
parameter o, which encourages the solution to be close to the
non-negative default model. Under the discrepancy principle,
the regularization parameter is determined implicitly and only
has a large value if the default model fits the data well. This
transforms the problem of satisfying non-negativity into one
of improving the fit of the default model. In the limit, when the
default model itself satisfies the discrepancy principle, it is its
own Tikhonov solution, and thus non-negativity is guaranteed.

A simple way of improving the fit of a default model is
by linearly mixing it with its Tikhonov solution under the
discrepancy principle:

d < [1 — puld+ @ frichonov(d). (24)
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FIG. 5. Comparison of MaxEnt and default models produced by
SCT at different iterations. The superscript of the default model
represents its iteration number with d® being the starting default
model. For MaxEnt, the starting default model d©® was used, and
the regularization parameter was determined by the discrepancy
principle.

Assuming the fit of the starting default model is worse than
m, this default model is guaranteed to have a better fit due to
the convexity of the fit function x2. Additionally, if the start-
ing default model is strictly positive, we can always choose
the positive mixing parameter © small enough such that this
default model is also positive. The values of the mixing pa-
rameter that guarantee the positivity of this default model can
be calculated explicitly from the values of the starting default
model and its Tikhonov solution as

M<min{ddi ':f,‘<di}. (25)

1 i

These observations suggest an iterative approach to obtain
an improved non-negative Tikhonov solution. In this ap-
proach, we keep linearly mixing the default model with its
Tikhonov solution to obtain an improved default model until
the difference between the default model and its Tikhonov so-
lution becomes negligible. We call this method self-consistent
Tikhonov (SCT).

For the mixing parameter u, we use half the maximum
allowed value [cf. Eq. (25)]. Using this value implies that the
updated default model has at least half its original value at
any point. This mixing strategy works well for most cases but
it can sometimes lead to slow convergence when the exact
spectrum has values very close to zero (e.g., at the tail of a
Gaussian peak). To accelerate the convergence of such cases,
we put a lower limit on the mixing parameter w. This may lead
to a violation of the positivity of the default model, which can
be directly reinforced by truncating values lower than some
positive threshold. It should be emphasized that these limits
are not strictly necessary but help accelerate convergence in
pathological cases.

In Fig. 5, we plot a set of default models produced by
SCT for test case 1 at different iterations. The default model
gradually transforms and fits the data till it converges, with the
converged solution satisfying the discrepancy principle. This
solution represents a significant improvement over the orig-
inal Tikhonov solution and its non-negative counterpart (see

0.4 — Exact
—— Default Model
MaxEnt
0.3 — SCT

FIG. 6. Comparison of MaxEnt and SCT for a variant of test case
1. This case differs by the location of the second peak and the width
of the envelope. In the notation of Ref. [14], the optical conduc-
tivity used here differs in the values of the following parameters:
I', =4, ¢, = 3. We denote this data set as test case 2. The default
model used here is a scaled Gaussian of width 6.

Fig. 4). Besides providing a smooth non-negative spectrum,
the shape and width of the peaks are much better reproduced.

In the same figure, we also show the solution of the MaxEnt
method using the same starting default model, d?, and a regu-
larization parameter that is also determined by the discrepancy
principle. Remarkably, the MaxEnt solution is indistinguish-
ably close to SCT solution. By examining other test cases, we
have always found that the solutions of MaxEnt and SCT are
quite similar and in many cases virtually identical (see Fig. 6
for another example). The following sections will examine
and clarify this surprising connection between MaxEnt and
SCT. In this context, it is worth noting that MaxEnt has also
been connected to the average spectrum method, a stochastic
method for analytic continuation [15,38].

VI. MAXIMUM ENTROPY METHOD

Similarly to Tikhonov regularization, MaxEnt introduces
a term that penalizes the mismatch between a spectrum and
a default model [3—6]. The penalty term, known as Shannon
entropy, is defined as

N
S(Ed) =) [ﬁ —d;— fIn (g)] (26)

i=1
It represents the expected amount of information in a spec-

trum f relative to the default model d. This entropy is then
optimized in MaxEnt simultaneously alongside the data fit:

fyaen (@, d) = argmax — 3 x°(F) + «S(Fld).  (27)

The fit and entropy trade-off is controlled via the regulariza-
tion parameter «. When « is infinitesimally small, MaxEnt
formally gives the non-negative least-squares solution, but
as o increases, the solution gets smoother and closer to the
default model.

There are different “flavors” of MaxEnt depending on how
« is chosen [39]. The most relevant for our purpose is the
one known as historic MaxEnt. In this method, « is chosen
such that the fit x2 equals the number of the data points .
This choice is equivalent to the discrepancy principle when
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the data and the kernel are transformed so the noise on the data
becomes uncorrelated and has unit variance. Other commonly
used methods for choosing « are the classic MaxEnt and
Bryan’s MaxEnt. Both methods derive a probability distribu-
tion over « using Bayesian theory and use either the maximum
of this distribution (classic MaxEnt) or its average (Bryan’s
MaxEnt) as the final solution. In the rest of the paper, we will
always assume that the discrepancy principle is applied, and
thus, MaxEnt refers to the original way of choosing ¢, i.e.,

fMaxEnc(d) = arg max S(f|d), (28)
feC
where C is the manifold defined by the discrepancy principle
in Eq. (18).
The Shannon entropy is directly related to the Tikhonov
regularization term, 7 (f|d) being the entropy expanded to
second order in A; == f; — d;:

SEd) =Y A= (Ai+d)n <1+%>

A2 A A2
~ Al' _ — = d,‘ —_— = —
- d; di  2d?

= Tf|d). (29)

This means that the Tikhonov method can be considered an
approximation to MaxEnt. The quality of this approximation
depends on how close the starting default model d is to the
hypersurface defined by the discrepancy principle C. When
the default model satisfies the discrepancy principle, then
MaxEnt and Tikhonov give the same solution—the default
model itself. As the fit of the default model deteriorates, it
gets further away from that hypersurface, and the maxima
of the penalty terms S and 7 in C start to diverge. A more
quantitative analysis of the difference between MaxEnt and
Tikhonov solutions is given in Appendix B.

VII. MAXENT FAMILY OF EQUIVALENT
DEFAULT MODELS

Analogously to the discussion in Sec. IV about optimizing
the Tikhonov penalty, maximizing the Shannon entropy under
the discrepancy constraint can also be achieved by following
its gradient, projected on C,

n ZZT
bt =|1- == |b, (30)
Z'7

where b := VS is the gradient of the entropy with

I ]
bi=—1In (d;)' (31)

At the MaxEnt solution f*, the gradient of Shannon entropy
and the gradient of the fit function must be antiparallel:

ab* = —7*. (32)

This gives rise to the following self-consistent system of equa-
tions satisfied by any MaxEnt solution:

£t =diexp <Z> (33)

i
o

FIG. 7. Different default models equivalent to d for test case 1.
The value of « is determined via the discrepancy principle.

where the fit gradient of the MaxEnt solution z* depends on
the solution itself. By rearranging this equation, it becomes
clear that the same MaxEnt solution can be obtained using a
whole family of other equivalent default models d and their
corresponding regularization parameters «. This family can
be constructed explicitly using the MaxEnt solution and its fit
gradient:
o

d; == fexp <—Z—:> (34)

Alternatively, given a default model d with regularization pa-
rameter «, we can construct an entire family of default models
d“ that result in the same MaxEnt solution f*:

, 11
d =d;exp |:—z[*<—/ - —)j| (35)
o o

Note that limg/_, oo d¥ =" In Fig. 7, we show a set of equiv-
alent default models for test case 1.

Besides establishing the existence of equivalent default
models, Eq. (34) can be used to study the stability of MaxEnt
solution with respect to perturbations to these default models.
The partial derivatives of the default model with respect to
variations in MaxEnt solution f* and regularization parameter
o read
ad;  d 5+ d;
off  fr «

8d,~ zr

— = —d,. 37

da  «a? 37)
Therefore, an infinitesimal change in the MaxEnt solution df*
and an infinitesimal change in the regularization parameter do
induce the following relative change in the default model:

k k;, (36)

d
§:=D"'dd=Ldt" + = 7, (38)
o

where D = diag(d) and L is the scaled Hessian of the MaxEnt
objective function

—aL = —(K'K + oF*), (39)

with F* := diag(f*). Inverting Eq. (38) gives the changes
in the MaxEnt solution in terms of perturbations to its de-
fault model. Under the discrepancy principle, the change in
the regularization parameter is fixed by the constraint
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2 Tdf* =0 (ensuring that df* has no component perpendic-
ular to C) to the value
Ty -1
z7’L74
dao = o> ———, 40
L'z “0)

and the corresponding change in the MaxEnt solution is

df* =L™! [I -

where " is the part of the vector & perpendicular to the surface
normal z* under the inner product defined by the matrix L.

Relative changes in the default model along the direction
of z* give an equivalent default model and thus have no effect
on the MaxEnt solution. To assess the effect of changes in
the default model along orthogonal directions, we need to
look into the spectral decomposition of the matrix L. The
eigenvectors of L. match the spectral modes of the rescaled
kernel K’ := K+/F* and the eigenvalues of the former A; are
related to the singular values of the later s; as

Z*Z*T L—l

.y -1 gl

2
a+s';
pa

hi = (42)
We now distinguish two limiting cases depending on the di-
rection of the vector §*. When s;z > «, then Ai_l ra /sl’.z.
Therefore, changes along the leading modes have little effect
on the MaxEnt solution, and the effect is smaller the further
away the default model is from C. On the other hand, when
s? < o, then A} '~ 1. Therefore, changes along the trailing
modes are directly reflected in the MaxEnt solution. Assum-
ing that a MaxEnt solution is smooth, the leading modes of
K’ are smooth and slowly varying functions while the trailing
ones are highly oscillating. These results then confirm and
elucidate the common wisdom that slowly varying details of
the default model have little to no effect on MaxEnt solutions,
while sharp features tend to introduce strong biases. Finally,
note that having more accurate data scales up the singular
values s}, and thus the MaxEnt solution becomes less sensitive
to changes in the default model, as one would intuitively
anticipate.

VIII. CONNECTING SCT TO MAXENT

Let d be the default model at step r of SCT and f®
and z) be the corresponding Tikhonov solution and its fit
gradient. By combining Eq. (20) with Eq. (22), we see that
the Tikhonov solutions satisfy the following self-consistent
equation (analogous to Eq. (33) of MaxEnt):

(t) ) Ak
FO=aP014+ = |. (43)
1 1 a([)

Using mixing parameters "), the default models at subse-
quent iterations are then related by

Q)
d ™ = A=l + p O = d}’)[l + % z(’):l. (44)

Applying this relation recursively and assuming very small
w® /o, we get the following exponential form for the default

1.00
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0.90
<z*|z)>
[ESIER

0.85 <270
[ESNER]
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FIG. 8. Normalized overlap between the MaxEnt fit gradient z*
and the fit gradients produced at different SCT iterations (denoted as
t) in test case 1. Both the bare gradients z) (gradients of Tikhonov
solutions) and the effective gradients ) are shown. The overlaps
and norms are calculated using the inner product (x,y) := x' L™y,
where L is the scaled Hessian of MaxEnt objective function defined
in Eq. (39).

models produced by SCT:
o_ 0[5 o ©) 2"
d;’ =d; " exp X;a(f)z =d; " exp 70 | (45)
7=l

where in the last equation we defined the effective fit gradients
7" and the effective regularization parameters &) as

® 1 =@
50 ._ 0N KA o 1 N H
7" = a Za(r)z © 7@ ._Za(t). 46)

=0 =0

Comparing the default models generated by SCT [cf. Eq. (45)]
with the MaxEnt family of equivalent default models [cf.
Eq. (35)], it is clear that the two have the same functional
form and would match if the effective fit gradients Z) match
the MaxEnt fit gradient z*.

Indeed, the effective gradients of SCT provide an excellent
approximation to the MaxEnt gradient. In Fig. 8, we plot the
normalized overlap between the two at different iterations of
SCT. The starting effective gradient is nothing but the original
Tikhonov gradient, which already has a very good overlap of
0.83. This is to be expected since, as discussed in the previous
section, Tikhonov provides an approximation to MaxEnt. As
the SCT procedure iterates, the effective gradient not only
maintains the good initial overlap, but the overlap improves
until it saturates at about 0.99 when the procedure converges.
Interestingly, the overlap with the bare gradients z(*), i.e., the
gradients of Tikhonov solutions at different iterations, does
not necessarily increase. The plot shows that the bare overlap
actually drops after a couple of iterations. We observed cases
where the bare overlap even drops below its starting value (see
Fig. 9). Nevertheless, in all cases we investigated, the effective
gradients always had a monotonically increasing overlap with
the MaxEnt gradient. An argument for this behavior of the fit
gradients is detailed in Appendix C.

These results demonstrate that the set of default models
produced by SCT provides an approximation to the MaxEnt
family of equivalent default models, and thus solving the
MaxEnt problem with any one of them gives a solution that is
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FIG. 9. Normalized overlap between the MaxEnt fit gradient z*
and the fit gradients produced at different SCT iterations (denoted as
t) in test case 2.

close to the solution of the original MaxEnt problem. At con-
vergence, the default model of SCT satisfies the discrepancy
principle, and thus, it is trivially the solution of its own Max-
Ent problem and a good approximation of the original MaxEnt
solution. In Appendix D, we give an alternative perspective in
which SCT can be seen as an approximate and simplified vari-
ant of Newton’s method for obtaining the MaxEnt solution.

IX. SUMMARY AND DISCUSSION

In this paper, we used SVD to derive a generally applicable
method for estimating the noise level on QMC data. Having a
reliable error estimate is crucial when using the discrepancy
principle/historic MaxEnt. We then introduced a particular
form of the Tikhonov regularization that is more suitable for
analytic continuation problems. Besides solving the implicit
grid dependence and normalization issues, this form is closely
connected to Shannon entropy. A quadratic approximation
of the entropy around its default model gives precisely the
introduced Tikhonov penalty term. This form allows approxi-
mating the MaxEnt solution using the Tikhonov method when
the default model already has a good fit to the data (i.e.,
in the limit of large regularization parameter). In the typical
cases where the default model does not fit the data well, we
showed that an iterative procedure where the default model is
repeatedly mixed with its Tikhonov solution still gives similar
results to MaxEnt. We investigated the connection between
the two methods, which revealed that the same MaxEnt so-
lution could be produced by a whole family of equivalent
default models. This family is approximately traced by the
self-consistent Tikhonov procedure.

SCT provides a simple and efficient alternative to MaxEnt
that could be easily implemented using any linear algebra
library. While we have not observed a numerical advantage
of SCT over MaxEnt, an important difference between the
methods is that MaxEnt has the non-negativity of the spectral
function built in, while SCT is not constrained per se but
implements non-negativity by keeping the default model from
going negative. We expect this added flexibility to be useful
for the analytic continuation of matrix-valued Green func-
tions, where MaxEnt is trickier to implement [40,41]. This
requires generalizing the Tikhonov penalty term to handle

matrix-valued spectra F; as follows: T(F|D) = — > (F; —
D;))'D; ' (F; — D;)/2, where D; is now a default model of
positive-definite matrices. Positive definiteness of the solution
can then be similarly achieved by enforcing positive definite-
ness of the default model. Whether such a procedure gives
better results than other methods remains to be investigated.

APPENDIX A: TIKHONOV SOLUTION USING SVD

The minimization problem of Tikhonov in Eq. (14) can
be written as the following least-squares problem with an
extended kernel matrix and extended data vector:

(o) (5se)

where D = diag(d)ande = (1, 1, ..., l)T. The normal equa-
tion of this least-squares problem reads

2

)

fikhonov (a, d) = arg min
£

(K'K+aD™ Hf =K'g + ae, (A2)

o [K'K+al]VD ' 1) = K'g + av/De, (A3)

where a rescaled kernel matrix K is defined as K := K+/D.
Using SVD of the rescaled matrix K = fJSVT, the normal

equation in the mode space reads

88 +olV (VD) =80 g + oV vDe. (A4

The Tikhonov solution can then be expressed in terms of the
rescaled modes of the rescaled matrix V' := v/DV as

a2 ~T /T
£ . S; u g , v, e |
Tikhonov = ) Vi t+a ) Vi
Sic+a — S + o

5‘
i i

(AS5)

The first term is similar to the expansion of the original
grid-dependent Tikhonov in Eq. (10), while the second term
comes from centering the regularization term around the de-
fault model.

Unlike the spectral modes v; in Eq. (10), however, the
modes v; are not orthonormal under the standard inner prod-
uct. They are instead orthonormal under the modified inner
product:

(x,y) =x'Dy. (A6)

Moreover, these vectors can be seen as the modes of the
original kernel matrix, with the orthogonality being defined
under this modified inner product. This view holds since
Kv, = K¥; = 5, (A7)

and
(v, V;-) =34 ;. (AB)

Equation (A5) can then be seen as a direct expansion of the
Tikhonov solution in terms of the spectral modes of the kernel
matrix

/ /
fTikhonov = E (¥, Prikhonov) Vi

i

(A9)
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with

=T
(V;, fTikhonov) = .87,'2 :_ o |:§12 é_lg —+ o (V,,‘, d>:| . (AIO)
Note how each component of the Tikhonov solution is an
interpolation between the components of the least-squares
spectrum and the default model. Different components, how-
ever, are mixed differently (each according to its singular
value), and thus the overall Tikhonov solution is generally not
a simple interpolation of the two spectra.

APPENDIX B: DIFFERENCE BETWEEN
MaxEnt AND TIKHONOV

We can quantify the difference between the Tikhonov and
MaxEnt solutions of the same default model and regulariza-
tion parameter as the following:

A* = frighonoy — £ = H VT, (B1)

where H is minus the Hessian of the Tikhonov objective
function of Eq. (14),

H:=oD'+K'K, (B2)
and VT is its gradient at the MaxEnt solution:
. *—d;
VI' =z bad =z —al
d
=z — a[exp (Z—’> — l]
o
1 *2 -2

=~ 4 0@, (B3)

200

Therefore, the gradient scales linearly with the inverse of «. To
analyze how the difference A* scales, we look at the spectral
decomposition of the Hessian matrix H. Its eigenvectors are
the same as the spectral modes of the rescaled matrix K =
K+/D, and its eigenvalues /; are related to the singular values
of K as follows:

hi=a+5. (B4)

The ith component of the difference then scales as 1/(a® +
aiiz), and thus, the difference between Tikhonov and MaxEnt
vanishes quadratically in the limit of strong regularization.
Note that the components of the gradient along the leading
spectral modes (i.e., the smooth components with large singu-
lar values) get suppressed more than the trailing ones (i.e., the
oscillating components with small singular values).

APPENDIX C: DYNAMICS OF SCT

Let z’ be the fit gradient of a Tikhonov solution. When
mixing the default model with the Tikhonov solution, the
relative change in the default model is proportional to this fit
gradient, namely, § = u/« z'. The part of z’ along the MaxEnt
fit gradient z* gives an equivalent default model and thus does
not affect the MaxEnt solution. Let dz’ denote the part of z’
perpendicular to z* under the inner product defined by L~!,
ie.,

. , Z*TLflz/ .
dz .:Z—mz. (Cl)

e
o ® @ 4V d©
AL &g o
SCT O 0
Solution R o 1 kS
T =R e
v R STATRRY A § o
¢ z @) . \ﬂ
g - Q@\\\\ u\\\x
f 0
*(1) i n\\c(\\
z \ %&\\lb
) \ 1
AZ/‘ f( )
‘_M“) (0)

|_ Log Spectrum Space

FIG. 10. Schematic diagram illustrating how the default models
and their MaxEnt and Tikhonov solutions evolve with the SCT iter-
ations. The diagram is depicted in the logarithmic space of spectra.
Note that Tikhonov solutions are assumed here to be strictly positive,
although, in general, they may have either sign.

Then the relevant relative change in the default model is 8+ =
u/a dz'. From Eq. (41), we see that the corresponding change
in the fit gradient of the MaxEnt solution reads

dzt = - K'Kdf* = - K'KL' §*

= P KKL ! az. (€2)
o

Given that the matrices L™' and K"K are positive semidefi-
nite, the overlap between dz* and dz’ is nonpositive, i.e., the fit
gradient of the MaxEnt solution moves opposite to the change
in the fit gradient that induced it. Since Tikhonov solutions
generally follow the MaxEnt solutions, these Tikhonov gradi-
ents would be closer to the original MaxEnt gradient than the
previous ones. This explains why the bare fit gradient vectors
in SCT initially move closer to the original MaxEnt gradient
vector (Figs. 8 and 9). However, the MaxEnt solutions using
SCT default models keep drifting away in the same direc-
tion, so the Tikhonov solutions and their fit gradients would
eventually also start moving away from the original MaxEnt.
The effective fit gradient, on the other hand, is an average of
these bare gradients and thus can be closer to the original
MaxEnt than any of its summands. This happens when the
bare gradients circulate around the original MaxEnt gradient,
which is the case in SCT.

The dynamics described above is depicted schematically in
Fig. 10. In this diagram, we represent the log sPectra as points,
so the family of equivalent default models d*'", d*®, ... all
lie on a straight line between the initial default model d®
and its MaxEnt solution f*. This line is specified by the fit
gradient vector z*. In SCT, z* is replaced by z’, the bare fit
gradients at the Tikhonov solutions £O, leading to a set of
alternative default models d) that approximates the equiva-
lent family d*®. Bach approximate default model d has its
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own MaxEnt solution £*’ and Tikhonov solution £). In this
two-dimensional case, according to Eq. (C2), the Tikhonov
solution £ and the MaxEnt solution at the next iteration
£+ must be on opposite sides of the MaxEnt solution 0.
Therefore, the fit gradients of Tikhonov z) would initially get
closer to z* before moving away. Also, note how the effective
fit gradients (i.e., consecutive weighted averages of z\")) get
monotonically closer to z*. This is the result of z) moving
from one side of z* to the other, and the weights u® /a®
getting lower for higher iterations.

APPENDIX D: SCT AS RESET NEWTON METHOD

Another perspective on SCT is seeing it as a variant of
Newton’s method for optimization. Assuming that the opti-
mal regularization parameter for satisfying the discrepancy
principle is somehow known in advance, solving the Max-
Ent problem of Eq. (28) reduces to optimizing the MaxEnt
objective function of Eq. (27). Using the default model d as
an initial guess, an improved solution can be obtained using
Newton’s method as

d=d+yH'Vs9, (D1)

where y is a small step size and H is minus the Hessian of
the objective function at the default model [which coincides
with minus the Tikhonov Hessian in Eq. (B2)] and V§9 is its
gradient, also evaluated at the default model.

The vector x := H~!V S is the solution of
[K'K+a D 'x = K'[g — Kd]

S [K'K+aD Nx+d =K'g+ae. (D2)

Comparing with Eq. (A2), we see that x +d equals the
Tikhonov solution, and thus Newton’s update formula can be
written as

d/ =d+ V4 (fTikhonov - d), (D3)

which is precisely the mixing formula used in SCT. Note that
the entropy has no contribution to the gradient vector V§9
at the starting default model. However, at later steps there is
an additional term —a® In(d" /d”). SCT ignores this term;
thus, SCT is equivalent to Newton’s method, where the default
model is always reset to its most recent solution.

Interestingly, the missing entropy contributions can be ex-
pressed in terms of the effective fit gradients:

()
™1 4; = o‘(t)~(r)
—u n _O) = ——=7".
di( a([)

Therefore, we can recover the full Newton’s method as a vari-
ant of the SCT method where the data is modified at each step
to take into account the residuals of the previous Tikhonov
solutions.
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